Properties of Fine-Grained Rock Waste from the Pilawa Gorna Amphibolite and Migmatite Aggregates Production Plant
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Torres, P.; Manjate, R.S.; Quaresma, S.; Fernandes, H.R.; Ferreira, J.M.F. Development of ceramic floor tile compositions based on quartzite and granite sludges. J. Eur. Ceram. Soc. 2007, 27, 4649–4655. [Google Scholar] [CrossRef]
- Vasic, M.V.; Mijatovic, N.; Radojevic, Z. Aplitic Granite Waste as Raw Material for the Production of Outdoor Ceramic Floor Tiles. Materials 2022, 15, 3145. [Google Scholar] [CrossRef]
- Kim, J.S.; Lee, J.Y.; Kim, Y.H.; Kim, D.; Kim, J.; Han, J.G. Evaluating the eco-compatibility of mortars with feldspar-based fine aggregate. Case Stud. Constr. Mater. 2022, 16, e00781. [Google Scholar] [CrossRef]
- Vaitkevičius, V.; Šerelis, E.; Lygutaitė, R. Production Waste of Granite Rubble Utilisation in Ultra High. J. Sustain. Archit. Civ. Eng. 2013, 2, 54–60. [Google Scholar] [CrossRef]
- Arivumangai, A.; Felixkala, T. Strength and durability properties of granite powder concrete. J. Civ. Eng. Res. 2014, 4, 1–6. [Google Scholar] [CrossRef]
- Grabiec, A.M.; Zawal, D.; Kostrzewski, W. Effect of Waste Mineral Additives on Flow Stability Over Time in Self-Compacting Concrete Mixes With Low Clinker Content. J. Ecol. Eng. 2015, 16, 206–214. [Google Scholar] [CrossRef]
- Mashaly, A.O.; Shalaby, B.N.; Rashwan, M.A. Performance of mortar and concrete incorporating granite sludge as cement replacement. Constr. Build. Mater. 2018, 169, 800–818. [Google Scholar] [CrossRef]
- Savadkoohi, M.S.; Reisi, M. Environmental protection based sustainable development by utilization of granite waste in Reactive Powder Concrete. J. Clean. Prod. 2020, 266, 121973. [Google Scholar] [CrossRef]
- Shwetha, K.G.; Kumar, C.M.; Dalawai, V.N.; Anadinni, S.B.; Sowjanya, G.V. Comparative study on strengthening of concrete using granite waste. Mater. Today Proc. 2022, 62, 5317–5322. [Google Scholar] [CrossRef]
- Dobiszewska, M.; Beycioğlu, A. Physical Properties and Microstructure of Concrete with Waste Basalt Powder Addition. Materials 2020, 13, 3503. [Google Scholar] [CrossRef] [PubMed]
- Vieira CM, F.; Soares, T.M.; Sánchez, R.; Monteiro, S.N. Incorporation of granite waste in red ceramics. Mater. Sci. Eng. A 2004, 373, 115–121. [Google Scholar] [CrossRef]
- Souza, A.J.; Pinheiro, B.C.A.; Holanda, J.N.F. Recycling of gneiss rock waste in the manufacture of vitrified floor tiles. J. Environ. Manag. 2010, 91, 685–689. [Google Scholar] [CrossRef] [PubMed]
- Cetin, S.; Marangoni, M.; Bernardo, E. Lightweight glass–ceramic tiles from the sintering of mining tailings. Ceram. Int. 2015, 41, 5294–5300. [Google Scholar] [CrossRef]
- Pazniak, A.; Barantseva, S.; Kuzmenkova, O.; Kuznetsov, D. Effect of granitic rock wastes and basalt on microstructure and properties of porcelain stoneware. Mater. Lett. 2018, 225, 122–125. [Google Scholar] [CrossRef]
- Dalmora, A.C.; Ramos, C.G.; Oliveira, M.L.S.; Teixeira, E.C.; Kautzmann, R.M.; Taffarel, S.R.; De Brum, I.A.S.; Silva, L.F.O. Chemical characterization, nano-particle mineralogy and particle size distribution of basalt dust wastes. Sci. Total Environ. 2016, 539, 560–565. [Google Scholar] [CrossRef]
- Dos Santos Teixeira, A.M.; Dos Santos Garrido, F.M.; Medeiros, M.E.; Sampaio, J.A. Effect of thermal treatments on the potassium and sodium availability in phonolite rock powder. Int. J. Miner. Process. 2015, 145, 57–65. [Google Scholar] [CrossRef]
- Ramos, C.G.; Oliveira ML, S.; Pena, M.F.; Cantillo, A.M.; Ayarza LP, L.; Korchagin, J.; Bortoluzzi, E.C. Nanoparticles generated during volcanic rock exploitation: An overview. J. Environ. Chem. Eng. 2021, 9, 106441. [Google Scholar] [CrossRef]
- Da Silva, F.J.P.; De Carvalho, A.M.X.; De Castro Borges, P.H. The gabbro dacite blend as soil remineralizer. Braz. J. Agric. Sci. 2022, 17, e1419. [Google Scholar] [CrossRef]
- Ramos, C.G.; Querol, X.; Dalmora, A.C.; De Jesus Pires, K.C.; Schneider IA, H.; Oliveira LF, S.; Kautzmann, R.M. Evaluation of the potential of volcanic rock waste from southern. Brazil as a natural soil fertilizer. J. Clean. Prod. 2017, 142, 2700–2706. [Google Scholar] [CrossRef]
- Nunes, J.M.G.; Kautzmann, R.M.; Oliveira, C. Evaluation of the natural fertilizing potential of basalt dust wastes from the mining district of Nova Prata (Brazil). J. Clean. Prod. 2014, 84, 649–656. [Google Scholar] [CrossRef]
- Plata, L.G.; Ramos, C.G.; Oliveira, M.L.S.; Oliveira, L.F.S. Release kinetics of multi-nutrients from volcanic rock mining by-products: Evidences for their use as a soil remineralizer. J. Clean. Prod. 2021, 279, 123668. [Google Scholar] [CrossRef]
- Gillman, G.P.; Burkett, D.C.; Coventry, R.J. Amending highly weathered soils with finely ground basalt rock. Appl. Geochem. 2002, 17, 987–1001. [Google Scholar] [CrossRef]
- Sikora, L.J. Effects of basaltic mineral fines on composting. Waste Manag. 2004, 24, 139–142. [Google Scholar] [CrossRef]
- Drobot, N.F.; Noskova, O.A.; Steblevskii, A.V.; Fomichev, S.V.; Krenev, V.A. Recovery of valuable components from basalt waste by sintering it with sodium carbonate. Theor. Found. Chem. Eng. 2011, 45, 769–775. [Google Scholar] [CrossRef]
- Dino, G.A.; Cavallo, A.; Rossetti, P.; Garamvölgyi, E.; Sándor, R.; Coulon, F. Towards sustainable mining: Exploiting raw materials from extractive waste facilities. Sustainability 2020, 12, 2383. [Google Scholar] [CrossRef]
- Vrbický, T.; Přikryl, R. Recovery of Some Critical Raw Materials from Processing Waste of Feldspar Ore Related to Hydrothermally Altered Granite: Laboratory-Scale Beneficiation. Minerals 2021, 11, 455. [Google Scholar] [CrossRef]
- Brzezinski, D.; Miskiewicz, W. Kamienie lamane i bloczne. In Bilans Zasobow Zloz Kopalin w Polsce wg Stanu na 31.12.2020 r; Panstwowy Instytut Geologiczny: Warszawa, Poland, 2002; pp. 106–128. [Google Scholar]
- Cymerman, Z. Rozwoj strukturalny metamorfiku sowiogorskiego w okolicy Pilawy Gornej, Sudety. Geol. Sudet. 1989, 23, 107–153. [Google Scholar]
- Pieczka, A.; Golebiowska, B.; Jelen, P.; Wlodek, A.; Szeleg, E.; Szuszkiewicz, A. Towards Zn-dominant tourmaline: A case of zn-rich fluor-elbaite and elbaite from the Julianna system at Pilawa Gorna, Lower Silesia, SW Poland. Minerals 2018, 8, 126. [Google Scholar] [CrossRef]
- Szuszkiewicz, A.; Szeleg, E.; Pieczka, A.; Ilnicki, S.; Nejbert, K.; Turniak, K.; Banach, M.; Lodzinski, M.; Rozniak, R.; Michalowski, P. The Julianna pegmatite vein system at the Pilawa Gorna Mine, Gory Sowie Block, SW Poland—preliminary data on geology and descriptive mineralogy. Geol. Q. 2013, 57, 467–484. [Google Scholar] [CrossRef]
- Galos, K. Kopalnia Pilawa Gorna nowy dostawca kruszyw naturalnych lamanych na Dolnym Ślasku. Surowce Masz. Bud. 2007, 3, 24–27. [Google Scholar]
- Gawenda, T. Analiza porownawcza mobilnych i stacjonarnych ukladow technologicznych przesiewania i kruszenia. Rocz. Ochr. Srodowiska 2013, 15, 1318–1335. [Google Scholar]
- Stefanicka, M. Mobilne i stacjonarne uklady przerobcze na przykladzie kopalni Pilawa “Gorna”. Pr. Nauk. Inst. Gor. Politech. Wroc. Stud. Mater. 2011, 132, 277–289. [Google Scholar]
- Galos, K.; Luczak, J.; Michalowski, P.; Patyk, J. Sukces w zgodzie z natur—historia powstania kopalni “Pilawa Gorna”. Pr. Nauk. Inst. Gor. Politech. Wroc. 2009, 125, 63–78. [Google Scholar]
- Kompania Gornicza SP. Z O.O. Available online: https://kompaniagornicza.pl (accessed on 21 November 2022).
- Lubas, M.; Wyszomirski, P. Niekonwencjonalne wykorzystanie amfibolitow dolnoslaskich. Mater. Ceram./Ceram. Mater. 2009, 61, 31–35. [Google Scholar]
- Maliszewski, M.; Pomorski, A.; Cichon, T. Mozliwosci wykorzystania trudno zbywalnych frakcji amfibolitu ze zloza Pagorki Wschodnie. Gor. Odkryw. 2017, 58, 4–10. [Google Scholar]
- Borowski, G.; Swiderski, T.; Ozga, M. Stone dust agglomeration for utilizing as building material. Adv. Sci. Technol. Res. J. 2017, 11, 168–174. [Google Scholar] [CrossRef]
- Luszczkiewicz, A.; Duchnowska, M.; Muszer, A. Wstepne Badania Przerobcze Pylow Skalnych z Kopalni DSS S.A. “Pilawa Gorna”; Raport nr S-005/2011; Politechnika Wroclawska, Instytut Gornictwa, Wydzial Geoinzynierii, Gornictwa I Geologii: Wroclaw, Poland, 2011. [Google Scholar]
- Wedepohl, K.H. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Fergusson, J.E. Inorganic Chemistry and the Earth: Chemical Resources, Their Extraction, Use, and Environmental Impact; Pergamon Press: Sydney, Australia, 1982; 400p. [Google Scholar]
- Gruszczyk, H. Nauka o zlozach, 2nd ed.; Wydawnictwa Geologiczne: Warszawa, Poland, 1984. [Google Scholar]
Particle Size, mm | Yield, % | Cumulative Yield, % |
---|---|---|
<0.025 | 41.83 | 41.83 |
0.025–0.040 | 12.56 | 54.39 |
0.040–0.063 | 16.35 | 70.74 |
>0.063 | 29.26 | 100.00 |
Chemical Element | Unit | Accuracy of Analysis | Content in Feed | UCC * | Concentration Coefficient ** |
---|---|---|---|---|---|
Al | % | 0.01 | 8.04 | 7.74 | 1.0 |
Ca | % | 0.01 | 4.37 | 2.95 | 1.5 |
Ctotal | % | 0.01 | 0.57 | 0.32 | 1.8 |
Fe | % | 0.05 | 6.66 | 3.09 | 2.2 |
K | % | 0.1 | 1.2 | 2.86 | 0.4 |
Mg | % | 0.01 | 2.79 | 1.35 | 2.1 |
P | % | 0.005 | 0.154 | 0.0665 | 2.3 |
S | % | 0.01 | 0.76 | 0.0953 | 8.0 |
Si | % | 0.01 | 26.2 | 30.3 | 0.9 |
Ti | % | 0.01 | 0.76 | 0.312 | 2.4 |
Cu | ppm | 2 | 89 | 14.3 | 6.2 |
Ni | ppm | 10 | 110 | 18.6 | 5.9 |
Cr | ppm | 30 | 110 | 35 | 3.1 |
Co | ppm | 0.2 | 35.3 | 11.6 | 3.0 |
Se | ppm | 0.8 | 13.2 | 0.083 | 159.0 |
Zn | ppm | 30 | 120 | 52 | 2.3 |
Pb | ppm | 0.8 | 9.3 | 17 | 0.5 |
Ag | ppm | 10 | <10 | 0.055 | - |
Cd | ppm | 2 | <2 | 0.102 | - |
As | ppm | 5 | <5 | 2 | - |
Sn | ppm | 0.5 | 2.9 | 2.5 | 1.2 |
Sb | ppm | 2 | <2 | 0.31 | - |
Mo | ppm | 1 | 2 | 1.4 | 1.4 |
B | ppm | 10 | <10 | 11 | <1.0 |
Li | ppm | 3 | 30 | 22 | 1.4 |
Be | ppm | 3 | <3 | 3.1 | <1.0 |
V | ppm | 5 | 210 | 53 | 4.0 |
Mn | ppm | 3 | 1530 | 527 | 2.9 |
Ga | ppm | 0.2 | 18.3 | 14 | 1.3 |
Ge | ppm | 0.7 | 3.2 | 1.4 | 2.3 |
Rb | ppm | 0.4 | 48.4 | 110 | 0.4 |
Sr | ppm | 3 | 194 | 3.16 | 61.4 |
Nb | ppm | 2.4 | 9 | 26 | 0.3 |
In | ppm | 0.2 | <0.2 | 0.061 | - |
Te | ppm | 6 | <6 | - | - |
Cs | ppm | 0.1 | 1.9 | 5.8 | 0.3 |
Ba | ppm | 3 | 425 | 668 | 0.6 |
ΣRΕΕ+Y | ppm | 0.1 | 207.8 | 165.1 | 1.3 |
Hf | ppm | 10 | <10 | 5.8 | - |
Ta | ppm | 0.2 | 0.5 | 1.5 | 0.3 |
W | ppm | 0.7 | <0.7 | 1.4 | <1.0 |
Tl | ppm | 0.1 | 0.8 | 0.75 | 1.1 |
Bi | ppm | 2 | <2 | 0.123 | - |
Th | ppm | 0.1 | 8.1 | 10.3 | 0.8 |
U | ppm | 0.1 | 2.3 | 2.5 | 0.9 |
Mineral/Group of Minerals | Content, % | Mineral/Group of Minerals | Content, % | Mineral/Group of Minerals | Content, % |
---|---|---|---|---|---|
quartz | 14.8 | biotite | 13.1 | pyrite | 0.4 |
albite | 1.0 | muscovite | 0.2 | apatite | 0.7 |
plagioclase | 36.4 | grossular | 0.3 | titanite | 0.3 |
orthoclase | 0.9 | almandine-spessartite | 1.7 | zircon | 0.1 |
hornblende | 23.2 | chlorite | 2.0 | diopside | 0.7 |
kersutite | 1.3 | ilmenite | 0.6 | goethite | 0.1 |
tremolite-actinolite | 0.3 | allanite (Ce) | 0.1 | calcite | 0.3 |
anthophyllite | 0.3 | pyrrhotite | 0.9 | Fe oxides | 0.1 |
Product | Yield | Ctotal | S | Ti | Cu | Ni | |||||
γ, % | λ, % | ε, % | λ, % | ε, % | λ, % | ε, % | λ, ppm | ε, % | λ, ppm | ε, % | |
FC | 0.92 | 60.52 | 97.43 | 1.62 | 1.46 | 0.40 | 0.50 | 4970 | 44.05 | 90 | 0.89 |
FSP | 1.39 | 0.34 | 0.82 | 4.13 | 5.60 | 0.72 | 1.36 | 652 | 8.71 | 290 | 4.32 |
FT | 97.69 | 0.01 | 1.75 | 0.97 | 92.95 | 0.74 | 98.14 | 50 | 47.24 | 90 | 94.79 |
Feed | 100.00 | 0.57 | 100.00 | 1.02 | 100.00 | 0.73 | 100.00 | 104 | 100.0 | 93.05 | 100.00 |
Product | Yield | Mo | Nb | Ta | Cs | REE + Y | |||||
γ, % | λ, ppm | ε, % | λ, ppm | ε, % | λ, ppm | ε, % | λ, ppm | ε, % | λ, ppm | ε, % | |
FC | 0.92 | 248 | 62.94 | 7.8 | 0.85 | 0.6 | 1.02 | 0.8 | 0.35 | 214.3 | 0.92 |
FSP | 1.39 | 24 | 9.18 | 9.5 | 1.57 | 0.5 | 1.28 | 1.9 | 1.25 | 235.4 | 1.52 |
FT | 97.69 | 1 | 27.88 | 8.4 | 97.58 | 0.5 | 97.70 | 2.1 | 98.41 | 214.0 | 97.56 |
Feed | 100.00 | 3.62 | 100.00 | 8.4 | 100.00 | 0.5 | 100.00 | 2.1 | 100.00 | 214.3 | 100.00 |
Product | Yield γ, % | Ore Minerals + Graphite | Graphite | Pyrrhotite | Chalcopyrite | Pyrite | Other Components * | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
λ, % | ε, % | λ, % | ε, % | λ, % | ε, % | λ, % | ε, % | λ, % | ε, % | λ, % | ||
FC | 39.9 | 94.17 | 90.50 | 90.57 | 99.94 | 1.94 | 17.01 | 1.47 | 84.43 | 0.10 | 67.26 | 5.91 |
FSP | 60.1 | 6.56 | 9.50 | 0.03 | 0.06 | 6.28 | 82.99 | 0.18 | 15.57 | 0.03 | 32.74 | 93.47 |
Feed | 100.0 | 41.50 | 100.00 | 36.14 | 100.00 | 4.55 | 100.00 | 0.69 | 100.00 | 0.06 | 100.00 | 58.55 |
Product | Yield | Ca | Fe | Mg | S | Ti | |||||
γ, % | λ, % | ε, % | λ, % | ε, % | λ, % | ε, % | λ, % | ε, % | λ, % | ε, % | |
GC (GC1 + GC2) | 5.50 | 5.19 | 6.59 | 11.86 | 9.94 | 3.27 | 6.48 | 2.14 | 18.43 | 1.74 | 12.68 |
GSP2 | 0.13 | 4.34 | 0.13 | 10.80 | 0.21 | 2.72 | 0.13 | 3.32 | 0.68 | 0.92 | 0.16 |
GSP1 | 0.22 | 3.42 | 0.17 | 7.98 | 0.27 | 3.36 | 0.27 | 0.48 | 0.17 | 1.07 | 0.31 |
GT | 94.15 | 4.28 | 93.11 | 6.24 | 89.57 | 2.74 | 93.12 | 0.55 | 80.73 | 0.70 | 86.85 |
Feed | 100.00 | 4.33 | 100.00 | 6.55 | 100.00 | 2.77 | 100.00 | 0.64 | 100.00 | 0.75 | 100.00 |
Product | Yield | Cu | Ni | Mn | Nb + Ta | REE + Y | |||||
γ, % | λ, ppm | ε, % | λ, ppm | ε, % | λ, ppm | ε, % | λ, ppm | ε, % | λ, ppm | ε, % | |
GC (GC1 + GC2) | 5.50 | 69.9 | 10.15 | 150.1 | 19.42 | 4171.3 | 14.53 | 15.3 | 9.37 | 569.5 | 14.54 |
GSP2 | 0.13 | 113.0 | 0.39 | 220.0 | 0.68 | 1990.0 | 0.16 | 9.7 | 0.14 | 319.6 | 0.19 |
GSP1 | 0.22 | 61.0 | 0.36 | 80.0 | 0.42 | 1870.0 | 0.26 | 14.6 | 0.36 | 202.0 | 0.21 |
GT | 94.15 | 35.9 | 89.11 | 35.9 | 79.48 | 1425.2 | 85.05 | 8.6 | 90.13 | 194.5 | 85.06 |
Feed | 100.00 | 37.9 | 100.00 | 42.5 | 100.00 | 1577.9 | 100.00 | 9.0 | 215.2 | 100.00 |
Product | Yield γ, % | Ore Minerals | Pyrrhotite | Pyrite | Ilmenite | Rutile | Magnetite | Monazite | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
λ, % | ε, % | λ, % | ε, % | λ, % | ε, % | λ, % | ε, % | λ, % | ε, % | λ, % | ε, % | λ, % | ε, % | |||
GC | GC1 | 61.19 | 13.9 | 71.10 | 6.7 | 71.40 | 1.4 | 60.99 | 5.0 | 71.71 | 0.5 | 93.62 | 0.1 | 100.0 | 0.2 | 100.0 |
GC2 | 36.49 | 8.4 | 25.63 | 3.7 | 23.52 | 1.4 | 36.37 | 3.2 | 27.37 | 0.0 | 0.00 | 0.0 | 0.00 | 0.0 | 0.00 | |
GSP2 | 2.32 | 16.9 | 3.27 | 12.6 | 5.09 | 1.6 | 2.64 | 1.7 | 0.92 | 0.9 | 6.38 | 0.0 | 0.00 | 0.0 | 0.00 | |
Feed | 100.0 | 12.0 | 100.0 | 5.7 | 100.0 | 1.4 | 100.0 | 4.3 | 100.0 | 0.3 | 100.0 | 0.1 | 100.0 | 0.1 | 100.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duchnowska, M.; Bakalarz, A.; Luszczkiewicz, A. Properties of Fine-Grained Rock Waste from the Pilawa Gorna Amphibolite and Migmatite Aggregates Production Plant. Minerals 2023, 13, 345. https://doi.org/10.3390/min13030345
Duchnowska M, Bakalarz A, Luszczkiewicz A. Properties of Fine-Grained Rock Waste from the Pilawa Gorna Amphibolite and Migmatite Aggregates Production Plant. Minerals. 2023; 13(3):345. https://doi.org/10.3390/min13030345
Chicago/Turabian StyleDuchnowska, Magdalena, Alicja Bakalarz, and Andrzej Luszczkiewicz. 2023. "Properties of Fine-Grained Rock Waste from the Pilawa Gorna Amphibolite and Migmatite Aggregates Production Plant" Minerals 13, no. 3: 345. https://doi.org/10.3390/min13030345
APA StyleDuchnowska, M., Bakalarz, A., & Luszczkiewicz, A. (2023). Properties of Fine-Grained Rock Waste from the Pilawa Gorna Amphibolite and Migmatite Aggregates Production Plant. Minerals, 13(3), 345. https://doi.org/10.3390/min13030345