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Abstract: The river sediments in the eastern Makran were investigated to determine the influence of
climate, tectonics, and source rocks based on the geochemistry of sediment delivery to the offshore
marine basin. Samples were collected at the outlets of four major drainage basins. The specimens
were analyzed by XRF, ICP–MS, and ICP–AES. The geochemical concentrations of major, trace, and
rare earth elements show great variation among the four outlets. The Rakhshan Kaur (RK), Shadi
Kaur (SK), and Dasht Kaur (DK) represent more sorted and matured detrital sediments than those of
the Hingol Kaur (HK). The detrital sediments at all outlets represent mostly humid climates except
for the DK which falls at the junction of humid and semi-arid conditions. The studied samples show
a low level of source area weathering. The sedimentary provenance of the RK and DK is due to the
heterogeneous sources of detritus from Iran in the west and the older Eocene-Holocene sedimentary
successions in the east. The sediment carried by SK is probably from the late Oligocene–Holocene
succession from central and coastal Makran. The HK represents a heterogeneous provenance from the
Kirthar-Sulaiman Belt, Bela Ophiolites, and sedimentary successions of central and coastal Makran.
The tectonic environments of all river sediments signify a continental arc rather than an active
continental margin.

Keywords: Rakhshan River; Dasht River; Shadi River; Hingol River; eastern Makran; provenance

1. Introduction

The onshore main rivers of eastern Makran emptying into the Arabian Sea traverse a
wide variety of terrain with varying climatic and tectonic forces. The geochemistry of river
sediments at basin outlets gives an excellent chance of examining how climate and tectonic
forces combine to regulate erosion. If such a sediment archive is to be used, it is necessary
to know where the sediment comes from, what its composition is, and how it changes as it
travels owing to abrasion and chemical weathering [1]. If the bedrock compositions are
diverse enough, the bulk composition of the sediment may provide a means of determining
the source of the materials. Many researchers have utilized the geochemistry of bedload
and suspended sediments to establish their origin, source area weathering, and the tectonic
environment of various river basins [2–9].

The clastic/siliciclastic sediments are the end products of numerous complicated pro-
cesses such as weathering, transportation, and their relations, and their provenance can be
inferred using their geochemical characteristics. The geochemistry of sediments preserves
the evidence of these processes from source to sink, after their deposition. Al, Fe, Ti, Sc,
Th, Zr, Cr, Ni, Co, and rare earth elements are among the examples of major and minor ele-
ments whose distributions are well-suited to distinguishing between different provenances
and tectonic settings. These elements tend to be transient in riverine environments and
have little mobility throughout sedimentary processes [10]. The geological evolution of a
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sedimentary unit or basin province can be decoded from its source region by analyzing the
geochemistry of sediments, which in turn exposes information on the nature of source area
weathering and provenance, which are governed by climatic and tectonic causes.

Geochemical investigations of the onshore eastern Makran river sediments have been
given less priority in conducting such work. Here, we investigate the geochemistry of river
sediments collected at the watershed outlets to see how effective major, trace, and rare earth
element geochemistry can be in determining provenance. In addition, the sorting, maturity,
tectonic environment, climatic influence, and source area weathering of the sediments are
also discussed.

2. Geographical and Geological Framework
2.1. Geographical Aspects

Its rough terrains make Balochistan a unique geographical area, which is categorized
into five divisions: deserts, plains, lower highlands, upper highlands, and the coast. The
east–west coast stretches approximately 760 km from Jiwani near the Iranian border to
the Hub River near Karachi. It comprises numerous promontories and peninsulas. The
desert areas fall in the Chagai and Kharan districts in the northwest of Balochistan province.
The zone covers massive plains in the form of huge sand dunes and black gravel surfaces.
The plains contain Makran plain, including Dasht, Bugti plain, and Lasbela plain. The
piedmont plain, valley floor, and terrains make up 15% of the area, whereas the greater
area is covered by mountains. The lower highlands are commonly found in the southern
parts of the province. They range from 600 to 1200 m. The upper highlands include the
Kirthar-Sulaiman and Makran ranges at the east and west, respectively. They rise to an
altitude of ~1500 to 3700 m [11].

2.1.1. Climate

The climate of the desert zone is extremely arid but extremely hot in summer. The
plain areas have mild winters and extremely hot summers. The temperature can rise up to
~52 ◦C. The climate of the lower highlands varies from place to place. The northern parts
are extremely cold in winter, while the winters of the southern parts are mild. Both parts
are dry and hot in summer except for the coastal cities. The upper highlands are extremely
cold in winter, while summers are warm. The climate of the coast has mild winters and hot
summers with high humidity [11].

2.1.2. Rainfall

The annual rainfall ranges from 50 to 500 mm. The northern parts receive the highest
rainfall, which ranges from 200 to 500 mm, while the eastern and southern parts receive
an average of 25 to 50 mm. The average annual rate of evaporation ranges from 1830
to 1930 mm, which is usually higher than the rate of annual rainfall [12]. The annual
rainfall varies from November to March, with a peak in January and February. In addition,
glaciation is absent [10]. In [13], the authors stated that the region of the Arabian Sea
receives two types of monsoon winds. The humid and warm monsoon winds blow from the
southwest in summer, while the drier and weaker winds of semi-arid to arid environments
blow from north to north-east in the winter [14]. However, extreme rainfall sometimes
leads to extensive flash floods that cause severe erosion and transportation of sediments.
These eroded sediments from inner and outer Makran are then transported to the Arabian
Sea through the main streams.

2.1.3. Rivers and Streams

Makran is hydrologically distributed into the Rakhshan, Doraski, Hingol, Kech, Ni-
hing, Shadi, Basol, and Dasht rivers. Among them, the Dasht, Shadi, Basol, and Hingol
rivers drain directly into the Arabian Sea. The Dasht River is ephemeral, with a catchment
area of about 21,000 km2, and the rainfall is 110 cm per annum [15]. Two associated tribu-
taries, Kech from Balochistan in the east and Nihing from Iran in the west, join the Dasht
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river at Kor-e-Awar in the Nasirabad region. Other tributaries in the Sami area, such as
Rakhshan draining from Panjgur, Gishkaur, and Kill Kaur connect the Kech River. The
Shadi Kaur (River) is not an ephemeral type, with a total length of about 80 km. The smaller
Pidark and Bahri rivers join Shadi Kaur, which finally drains into the Arabian Sea in the
Pasni region. The Basol River enters the Arabian Sea about 30–35 km west of Ormara. The
tributaries draining from the southern parts of Awaran and Hoshab join the Basol River. On
the other hand, the Hingol River is an ephemeral type of river that drains into the Arabian
Sea in the Lasbela region, which covers an area of about 35,736 km2 [16,17].

2.2. Geological Background

The Makran is bound by two strike-slip faults i.e., Ornach Nal to the east of Makran
Accretion Wedge (MAW) in Balochistan, Pakistan (Figure 1) and Menab to the west, in
Iran. The region developed at the convergent margin between the Arabian and Eurasian
plates throughout the Cenozoic, mainly by recycling of sediments that were eroded from
the India–Asia collision belt and from the uplifted older strata [18,19]. Makran is further
divided into three regions, i.e., outer Makran comprising the Chagai-Raskoh magmatic
arcs region, inner Makran representing Eocene to Miocene Flysch sediments, and coastal
Makran representing the post-Miocene Flysch sediments (Figure 1). The oldest parts
(Chagai-Raskoh magmatic arcs) are about 400 km inland from the Makran coast. The
coastal region contains Plio-Pleistocene sediments [20–22].
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Figure 1. Map showing the geological background of Balochistan. The horizontal arrows refer
to the divisions of Makran, for instance, outer, inner, and coastal Makran. MC-Hc: Miocene to
Holocene; MKG: Makran-Khojak Group; BO: Bela Ophiolites; MBO: Muslim Bagh Ophiolites;
CRA: Chagai-Raskoh arc; KSF: Kirthar-Sulaiman Fold Belt; KS = Koh Sultan; SM = Sandak mag-
matic arc; CMA = Chagai magmatic arc; RMA: Raskoh magmatic arc; CTF: Chaman Transform Fault;
GF: Ghazaband Fault; and ONF: Ornach Nal Fault [20–26].
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Moreover, the region shows massive sedimentary beds ranging from Jurassic to
Holocene (Figures 1 and 2a–c). The Jurassic formation (AMJ) comprises fossiliferous
gray limestone and shale, which is found at the Kirthar Fold Belt (Figure 2c). The Creta-
ceous Pab Formation (PFC) comprises quartzose sandstones and shales and can be found
at the Kirthar Fold Belt (Figure 2c). The Paleocene Gidar Dhor Formation (GDFP) consists
of diverse igneous and sedimentary rocks and is found at the Kirthar Fold Belt along with
Paleocene undifferentiated rocks (URP) (Figure 2c). The ophiolitic mélanges (BOMP) of
Paleocene are found in the Bela Ophiolite (Figure 2c). Many isolated outcrops of Wakai
Limestone (WLE) can be found along the Pakistani and Iranian borders in the western Sia-
han Range. This Eocene formation primarily comprises grey reefoid limestones (Figure 2a).
The Eocene Nisai Formation (NFE) comprises argillaceous and reefoid gray limestone,
shale, and sandstone interbeds in the Kirthar Fold Belt along with Eocene undifferentiated
rocks (KPE) (Figure 2c). The Oligocene Nal Limestone (NLO) to the north of the Bela
Ophiolite and Nari Formation (NFO) at the Kirthar Fold Belt comprises massive reefoid
gray to light brown limestones, shale, and sandstone interbed (Figure 2c). The Oligocene
Murgha Faqirzai Formation (MFFO) at the Khojak Group (KG; Figure 1), comprises shale
with sandstones, and minor interbeds of shelly limestones (Figure 2c). The Late Oligocene
to Early Miocene Panjgur formation (PFOM) is widespread in central Makran and along
the coast [20–22,27]. The authors of [18,28] found that the younger succession represents
slope and shelf sediments (shallow marine) deposited on top of the wedge, whereas the
older succession was deposited on the ocean floor (deep marine) of the precursor of the
Arabian Gulf and subsequently tectonically absorbed into the accretionary wedge. The
PFOM is composed of greenish micaceous sandstones and turbidites that originated on
the ocean floor (Figures 1 and 2a–c). The Neogene Hinglag Formation (HFN) consists of
sandstone, shale, and shelly limestone and is found in coastal Makran (Figure 2c). As
described by [18] and supported by [29], along the coastal range, the Parkini Formation
(PFM) is widely distributed and extensively exposed along the Turbat–Pasni route. With
very fine-grained thin sandstone strata, it is frequently composed of light-grey, fine-grained,
and less cemented mudstones dating to the Miocene. The sediments of PFM were deposited
on an outer shelf region with an upper slope (Figure 2a,b). Along the coast of Makran, the
early Pliocene Chatti Formation (CFP) is found. Siltstones and fine-grained sandstones
make up the Formation. A middle–outer shelf habitat is indicated by the prevalence of
nanofossils in this formation (Figure 2a,b). Along the west coast of Makran, the Gwadar
Formation (GFP) can be found. It resembles conglomerate, sandstone, and sandy clay.
This formation is late Pliocene in age (Figure 2a). The Bostan Formation (BFP) in the
Khojak Group, Kech Conglomerate (KCP) in central Makran, and Haro Conglomerate
(HCP) in coastal Makran correspond to the same Pleistocene age and rock properties.
These formations are of lacustrine and fluvial origin with less consolidated sandstones,
conglomerate, and shale (Figures 1 and 2a–c). In the eastern part of the coastal area, the
Holocene Extrusive Mud (EMDH) is found (Figure 2c). In addition, the older alluvial
deposits (SRDH) and unconsolidated surface deposits (RDH) are found throughout the
region (Figures 1 and 2a–c) [27].
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Figure 2. The catchment-based geological maps of eastern Makran in Pakistan. (a) The geological map
of the Dasht River catchment including the Rakhshan River catchment, (b) the Shadi River catchment,
and (c) the Hingol River catchment. Note that suffix “K” represents Kaur, which is a local word in the
Balochi language meaning river. Where, RDH: recent deposits; SRDH: sub-recent deposits; EMDH: ex-
trusive mud deposits; BFP: Bostan Formation; HCP: Haro Conglomerate; KCP: Kech Conglomerate;
CFP: Chatti Formation; GFP: Gwadar Formation; PFM: Parkini Formation; HFN: Hinglag Formation;
PFOM: Panjgur Formation; MFFO: Murgha Faqirzai Formation; NLO/NFO: Nal Limestone and Nari
Formation; KFE: Kirthar Formation; NFE: Nisai Formation; WLE: Wakai Limestone; BOMP: Bela
Ophiolitic Mélange; URP: undifferentiated rocks; GDFP: Gidar Dhor Formation; PFC: Pab Formation;
AMJ: Anjira Member [20–26].

3. Sampling and Analytical Techniques
3.1. Data Acquisition and Laboratory Techniques

Some necessary tools were used to collect the sediment samples during the fieldwork.
These include a GPS (Garmin eTrex 10 handheld), a shovel, a pan to carry the sediments,
a measuring tape, sampling bags, and stationery such as pens, markers, notebooks, etc.
Four major outlets were selected for sampling and field observations. These include the
Rakhshan River in Panjgur, the Dasht River in Jiwani, the Shadi River in Pasni, and the
Hingol River in Lasbela (Figures 1 and 2). Four samples (2 km each) from four outlets
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were collected for whole rock geochemical examinations. The samples were collected
perpendicularly to the flow direction about 5 m between samples in a row at downstream
of the four rivers. This sampling procedure was applied to grain the spatial heterogeneity
of river sediments. The fine-grained sediment samples from DK were collected from
surface sediment of ~1-m water depth. The dry coarser sediment samples were collected
from RK and SK, and coarser wet sediment samples were collected from HK; i.e., the
grain size in increasing order is DK < RK < SK < HK. The boulders/coarse materials were
removed without sieving procedures and the sediment samples were air-dried prior to the
laboratory examinations.

The concentrations of major elements were examined by XRF. The specimens were
analyzed using the method of lithium borate fusion. The major oxides were examined by
X-ray fluorescence spectroscopy (XRF) following the laboratory’s analytical procedures.
For the sample preparation, the lithium borate fusion technique was used. First, lithium
metaborate (LiBO2)–lithium tetraborate (Li2B4O7) flux containing lithium nitrate (LiNO3)
was mixed with the prepared samples as an oxidizing agent. The mixture was subsequently
poured into a platinum crucible. Last, XRF recorded the resulting discs. The inductively
coupled plasma–mass spectrometry (ICP–MS) and inductively coupled plasma–atomic
emission spectrometry (ICP–AES) methods were applied to measure the trace element
concentrations consisting of REEs. The laboratory analytical procedures are as follows:
powdered samples (25 mg) were weighed in the first stage and two solution subsamples
were subsequently prepared. Perchloric (HClO4), nitric (HNO3), and hydrofluoric (HF)
acids were digested in a single subsample. The remains were discharged and diluted to
volume in dilute hydrochloric acid (HCl). The ICP–MS for ultra-trace level elements and
the ICP–AES for trace level elements were used for examinations and then the digestion
solution was analyzed. The results were corrected for spectral inter-element interferences.
The other subsamples were mixed with the flux of lithium metaborate/lithium tetrabo-
rate, blended, and melted at 1025 ◦C in a furnace. In an acid mixture containing nitric,
hydrochloric, and hydrofluoric acids, the resulting melt was cooled and dissolved. To
test this approach, ICP–MS was used. In addition, the organic matter content (OMC) of
sediment samples is determined using loss on ignition (LOI) analysis. The organic fraction
was removed through LOI using a muffle furnace at 1000 ◦C. The LOI determines OMC
by comparing the sample’s weight before and after sediment ignition. Before ignition, the
sample contains organic matter, but following ignition, only the mineral fraction of the
sediment remains. The difference between the sample’s weight before and after ignition
represents the amount of OMC in the sample [29]. Thus, to test this loss, the concentrations
of loss on ignition (LOI) were calculated. The LOI contents are not explained at length
in this study but are used to support the reproducibility of data for future research. The
geochemical analyses were prepared and analyzed in the Guangdong Provincial Key Labo-
ratory of Geodynamics and Geohazards, School of Earth Sciences and Engineering, Sun
Yat-Sen University, China.

3.2. Data Processing

The relationships between elements were explored using correlation and principal
component analysis (PCA). Major oxides and trace elements were normalized against
upper continental crust (UCC) values [30], and REEs were normalized against chondrite-
normalized values [31].

Nesbitt and Young [32,33] offered CIA to calculate the intensity of weathering follow-
ing the molar proportions, where CIA is solved by Equation (1):

CIA =
Al2O3

(Al2O3 + CaO∗+ Na2O + K2O)
× 100 (1)

where the weathering intensity scale ≤ 50 refers to unweathered, 50–60 is low weathered,
60–80 is moderately weathered, and ≥80 is intense weathered [34].
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Cox et al. [35] introduced the index of chemical variability (ICV) for sedimentary
maturation. The ICV is calculated to measure the alumina content for the assessment of
maturity compared to leading cations. The ICV can be calculated according to Equation (2)
as follows:

ICV =
(Fe2O3 + K2O + Na2O + CaO∗+ MgO + MnO + TiO2)

Al2O3
(2)

According to the atomic weights and radii, REEs are typically categorized into LREE
or HREE groups [36,37]. There are two distinguishing features of REE concentrations in
nature. The concentrations of REEs follow two patterns: (1) La to Lu decrease, and (2) even
atomic numbers of REEs are more abundant in their immediate vicinity. As a standard
practice, REE contents are normalized to a reference in order to eliminate these two effects
and display distribution patterns graphically [38]. The differences in oxidation state and
greater fractionation relative to other REEs [39] make Ce and Eu unique among REEs
and make them indispensable for redox-state tracing. The methods can be calculated to
determine Ce and Eu anomalies by Equations (3) and (4), respectively [36]:

Ce =
CeN

(LaN × PrN)
0.5 (3)

Eu =
EuN

(SmN × GdN)
0.5 (4)

where the initials represent REEs and “N” subscripts represent values normalized against
chondrite values. An anomaly with a value above 1 is considered positive, while an
anomaly with a value below 1 is considered negative.

4. Results
4.1. Correlation Matrices of the Major Elements

The correlation matrix and PCA is calculated to examine the range of negative and
positive relationship of the studied samples and is shown in Figures 3 and 4. The watershed
RK shows a positive correlation of Al2O3, Fe2O3, CaO, Na2O, and K2O with SiO2, while
TiO2, MnO, MgO, P2O5, and LOI negatively correlate with SiO2 (Figure 3 and Table S1).
The watershed DK represents the positive correlation of CaO and Na2O with SiO2, while
Al2O3, Fe2O3, TiO2, MnO, MgO, K2O, P2O5, and LOI negatively correlate with SiO2.
The watershed SK denotes a positive correlation of Al2O3, Fe2O3, Na2O, and K2O with
SiO2, whereas TiO2, MnO, MgO, CaO, P2O5, and LOI negatively correlate with SiO2.
The watershed HK signifies a positive correlation of TiO2, Al2O3, MgO, Na2O, K2O, and
P2O5 with SiO2, while Fe2O3, MnO, CaO, and LOI negatively correlate with SiO2. The
negative correlation between SiO2 and LOI represents sediments with low amounts of
silicate minerals, for instance, quartz and clay, which have excessive amounts of carbonate
and organic materials [40].

SiO2 vs. CaO shows a positive correlation in the RK and DK but not SK and HK
samples, representing the possible influence of detrital carbonates/microfossils in SK
and HK sediments, which is further supported by a positive correlation b/w CaO and
LOI in SK and HK sediments. The Al2O3 vs. SiO2 negative correlation of river DK is
possibly due to quartz dilution and sorting/grain-size effects as fine-grained sediment
samples were collected from DK (Figure 3). The MgO, K2O, Fe2O3, and TiO2 have a clear
positive association, suggesting that these abundances are often regulated in particular
size grades by aluminous clay or heavy minerals. The close relationship between P2O5
and MnO of rivers RK, DK, and SK indicates the regulation and/or partnership of heavy
minerals with phyllosilicate fractions (Figure 4a–c and Tables S1–S6), whereas no such
relationship between P2O5 and MnO is found in river HK (Figure 4d). In most of the sandy
specimens, Na2O is negatively correlated with SiO2, and high concentrations of Na2O
are observed. The sandy samples show an association between CaO and high Na2O. The
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above characteristics suggest that the abundance of CaO and Na2O is primarily associated
with low weathered feldspars. Al2O3 is reduced, while in clay-rich samples, its content is
fairly enriched, suggesting quartz dilution. However, K2O, MgO, and Na2O are markedly
depleted (Figure 3), suggesting that during weathering, progressive loss of ferromagnesian
minerals occurs [41]. Moreover, the positive correlation between SiO2 and Al2O3, CaO,
Na2O, and K2O may be controlled by the presence of rock-forming minerals associated
with the lithic fragments.

Minerals 2023, 13, x FOR PEER REVIEW 9 of 23 
 

 

 
Figure 3. Harker plot showing the correlation of major elements vs. SiO2. 

Figure 3. Harker plot showing the correlation of major elements vs. SiO2.



Minerals 2023, 13, 348 9 of 22Minerals 2023, 13, x FOR PEER REVIEW 10 of 23 
 

 

 
Figure 4. PCA biplots showing the correlation matrices of (a) RK river (b) DK river (c) SK river, and 
(d) HK river. 

SiO2 vs. CaO shows a positive correlation in the RK and DK but not SK and HK sam-
ples, representing the possible influence of detrital carbonates/microfossils in SK and HK 
sediments, which is further supported by a positive correlation b/w CaO and LOI in SK 
and HK sediments. The Al2O3 vs. SiO2 negative correlation of river DK is possibly due to 
quartz dilution and sorting/grain-size effects as fine-grained sediment samples were col-
lected from DK (Figure 3). The MgO, K2O, Fe2O3, and TiO2 have a clear positive associa-
tion, suggesting that these abundances are often regulated in particular size grades by 
aluminous clay or heavy minerals. The close relationship between P2O5 and MnO of rivers 
RK, DK, and SK indicates the regulation and/or partnership of heavy minerals with phyl-
losilicate fractions (Figure 4a–c and Tables S1–S6), whereas no such relationship between 
P2O5 and MnO is found in river HK (Figure 4d). In most of the sandy specimens, Na2O is 
negatively correlated with SiO2, and high concentrations of Na2O are observed. The sandy 
samples show an association between CaO and high Na2O. The above characteristics sug-
gest that the abundance of CaO and Na2O is primarily associated with low weathered 
feldspars. Al2O3 is reduced, while in clay-rich samples, its content is fairly enriched, sug-
gesting quartz dilution. However, K2O, MgO, and Na2O are markedly depleted (Figure 
3), suggesting that during weathering, progressive loss of ferromagnesian minerals occurs 
[41]. Moreover, the positive correlation between SiO2 and Al2O3, CaO, Na2O, and K2O may 
be controlled by the presence of rock-forming minerals associated with the lithic frag-
ments. 

4.2. Major Elements 
The major elemental concentrations are listed in (Table 1) with the UCC values of 

[30]. The major concentrations show variations from river to river. The mean SiO2 concen-
trations are 32.32%, 62.12%, 40.19%, and 49.03% and the mean Al2O3 concentrations are 

Figure 4. PCA biplots showing the correlation matrices of (a) RK river (b) DK river (c) SK river, and
(d) HK river.

4.2. Major Elements

The major elemental concentrations are listed in (Table 1) with the UCC values of [30].
The major concentrations show variations from river to river. The mean SiO2 concentrations
are 32.32%, 62.12%, 40.19%, and 49.03% and the mean Al2O3 concentrations are 4.32%,
8.05%, 4.49%, and 3.81%, of river sediments RK, DK, SK, and HK, respectively. This reflects
an increase in the ratios of SiO2/Al2O3 (6.83, 7.72, 8.14, and 12.91 of river sediments RK,
DK, SK, and HK, respectively) as compared to UCC (4.34). TiO2 contents are significantly
depleted as compared to UCC. The contents of total Fe2O3 show depletion. The concen-
trations of CaO are very high, with a mean of 30.34% for RK, 10.46% for DK, 25.24% for
SK, and 21.43 % for HK. The concentrations of MgO, MnO, K2O, Na2O, and P2O5 show
great depletion. The enrichment and depletion of the major oxides normalized to UCC are
shown in Figure 5a.
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Table 1. The examined major oxide concentrations and the calculated parameters of sorting, source
area weathering, and provenance of the river sediments of the eastern Makran outlets in Pakistan.

SiO2 Al2O3 TiO2 Fe2O3 MnO MgO CaO Na2O K2O P2O5 LOI S/A K/Rb A/T CIA ICV

RK1 32.3 4.70 0.23 2.95 0.23 1.48 30.3 0.79 0.63 0.07 25.9 6.87 0.02 20.43 58.8 7.79
RK2 32.5 4.73 0.22 2.96 0.21 1.35 30.5 0.80 0.64 0.05 25.6 6.86 0.02 21.50 58.7 7.75
RK3 32.1 4.71 0.22 2.90 0.22 1.49 30.2 0.79 0.64 0.07 26.0 6.80 0.02 21.41 58.9 7.73
RK4 32.4 4.79 0.22 2.94 0.21 1.33 30.4 0.80 0.64 0.05 25.6 6.77 0.02 21.77 59.0 7.63

Mean 32.3 4.73 0.22 2.94 0.22 1.41 30.3 0.80 0.64 0.06 25.8 6.83 0.02 21.28 58.9 7.73
DK1 61.8 8.08 0.50 3.41 0.11 2.02 10.4 1.62 1.24 0.10 10.5 7.65 0.02 16.16 54.8 2.39
DK2 62.5 7.93 0.42 3.34 0.10 1.82 10.6 1.64 1.20 0.08 10.4 7.88 0.02 18.88 54.2 2.40
DK3 61.6 8.27 0.50 3.45 0.11 2.04 10.5 1.63 1.27 0.10 10.5 7.45 0.02 16.54 55.1 2.35
DK4 62.6 7.91 0.43 3.37 0.11 1.83 10.4 1.73 1.20 0.08 10.2 7.91 0.02 18.40 53.1 2.41

Mean 62.1 8.05 0.46 3.39 0.11 1.93 10.5 1.66 1.23 0.09 10.4 7.72 0.02 17.49 54.3 2.39
SK1 37.6 4.61 0.27 2.95 0.29 1.31 26.9 0.98 0.64 0.07 23.8 8.17 0.02 17.07 58.1 6.61
SK2 43.2 5.10 0.27 3.36 0.25 1.19 23.7 1.06 0.71 0.06 20.4 8.47 0.02 18.89 57.9 8.72
SK3 39.2 4.84 0.28 3.21 0.29 1.38 25.7 0.99 0.65 0.07 23.0 8.09 0.02 17.29 55.0 6.71
SK4 40.8 5.21 0.28 3.75 0.25 1.28 24.7 0.97 0.73 0.06 21.3 7.83 0.02 18.61 56.7 6.13

Mean 40.2 4.94 0.28 3.32 0.27 1.29 25.2 1.00 0.68 0.07 22.1 8.14 0.02 17.96 56.9 7.04
HK1 49.7 4.13 0.30 3.31 0.17 1.40 20.4 0.70 0.72 0.08 18.2 12.0 0.02 13.77 57.2 6.53
HK2 48.8 3.71 0.24 3.61 0.17 0.96 21.9 0.63 0.57 0.06 18.6 13.2 0.02 15.46 58.0 7.57
HK3 50.8 4.04 0.29 3.30 0.15 1.20 20.4 0.64 0.77 0.07 17.8 12.6 0.02 13.93 58.1 6.61
HK4 46.8 3.37 0.26 3.89 0.16 0.93 23.0 0.54 0.62 0.06 19.6 13.9 0.03 12.96 57.9 8.72
Mean 49.0 3.81 0.27 3.53 0.16 1.12 21.4 0.63 0.67 0.07 18.6 12.9 0.02 14.03 57.8 7.36
UCC 66.0 15.20 0.68 5.03 0.08 2.20 4.20 3.90 3.40 0.15 4.34 0.03 22.35

The concentrations are in wt %. CIA is calculated using molar ration. S represents SiO2; A represents Al2O3;
K represents K2O; and T represents TiO2.
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4.3. Trace Elements

The concentrations of trace elements are shown in Table 2. The enrichment and deple-
tion values normalized against UCC are shown in Figure 5b. A wide variation is observed
in trace element concentrations. The large ions lithophile elements (LILE) such as Th, U, Rb,
and Ba were relatively depleted in the studied sediments. Sr concentrations were relatively
high in the RK and SK samples, while depleted in the DK and HK samples. Cs concentra-
tions were depleted in all river sediments, whereas Pb concentrations were significantly
high with the exception of samples from DK. The wide variation in Sr concentrations indi-
cates extreme fractionation of plagioclase probably linked with the source areas [42]. The
excessive carbonate, as shown by the negative correlation between SiO2 and LOI (Figure 3),
may have also controlled the Sr content in sediments [43]. The concentrations of Ni and
Cr were enriched, while the concentrations of V, Co, and Sc were depleted in the studied
samples. Y was enriched in RK, SK, and HK, indicating that the excess was regulated
principally by heavy minerals. Relative to UCC, Ba was greatly depleted in the RK and DK
samples and relatively depleted in the SK and HK samples. Sr concentrations were greatly
depleted in DK and HK, while in SK and RK they were greatly increased, the depletion of
Ba and Sr elements indicating feldspar breakdown in chemical weathering.

4.4. Rare Earth Elements

The ΣREE contents were consistently depleted as compared to (UCC: 148) [30] in the
studied sediments (Table 3). The higher ratios of (La/Yb)N were probably due to a decrease
in the HREEs. The (La/Sm)N were relatively depleted, as compared to the (UCC: 4.26).
The (Gd/Yb)N ratios were also depleted. The Eu/Eu* pattern in the chondrite normalized
diagram indicates negative anomalies (Figure 5c). Moreover, the samples from RK show no
significant Eu anomaly.
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Table 2. The trace elements concentrations in river sediments at the outlets of eastern Makran, Pakistan.

RK1 RK2 RK3 RK4 Mean DK1 DK2 DK3 DK4 Mean SK1 SK2 SK3 SK4 Mean HK1 HK2 HK3 HK4 Mean UCC

Li 22.5 20.4 22.4 20.5 21.5 27.2 24.0 28.0 23.8 25.8 18.6 16.4 17.4 20.1 18.1 16.1 15.9 15.5 12.1 14.9 20.0
Sc 8.76 7.90 9.03 8.00 8.42 9.77 7.80 9.72 7.60 8.72 8.15 7.30 7.40 7.89 7.69 7.54 5.10 7.95 5.30 6.47 13.6
V 39.5 37.0 40.6 37.0 38.5 57.9 50.0 58.1 53.0 54.8 35.6 34.0 36.0 37.4 35.8 34.6 31.0 36.2 29.0 32.7 107
Cr 71.7 51.0 76.8 52.0 62.9 280 114 255 125 194 114 82 103 103 101 360 169 401 193 281 83
Co 8.89 8.60 9.11 8.70 8.83 10.2 9.10 10.3 9.00 9.65 11.3 11.9 13.1 12.2 12.1 10.4 10.3 10.8 10.1 10.4 17.0
Ni 44.3 42.5 45.3 42.4 43.6 53.8 49.7 54.6 49.1 51.8 40.1 39.4 43.0 43.0 41.4 41.1 41.9 41.6 37.1 40.4 44.0
Cu 17.2 17.2 17.4 17.5 17.3 15.6 15.3 16.0 15.0 15.5 14.1 17.1 18.5 14.0 15.9 12.4 11.8 13.0 11.7 12.2 25.0
Zn 34.6 35.0 35.5 35.0 35.0 45.0 41.0 45.3 43.0 43.6 31.0 32.0 36.0 31.6 32.7 36.0 30.0 39.6 26.0 32.9 71.0
Ga 6.49 5.58 6.59 5.67 6.08 10.2 8.67 10.3 8.46 9.41 6.36 5.64 5.81 6.46 6.07 5.79 4.35 5.93 3.80 4.97 17.0
Ge 1.31 0.07 1.36 0.07 0.70 1.52 0.08 1.50 0.08 0.80 1.24 0.08 0.07 1.23 0.66 1.32 0.05 1.38 0.08 0.71 1.60
As - 21.3 - 21.5 21.4 - 13.6 - 13.4 13.5 - 73.4 75.0 - 74.2 - 58.2 - 84.7 71.5 1.50
Rb 28.2 28.8 29.2 28.8 28.8 52.4 50.3 53.2 49.2 51.3 29.5 31.6 32.1 29.8 30.8 28.7 24.5 31.3 24.0 27.1 112
Sr 646 680 664 682 668 247 251 253 260 253 512 456 473 492 483 316 335 311 324 322 350
Y 29.1 27.5 29.9 28.3 28.7 23.6 16.0 25.6 15.7 20.2 27.7 23.2 23.0 26.1 25.0 24.7 16.9 28.9 19.3 22.5 22.0
Zr 73.3 27.7 69.4 27.2 49.4 359 35 336 35 191 134 24.0 25.3 122.0 76.3 359 24.9 379.0 27.6 198 190
Nb 3.75 3.50 3.84 3.50 3.65 8.71 6.60 8.76 6.60 7.67 5.06 4.40 4.70 5.11 4.82 5.54 3.90 6.07 3.80 4.83 12.0
Mo 0.57 0.59 0.58 0.58 0.58 0.37 0.37 0.37 0.38 0.37 0.74 1.17 2.42 1.01 1.34 1.28 1.30 1.44 1.44 1.37 1.50
Ag - 0.04 - 0.05 0.05 - 0.05 - 0.05 0.05 - 0.06 0.05 - 0.06 - 0.06 - 0.06 0.06 50.0
Cd 0.31 0.24 0.30 0.25 0.28 0.46 0.11 0.46 0.10 0.28 0.27 0.16 0.17 0.27 0.22 0.51 0.14 0.50 0.13 0.32 98.0
In - 0.03 - 0.03 0.03 - 0.04 - 0.03 0.04 - 0.03 0.03 - 0.03 - 0.02 - 0.02 0.02 50.0
Sn 1.20 1.10 1.16 1.00 1.12 1.61 1.30 1.66 1.30 1.47 0.95 1.00 1.00 0.97 0.98 0.97 0.80 1.03 0.70 0.88 5.50
Sb 0.92 1.11 0.90 1.04 0.99 0.55 0.63 0.54 0.57 0.57 0.80 1.65 2.89 1.17 1.63 1.06 1.49 1.38 2.44 1.59 0.20
Cs 1.89 1.95 1.93 1.99 1.94 3.22 3.05 3.29 2.97 3.13 1.88 2.05 2.17 1.94 2.01 1.68 1.55 1.78 1.45 1.62 4.60
Ba - 100 142 100 114 267 200 266 210 236 374 360 500 385 405 427 320 422 410 395 550
Hf 1.86 0.80 1.76 0.80 1.31 8.60 1.00 8.31 1.10 4.75 3.33 0.60 0.70 3.12 1.94 8.60 0.60 8.78 0.80 4.70 5.80
Ta 0.25 0.25 0.24 0.25 0.25 0.61 0.50 0.61 0.51 0.56 0.33 0.33 0.34 0.33 0.33 0.38 0.29 0.46 0.28 0.35 1.00
W - 0.60 - 0.70 0.65 - 1.00 - 1.00 1.00 - 0.70 0.70 - 0.70 - 0.60 - 0.60 0.60 2.00
Tl - 0.14 - 0.14 0.14 - 0.24 - 0.24 0.24 - 0.17 0.16 - 0.17 - 0.13 - 0.13 0.13 750
Pb 17.7 16.9 17.5 16.9 17.3 12.9 11.4 13.0 11.0 12.1 17.2 21.6 25.0 18.0 20.5 17.1 18.5 20.1 18.5 18.6 17.0
Bi - 0.22 - 0.24 0.23 - 0.16 - 0.16 0.16 - 0.18 0.17 - 0.18 - 0.10 - 0.11 0.11 127
Th 3.65 3.53 3.68 3.52 3.60 8.34 6.79 8.40 6.48 7.50 4.51 4.40 4.44 4.40 4.44 5.75 4.36 5.96 5.90 5.49 10.0
U 0.84 0.70 0.81 0.70 0.76 1.91 1.10 1.97 1.10 1.52 0.99 0.80 0.70 1.01 0.88 1.58 0.80 1.59 1.10 1.27 2.80

Rb/Sr 0.04 0.04 0.04 0.04 0.04 0.21 0.20 0.21 0.19 0.20 0.06 0.07 0.07 0.06 0.07 0.09 0.07 0.10 0.07 0.08 0.32
Zr/Sc 8.37 3.51 7.69 3.40 5.74 36.8 4.54 34.6 4.66 20.1 16.4 3.29 3.42 15.5 9.65 47.6 4.88 47.7 5.21 26.3 14.0
Th/Sc 0.42 0.45 0.41 0.44 0.43 0.85 0.87 0.86 0.85 0.86 0.55 0.60 0.60 0.56 0.58 0.76 0.85 0.75 1.11 0.87 0.79
Cr/Ni 1.62 1.20 1.70 1.23 1.44 5.20 2.29 4.67 2.55 3.68 2.84 2.08 2.40 2.40 2.43 8.76 4.03 9.64 5.20 6.91 1.89
Y/Ni 0.66 0.65 0.66 0.67 0.66 0.44 0.32 0.47 0.32 0.39 0.69 0.59 0.53 0.61 0.61 0.60 0.40 0.69 0.52 0.55 0.50
Cr/V 1.82 1.38 1.89 1.41 1.63 4.84 2.28 4.39 2.36 3.47 3.20 2.41 2.86 2.75 2.81 10.40 5.45 11.08 6.66 8.40 0.78

The concentrations are in ppm whereas ultra-trace concentrations are in ppb, such as Cd, In, Ti, Bi, Ag, etc.
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Table 3. The rare earth element concentration in river sediments from easter Makran (values normalized to chondrite concentration [31].

RK1 RK2 RK3 RK4 Mean DK1 DK2 DK3 DK4 Mean SK1 SK2 SK3 SK4 Mean HK1 HK2 HK3 HK4 Mean UCC

La 12.3 12.9 12.4 13.4 12.8 21.1 21.6 21.8 20.3 21.2 13.1 14.6 15.2 12.3 13.8 16.1 13.9 16.2 18.2 16.1 31.0
Ce 24.6 28.8 24.8 29.5 26.9 42.7 44.9 44.8 42.2 43.7 28.0 32.4 34.0 26.4 30.2 32.7 29.5 33.5 38.3 33.5 63.0
Pr 3.75 4.02 3.79 4.15 3.93 5.21 5.39 5.47 5.04 5.28 3.73 4.11 4.39 3.49 3.93 4.21 3.73 4.45 4.79 4.30 7.10
Nd 17.5 18.8 17.6 19.3 18.3 20.6 21.6 21.5 20.4 21.0 16.4 18.0 18.6 15.3 17.1 17.4 15.6 18.7 19.1 17.7 27.0
Sm 5.35 5.60 5.37 5.81 5.53 4.55 4.53 4.72 4.39 4.55 4.65 4.73 4.90 4.32 4.65 4.29 3.78 4.88 4.72 4.42 4.70
Eu 1.69 1.62 1.70 1.63 1.66 1.03 0.94 1.04 0.88 0.97 1.33 1.21 1.19 1.23 1.24 1.05 0.87 1.16 0.95 1.01 1.00
Gd 5.30 4.98 5.27 4.96 5.13 4.46 3.47 4.66 3.23 3.96 4.73 4.20 4.14 4.36 4.36 4.36 3.24 4.90 3.73 4.06 4.00
Tb 0.87 0.76 0.88 0.75 0.82 0.69 0.49 0.73 0.48 0.60 0.78 0.66 0.63 0.72 0.70 0.70 0.48 0.80 0.56 0.64 0.70
Dy 4.78 4.19 4.81 4.21 4.50 3.92 2.69 4.20 2.73 3.39 4.35 3.55 3.51 4.09 3.88 3.96 2.68 4.55 3.10 3.57 3.90
Ho 0.87 0.76 0.88 0.76 0.82 0.79 0.53 0.86 0.51 0.67 0.82 0.67 0.65 0.78 0.73 0.77 0.52 0.90 0.57 0.69 0.83
Er 2.15 1.89 2.17 1.93 2.04 2.21 1.37 2.42 1.34 1.84 2.11 1.68 1.67 2.02 1.87 2.09 1.31 2.42 1.44 1.82 2.30
Tm 0.30 0.25 0.30 0.25 0.28 0.34 0.19 0.37 0.19 0.27 0.29 0.22 0.22 0.28 0.25 0.31 0.17 0.36 0.19 0.26 0.30
Yb 1.72 1.48 1.72 1.49 1.60 2.16 1.18 2.31 1.16 1.70 1.72 1.24 1.31 1.68 1.49 1.95 1.00 2.22 1.17 1.59 2.00
Lu 0.26 0.21 0.26 0.21 0.24 0.35 0.18 0.36 0.17 0.27 0.26 0.18 0.18 0.26 0.22 0.30 0.14 0.35 0.17 0.24 0.31

ΣREE 81.4 86.3 81.9 88.4 84.5 110 109 115 103 109 82.3 87.5 90.6 77.2 84.4 90.2 76.9 95.4 97.0 89.9 148
Eu/Eu* 0.97 0.94 0.98 0.93 0.96 0.70 0.72 0.68 0.71 0.70 0.87 0.83 0.81 0.87 0.85 0.74 0.76 0.73 0.69 0.73 0.71
Ce/Ce* 0.89 0.98 0.89 0.97 0.93 1.00 1.02 1.01 1.02 1.01 0.98 1.03 1.02 0.99 1.01 0.97 1.00 0.97 1.01 0.99 0.99

(La/Sm)N 1.48 1.49 1.49 1.49 1.49 2.99 3.08 2.98 2.99 3.01 1.82 1.99 2.00 1.84 1.91 2.42 2.37 2.14 2.49 2.36 4.26
(Gd/Yb)N 2.55 2.78 2.53 2.75 2.65 1.71 2.43 1.67 2.30 2.03 2.27 2.80 2.61 2.15 2.46 1.85 2.68 1.83 2.64 2.25 1.65
(La/Yb)N 5.13 6.25 5.17 6.45 5.75 7.01 13.13 6.77 12.55 9.87 5.46 8.45 8.32 5.25 6.87 5.92 9.97 5.23 11.2 8.07 11.1
(La/Lu)N 5.17 6.58 5.11 6.84 5.93 6.52 12.86 6.45 12.80 9.66 5.40 8.69 9.05 5.13 7.07 5.73 10.6 4.97 11.5 8.20 10.4

The concentrations are in ppm.
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5. Discussion
5.1. Sorting and Maturity of Sediments

The authors of [35,44,45] suggested the ICV index to distinguish the clastic mineralog-
ical maturity. The value of the ICV is usually >0.84 for rock-forming minerals, for instance,
pyroxene, amphibole, and feldspar, while less than 0.84 is denoted for clay minerals such
as muscovites, illites, and kaolinites. In addition, [35,41] contended that the lower values of
the ICV indicate recycled sediments and the siliciclastic rocks having greater values repre-
sent the immature type and low weathered sources. The calculated mean ICV estimations
of the present study (RK = 7.73, DK = 2.39, SK = 7.04, and HK = 7.36) imply immature type,
low recycled, and low weathered sources of the studied sediments (Table 1).

Due to the total amount of quartz in the sediment reflecting not only the composition of
the sources but also the sorting of the sediment as a result of current activity and the effects
of chemical weathering, it appears unlikely that we can use major element concentrations as
a provenance proxy unless the sorting process can be accounted for [43]. Because this might
fluctuate over time during seasonal flooding and ebbs of the river, as well as throughout the
length of the river channel and across the channel with depth, extreme caution would be
required. Even in a current river, this would be difficult to do, and it is unlikely to provide
any useful results when applied to earlier deposits.

By comparing important ratios against one another, we can analyze the impact of
heavy minerals on sediment chemistry. A plot of Th/Al vs. Zr/Al is shown in Figure 6a.
This graph (Figure 6a) reveals a positive association, implying that sediments rich in mon-
azite are likewise rich in zircons, as one might anticipate from currents that concentrate
these dense minerals. The connection between heavy mineral concentration, as proxied
by Th/Al, and relative enrichment in LREE and HREE, as proxied by La/Sm and Tb/Yb,
is shown in Figure 6b,c. The LREEs are predominantly found in clay minerals, accord-
ing to [44], although monazite and allanite are also high in these elements (Figure 6b,c),
according to [45]. HREEs, on the other hand, are commonly found in heavy minerals
such as xenotime and zircon [45]. The HREE-enriched heavy minerals have a substantial
impact on REE compositions, indicating provenance control [46]. In addition, the increasing
heavy minerals trend (Figure 6a,d) indicates higher zircon content in the HK river due to
granitic detritus.

5.2. Tectonic and Climatic Conditions

The geochemical proxies are globally applied to summarize the tectonic and climatic
conditions [10,47–56]. The binary plot of [48] based on SiO2 vs. K2O/Na2O is largely
adopted to scrutinize the nature of tectonic settings. The studied sediments were plotted
on the said discrimination diagram, indicating an active continental margin field for all
the examined sediments, with some exceptions seen in samples of the RK and SK zones
(Figure 7a). In addition, [52] documented a binary plot based on (La/Sm)N vs. Nb/La to
distinguish the tectonic environments of clastic rocks. The river sediments from the DK
zone fell at the junction of the active continental margin and continental arc, whereas the
sediments from the RK, SK, and HK zones covered the area of the continental arc (Figure 7b).
To sum up all the observations, the tectonic environments of the studied sediments are
more possibly continental arc rather than the active continental margin.
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The authors of [57] proposed Al2O3 + K2O + Na2O vs. SiO2 illustration to record
the climatic conditions. The river sediments were plotted to test the climatic conditions,
indicating that the sediments from the HK zone fall in humid conditions and are somewhat
chemically mature due to their provenances, sediments from RK fall at the junction of the
humid and arid climate, those from SK fall at the junction of the humid and arid climate,
and the DK sediments also fall in the boundary of the semi-arid climate (Figure 8).
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5.3. Source Area Weathering

The weathering intensity is largely a consequence of climate variability and rate of
tectonic uplift. The CIA drafted by [34] is widely applied to determine the intensities of
chemical weathering of clastic rocks. The provenance commonly affects the weathering
intensity of various parent materials; thus, the chemical composition of sedimentary rock is
controlled by its lithology [34,55,58]. The primary feldspar in association with secondary
clay minerals is quantitatively estimated by the CIA index. The altered feldspar ranges
from a CIA value of 50 to 100, while the unweathered intensity is usually <50 [32,34].
The mean CIA intensity of the studied river sediments varies between RK (58.87), DK
(54.31), SK (56.93), and HK (57.80) with an overall mean of 56.98 (Table 1), indicating
a low level of chemical weathering of the parent materials. This can also be visualized
by A–CN–K triangular diagram (Figure 9a) to observe the trend of weathering and to
evaluate the post-depositional K-metasomatism degree [33,34]. The plotted river sediments
display strong depletion in Na2O and K2O relative to UCC and track the ideal tendency of
weathering (Figure 9a) [55]. The mineralogical compositions and weathering intensities
are also determined by the A–CNK–FM graph [59]. The studied river sediments follow
the tendency of UCC along with granitic, granodioritic, and andesitic, designating felsic
parent materials (Figure 9b). In addition, the ratios of K2O/Rb and Rb/Sr are commonly
considered as proxies for weathering intensity; therefore, the ratio of Rb/Sr > 1 suggests
greater chemical weathering and low intensities inferred by <1 [55,56,60]. All the studied
sediments show both K2O/Rb and Rb/Sr less than 1, indicating low weathering intensities
(Tables 1 and 2, respectively). The overall deduced observations suggest a low level of
chemical weathering of the river samples.
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5.4. Provenance

The compositions of geochemical data such as aluminum and titanium oxides are valu-
able markers for analyzing the provenance of sedimentary rocks owing to their relatively
low mobility in fluvial processes [55,60,62]. The major oxides such as Al2O3 and TiO2 rarely
fractionate during diagenesis, weathering, and/or transportation processes [55,63,64]. The
ratio of Al2O3/TiO2 is generally applied to distinguish between mafic, intermediate, and
felsic provenances of source materials. In [65], the authors documented that the ratios of
Al2O3/TiO2 range 3–8 for mafic, 8–20 for intermediate, and 21–70 for felsic sources. The
mean ratios of Al2O3/TiO2 from RK (21.25), DK (17.55), SK (18.02), and HK (13.95) (Table 1),
indicate that river RK receives materials of heterogenic provenance (mafic + felsic sources)
but more felsic inputs, and intermediate parent rocks for DK, SK, and HK (both felsic
and mafic equal contributions) (Table 1). Moreover, the low range of chemical weathering
(Figure 9a) is also suggestive of marine and Himalayan-derived detritus (unpublished;
Khan et al., 2023). The high field strength elements (HFSE) such as Ti, Hf, Zr, Ta, Nb, and
Y are incompatible in the mantle phase, while the contents are high in silicate melt. The
immobility of these elements helps identify parent rocks. In the crust, these are enriched
and representatives of excessive amounts of apatite, zircon, and sphene. The authors
of [66] argued that depleted concentrations of these elements are examples of magmatic
arc- and subduction-related settings. Similarly, the depletion of these elements in this
study followed the argument of [43] that these sediments were linked with magmatic
arc-related settings. The transition elements represent compatibility with the mantle phase
and are highly concentrated in the solid phase. The higher contents of Ni and Cr represent
significant contributions of ultramafic detritus. The negative Eu pattern in the chondrite
normalized diagram indicates differentiation of plagioclase and/or crustal magma con-
tamination (Figure 5c). Moreover, the samples from RK show no significant Eu anomaly
indicating a mafic/calcareous derived contribution and/or sediment depositing from the
nearby bedrocks. In [67] proposed a diagram of Discrimination Function 1 vs. Discrimi-
nation Function 2 based on a combination of major elements. The plot was applied to the
studied river samples suggesting all the samples fall in intermediate igneous provenance
while the samples from DK represent slight differences due to detrital inputs from the
Lut Block of Iran (via Nihing River). This further indicates that the sediments are derived
from andesitic parent rocks, whereas the acidic plutonic/volcanic rocks may also have
contributed (Figure 10a). Further, a combination of trace elements, for instance, Th/Sc vs.
La/Sc, is generally illustrated to distinguish the parent arc type of the sediments. The plot
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was tested on the studied sediments, indicating a closer relation to the North American
shale composite (NASC: Th/Sc = 0.82 and La/Sc = 2.07) type of sediments [68] (Figure 10b).
In addition, ref. [69] suggested a plot based on trace elements such as Hf vs. La/Th. The
studied sediments mostly fall in the field of mixed basic/felsic sources (Figure 10c).
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Moreover, the ratios of trace elements, for instance, Ti/Zr, Zr/Sc, and Th/Sc, are reli-
able indicators of felsic and mafic sources [7,60]. The binary plot of Zr/Sc vs. Th/Sc is used
to examine the provenance type and also for determining the sorting/recycling effect [60].
The river sediments follow the PCT (primary compositional trend) but are unrelated to
I-type granitic or S-type granitic provenances and indicate intermediate characters with
slight variations between samples due to grain size variation/sorting input of sedimentary
materials (Figure 10d). The scattered distribution of sediments is possibly the provenance
from recycled materials of the Makran-Khojak Flysch Basin (Figure 1a; unpublished: Khan,
2023) and also reflects the addition of zircon and loss of Sc (Table 2). The authors of [7]
argued that the Th/Sc ratios are good indicators of mafic and felsic source materials. A
Th/Sc ratio less than 1 indicates Archean/mafic provenances, whereas greater than 1 sug-
gests granites and approximately 1 for post-Archean source materials. The studied river
sediments comprised the mean ratios <1 for individual rivers RK (0.43), DK (0.86), SK (0.58),
and HK (0.87), representing significant mafic contributions (Table 2) similar to that of the
adjoining Oligocene–Miocene composition (0.79) (unpublished: Khan et al., 2023).
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Furthermore, the ferromagnesian concentration of Cr > 150 ppm and Ni > 100 ppm
and the relative ratio of Cr/Ni of 1.3 to 1.5 reflects provenance from ultramafics [70]. The
Cr/Ni of the river sediments imitated a sufficient input of ultramafic (except for samples
from river RK) and their slight increase compared to (UCC: 0.78) is perhaps measured
by phyllosilicates (Table 2). In addition, the ferromagnesian minerals in mafic/ultramafic
parent rocks are generally high, which results in a decrease in Y/Ni (<0.5) and an increase
in Cr/V (>8). The ratio of Cr/V in calc-alkaline, UCC, and Phanerozoic granite is relatively
<1 [7,60,68]. The studied river sediments comprised mean Y/Ni of 0.66 (RK), 0.39 (DK),
0.61 (SK), and 0.56 (HK), indicating the fact that river DK receives sources from calc-alkaline
volcanic rocks from the Lut Block of Iran (via Nihing river Figure 1) but the rest of river
sediments are slightly enriched in Y/Ni. The mean ratios of Cr/V were 1.63 (RK), 3.47 (DK),
2.81 (SK), and 8.40 (HK), signifying higher than that of the proposed ratios; thus, the
increased Cr/V ratio indicates an effective influence of mafic/ultramafic.

Ref. [60], the authors suggested that the absence of strong chemical weathering of
siliciclastic rocks and the distributions of REEs and europium anomaly describe the felsic
and mafic sedimentary source of the materials. The REEs patterns of mafic sediments show
lower fractionation, slight or negative europium anomalies, and depleted (La/Yb)N. On the
other hand, the REEs patterns of felsic sediments describe higher fractionation, enriched
(La/Yb)N, and good Eu negative [7]. The REE normalized patterns of all river sediments
have good Eu negative anomalies except sediments from river RK which comprised no ef-
fective Eu negative anomaly (Figure 4c), demonstrating sedimentary and crystalline source
materials for the DK, SK, and HK rivers, and more basaltic/calcareous rock contributions
for RK. The Eu pattern of RK was probably due to the absence of unaltered feldspar coming
from granitic and gneisses detrital materials present within the older rocks in MAW, and
calcareous inputs from the Kirthar Fold Belt and/or adjoining Jurassic limestones (AMJ)
(Figures 1 and 2a–c). The mean (La/Yb)N values of RK (5.75), DK (9.86), SK (6.87), and HK
(7.64), indicate significant mafic assistance. In addition, the slight negative Ce anomaly
of the RK river indicates arc magmas of the parent rocks [71,72] i.e., Bela Ophiolitic re-
gion (Figure 1), and this Ce depletion also represents derivatives of carbonates. The DK
watershed comprises several major tributaries such as Nihing, Kech, and Rakhshan. The
Kech and the Rakhshan run through the central Makran and carry mostly the sedimentary
type of rocks, while Nihing runs from Iran, enters Pakistan, and joins the Dasht river at
Kaur-e-Awar. Igneous and metamorphic sediments from the Ispikan-Wakai Formation in
Pakistan and the Lut Block in Iran are carried by the Nihing river.

6. Conclusions

The study concluded with the following findings:

1. The ICV values for all studied sediments indicated immature, low recycled, and low
source area weathering of the parent rock.

2. The DK along with RK and SK indicated more mature, sorted sediments, and variation
in tectonic and climatic environments than HK due to their heterogeneous prove-
nances. The higher zircon content in the HK river only represented by the increasing
heavy minerals trend is due to granitic detritus, whereas other river sediments show
variations due to their source rocks.

3. The tectonic environments of all river sediments signify a continental arc rather than
an active continental margin and humid climatic conditions.

4. The sediments of HK have a provenance of intermediate character due to a mixture of
felsic and mafic with or without sedimentary/meta-sedimentary rocks and ultramafic
rocks. The heterogeneous sources of the sediments include Himalayan-derived recy-
cled sediments found in the Khojak-Makran flysch basin and the Kirthar-Sulaiman
belt. Bela Ophiolitic complexes also supply detrital metamorphic and volcanic lithic
to HK.

5. The detrital sediments carried by the SK watershed represent the complex tectonic
condition of a continental arc with a humid climatic setting. They also show low source
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area weathering conditions. The provenance indicators of SK signify an intermediate
igneous character as their main source of sediments is central Makran.
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//www.mdpi.com/article/10.3390/min13030348/s1, Table S1: Major elemental individual and
mean positive and negative correlations of the Eastern Makran rivers samples, Table S2: Major
elemental PCA correlation matrix of RK, Table S3: Major elemental PCA correlation matrix of DK,
Table S4: Major elemental PCA correlation matrix of SK, Table S5: Major elemental PCA correlation
matrix of HK, Table S6: Major elemental PCA correlation matrix of mean.
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