Fracture Fractal and Energy Transfer Characteristics of Deep-Mine Marble under an Impact Load
Abstract
:1. Introduction
2. Test Material and Device
2.1. Sample Preparation
2.2. SHPB Test System
2.3. Dynamic Stress Balance Verification
2.4. Dynamic Impact Test Results
3. Analysis of Test Results
3.1. Stress–Strain Curve Analysis
3.2. Energy Dissipation Analysis
3.3. Distribution Patterns of Fracture Particle Size
3.4. Relationship between the Energy Consumption Density and Fractal Dimension
4. Conclusions
- (1)
- The overall law of incident energy (EI), transmission energy (ET), absorption energy (ES), and reflection energy (ER) is shown as EI > ET > ES > ER. In the impact process, only 30%–38% of the incident energy is absorbed by the marble sample for the development of cracks, and more than half of the energy is transmitted.
- (2)
- As the strain rate increases, the energy consumption gradually increases, and the fractal dimension (D) gradually increases. The damaged state of the marble sample is transformed from the crimped destruction to the pulverized state, and the crushing scale gradually decreases and stabilizes.
- (3)
- There is a power function relationship between the fractal dimension and the energy consumption density. As the energy density increases, the fragmentation degree of the marble sample increases, the size of the fragmentation particles decreases, and the block distribution gradually tend to become uniform. However, the rock samples showed obvious excessive comminution.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Feng, X.; Ding, Z.; Hu, Q.; Zhao, X.; Ali, M.; Banquando, J.T. Orthogonal Numerical Analysis of Deformation and Failure Characteristics of Deep Roadway in Coal Mines: A Case Study. Minerals 2022, 12, 185. [Google Scholar] [CrossRef]
- Xie, H.; Lu, J.; Li, C.; Li, M.; Gao, M. Experimental study on the mechanical and failure behaviors of deep rock subjected to true triaxial stress: A review. Int. J. Min. Sci. Technol. 2022, 32, 915–950. [Google Scholar] [CrossRef]
- Yu, M.; Zuo, J.; Sun, Y.; Mi, C.; Li, Z. Investigation on fracture models and ground pressure distribution of thick hard rock strata including weak interlayer. Int. J. Min. Sci. Technol. 2022, 32, 137–153. [Google Scholar] [CrossRef]
- Xiao, P.; Li, D.; Zhu, Q. Strain Energy Release and Deep Rock Failure Due to Excavation in Pre-Stressed Rock. Minerals 2022, 12, 488. [Google Scholar] [CrossRef]
- He, M.; Sui, Q.; Li, M.; Wang, Z.; Tao, Z. Compensation excavation method control for large deformation disaster of mountain soft rock tunnel. Int. J. Min. Sci. Technol. 2022, 32, 951–963. [Google Scholar] [CrossRef]
- Daniliev, S.; Danilieva, N.; Mulev, S.; Frid, V. Integration of Seismic Refraction and Fracture-Induced Electromagnetic Radiation Methods to Assess the Stability of the Roof in Mine-Workings. Minerals 2022, 12, 609. [Google Scholar] [CrossRef]
- Tan, L.; Ren, T.; Yang, X.; He, X. A numerical simulation study on mechanical behaviour of coal with bedding planes under coupled static and dynamic load. Int. J. Min. Sci. Technol. 2018, 28, 791–797. [Google Scholar] [CrossRef]
- Han, Z.; Li, D.; Li, X. Dynamic mechanical properties and wave propagation of composite rock-mortar specimens based on SHPB tests. Int. J. Min. Sci. Technol. 2022, 32, 793–806. [Google Scholar] [CrossRef]
- Gomah, M.; Li, G.; Bader, S.; Elkarmoty, M.; Ismael, M. Damage Evolution of Granodiorite after Heating and Cooling Treatments. Minerals 2021, 11, 779. [Google Scholar] [CrossRef]
- Oladele, T.; Bbosa, L.; Weatherley, D. Textural and Mineralogical Controls on Rock Strength Elucidated Using a Discrete Element Method Numerical Laboratory. Minerals 2021, 11, 1015. [Google Scholar] [CrossRef]
- Sengani, F. The use of ground Penetrating Radar to distinguish between seismic and non-seismic hazards in hard rock mining. Tunn. Undergr. Space Technol. 2020, 103, 103470. [Google Scholar] [CrossRef]
- Pavičić, I.; Briševac, Z.; Vrbaški, A.; Grgasović, T.; Duić, Ž.; Šijak, D.; Dragičević, I. Geometric and Fractal Characterization of Pore Systems in the Upper Triassic Dolomites Based on Image Processing Techniques (Example from Žumberak Mts, NW Croatia). Sustainability 2021, 13, 7668. [Google Scholar] [CrossRef]
- Wang, S.; Sun, L.; Li, X.; Wang, S.; Du, K.; Li, X.; Feng, F. Experimental Investigation of Cuttability Improvement for Hard Rock Fragmentation Using Conical Cutter. Int. J. Géoméch. 2021, 21, 06020039. [Google Scholar] [CrossRef]
- Wang, S.; Xiong, X.; Liu, Y.; Zhou, J.; Du, K.; Cui, Y.; Khandelwal, M. Stress–strain relationship of sandstone under confining pressure with repetitive impact. Geomech. Geophys. Geo-Energy Geo-Resour. 2021, 7, 39. [Google Scholar] [CrossRef]
- Zhu, Q.; Li, D.; Wang, W. Mechanical behavior and permeability evolution of sandstone with confining pressure after dynamic loading. Geomech. Geophys. Geo-Energy Geo-Resour. 2021, 7, 81. [Google Scholar] [CrossRef]
- Feng, J.; Wang, E.; Huang, Q.; Ding, H.; Zhang, X. Experimental and numerical study of failure behavior and mechanism of coal under dynamic compressive loads. Int. J. Min. Sci. Technol. 2020, 30, 613–621. [Google Scholar] [CrossRef]
- Dai, B.; Shan, Q.W.; Chen, Y.; Luo, X.Y. Mechanical and energy dissipation characteristics of granite under cyclic impact loading. J. Cent. South Univ. 2022, 29, 116–128. [Google Scholar] [CrossRef]
- Fakhimi, A.; Azhdari, P.; Kimberley, J. Physical and numerical evaluation of rock strength in Split Hopkinson Pressure Bar testing. Comput. Geotech. 2018, 102, 1–11. [Google Scholar] [CrossRef]
- Li, X.; Wu, Y.; He, L.; Zhang, X.; Wang, J. Research on Dynamic Properties of Deep Marble Influenced by High Temperature. Mathematics 2022, 10, 2603. [Google Scholar] [CrossRef]
- Wang, J.; Zuo, T.; Li, X.; Tao, Z.; Ma, J. Study on the Fractal Characteristics of the Pomegranate Biotite Schist under Impact Loading. Geofluids 2021, 2021, 1570160. [Google Scholar] [CrossRef]
- Zuo, J.; Yang, R.; Gong, M.; Ma, X.; Wang, Y. Fracture characteristics of iron ore under uncoupled blast loading. Int. J. Min. Sci. Technol. 2022, 32, 657–667. [Google Scholar] [CrossRef]
- Sanchidrián, J.A.; Ouchterlony, F.; Segarra, P.; Moser, P. Size distribution functions for rock fragments. Int. J. Rock Mech. Min. Sci. 2014, 71, 381–394. [Google Scholar] [CrossRef]
- Frenelus, W.; Peng, H.; Zhang, J. Creep Behavior of Rocks and Its Application to the Long-Term Stability of Deep Rock Tunnels. Appl. Sci. 2022, 12, 8451. [Google Scholar] [CrossRef]
- Feng, F.; Chen, S.; Zhao, X.; Li, D.; Wang, X.; Cui, J. Effects of external dynamic disturbances and structural plane on rock fracturing around deep underground cavern. Int. J. Coal Sci. Technol. 2022, 9, 15. [Google Scholar] [CrossRef]
- Li, Y.; Yang, R.; Fang, S.; Lin, H.; Lu, S.; Zhu, Y.; Wang, M. Failure analysis and control measures of deep roadway with composite roof: A case study. Int. J. Coal Sci. Technol. 2022, 9, 2. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhou, H.; Zhong, J.; Liu, D. Study on the relation between damage and permeability of sandstone at depth under cyclic loading. Int. J. Coal Sci. Technol. 2019, 6, 479–492. [Google Scholar] [CrossRef] [Green Version]
- Saeidi, A.; Cloutier, C.; Kamalibandpey, A.; Shahbazi, A. Evaluation of the Effect of Geomechanical Parameters and In Situ Stress on Tunnel Response Using Equivalent Mohr-Coulomb and Generalized Hoek-Brown Criteria. Geosciences 2022, 12, 262. [Google Scholar] [CrossRef]
- Wang, S.; Li, X.; Yao, J.; Gong, F.; Li, X.; Du, K.; Tao, M.; Huang, L.; Du, S. Experimental investigation of rock breakage by a conical pick and its application to non-explosive mechanized mining in deep hard rock. Int. J. Rock Mech. Min. Sci. 2019, 122, 104063. [Google Scholar] [CrossRef]
- International Society for Rock Mechanics(ISRM). Suggested methods for determing tensile strength of rock materials. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1978, 15, 99–103. [Google Scholar] [CrossRef]
- T/CSRME 00-2019; Chinese Society of Rock Mechanics and Engineering. Test Procedure for Dynamic Properties of Rocks. China Standards Press: Beijing, China, 2019.
- Yao, W.; Li, X.; Xia, K.; Hokka, M. Dynamic flexural failure of rocks under hydrostatic pressure: Laboratory test and theoretical modeling. Int. J. Impact Eng. 2021, 156, 103946. [Google Scholar] [CrossRef]
- Xiao, P.; Li, D.Y.; Zhao, G.Y.; Zhu, Q.Q.; Liu, H.X.; Zhang, C.S. Mechanical properties and failure behavior of rock with different flaw inclinations under coupled static and dynamic loads. J. Cent. South Univ. 2020, 2, 2945–2958. [Google Scholar] [CrossRef]
- Gao, W.; Zhu, Z.; Wang, M.; Ying, P.; Wang, F.; Niu, C.; Zhang, X. Influence of the interlaced holes on crack propagation behavior under impact loads. Int. J. Impact Eng. 2022, 163, 104178. [Google Scholar] [CrossRef]
- Li, J.; Sun, W.; Li, Q.; Chen, S.; Yuan, M.; Xia, H. Influence of Layered Angle on Dynamic Characteristics of Backfill under Impact Loading. Minerals 2022, 12, 511. [Google Scholar] [CrossRef]
- Zhang, Z.; Qian, Q.; Wang, H.; Huang, Y.; Wang, J.; Liu, H. Study on the Dynamic Mechanical Properties of Metamorphic Limestone under Impact Loading. Lithosphere 2021, 2021, 8403502. [Google Scholar] [CrossRef]
- Zhao, K.; Yu, X.; Zhou, Y.; Wang, Q.; Wang, J.; Hao, J. Energy evolution of brittle granite under different loading rates. Int. J. Rock Mech. Min. Sci. 2020, 132, 104392. [Google Scholar] [CrossRef]
- Peng, K.; Liu, Z.; Zou, Q.; Wu, Q.; Zhou, J. Mechanical property of granite from different buried depths under uniaxial compression and dynamic impact: An energy-based investigation. Powder Technol. 2020, 362, 729–744. [Google Scholar] [CrossRef]
- Zuo, T.; Zhao, Z.; Wang, J.; Li, X.; Tao, Z.; Yang, C. Analysis of Dynamic Damage Fractal and Energy Consumption Characteristics of Dolomite Marble. Shock Vib. 2022, 2022, 9440222. [Google Scholar] [CrossRef]
- Jendryś, M.; Duży, S.; Dyduch, G. Analysis of Stress-Strain States in the Vicinity of Mining Excavations in a Rock Mass with Variable Mechanical Properties. Energies 2020, 13, 5567. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, W. The rock fragmentation mechanism and plastic energy dissipation analysis of rock indentation. Geomech. Eng. 2018, 16, 195–204. [Google Scholar]
- Nadi, B.; Tavasoli, O.; Kontoni, D.P.N.; Tadayon, A. Investigation of rock slope stability under pore-water pressure and structural anisotropy by the discrete element method. Geomech. Geoengin. 2019, 5, 452–464. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, R. Study of the dynamic fracture characteristics of coal with a bedding structure based on the NSCB impact test. Eng. Fract. Mech. 2017, 184, 319–338. [Google Scholar] [CrossRef]
- Dou, L.; Yang, K.; Chi, X. Fracture behavior and acoustic emission characteristics of sandstone samples with inclined precracks. Int. J. Coal Sci. Technol. 2021, 8, 77–87. [Google Scholar] [CrossRef]
- Baranowski, P.; Kucewicz, M.; Gieleta, R.; Stankiewicz, M.; Konarzewski, M.; Bogusz, P.; Pytlik, M.; Małachowski, J. Fracture and fragmentation of dolomite rock using the JH-2 constitutive model: Parameter determination, experiments and simulations. Int. J. Impact Eng. 2020, 140, 103543. [Google Scholar] [CrossRef]
- Dong, P.; Wu, B.; Xia, K.; Wang, Q. Fracture modes of single-flawed rock-like material plates subjected to dynamic compression. Int. J. Geomech. 2020, 20, 04020145. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, M.; Xu, W.; Tu, M.; Yin, Z.; Zhang, X. A Dynamic Coupled Elastoplastic Damage Model for Rock-like Materials Considering Tension-Compression Damage and Pressure-Dependent Behavior. Minerals 2022, 12, 851. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, N.; Wang, J. A Study on the Dynamic Strength Deterioration Mechanism of Frozen Red Sandstone at Low Temperatures. Minerals 2021, 11, 1300. [Google Scholar] [CrossRef]
- Zhang, P.; Pu, C.; Shi, X.; Xu, Z.; Ye, Z. The Numerical Simulation and Characterization of Complex Fracture Network Propagation in Multistage Fracturing with Fractal Theory. Minerals 2022, 12, 955. [Google Scholar] [CrossRef]
- Azarafza, M.; Bonab, M.H.; Derakhshani, R. A Deep Learning Method for the Prediction of the Index Mechanical Properties and Strength Parameters of Marlstone. Materials 2022, 15, 6899. [Google Scholar] [CrossRef]
- Mader, T.; Schreter, M.; Hofstetter, G. On the Influence of Direction-Dependent Behavior of Rock Mass in Simulations of Deep Tunneling Using a Novel Gradient-Enhanced Transversely Isotropic Damage–Plasticity Model. Appl. Sci. 2022, 12, 8532. [Google Scholar] [CrossRef]
- Li, X.; Fang, C.; Wang, J. Effect of charge coefficient on directional fracture of slotted charge. J. Vib. Control 2022, 10775463221125383. [Google Scholar] [CrossRef]
- Wang, Y.; Wen, Z.; Liu, G.; Wang, J.; Bao, Z.; Lu, K.; Wang, B. Explosion propagation and characteristics of rock damage in decoupled charge blasting based on computed tomography scanning. Int. J. Rock Mech. Min. Sci. 2020, 136, 104540. [Google Scholar] [CrossRef]
- Liang, W.; Li, K.; Luo, J.; Zhe, Y.; Xu, M.; Feng, F. Experimental Study on the Interaction between Backfill and Surrounding Rock in the Overhand Cut-and-Fill Method. Minerals 2022, 12, 1017. [Google Scholar] [CrossRef]
Longitudinal Wave Speed/ (m·s−1) | Compressive Strength/MPa | Tensile Strength/MPa | Shear Strength | Elastic Modulus/GPa | Poisson Ratio | Bulk Density/ (g·cm−3) | |
---|---|---|---|---|---|---|---|
Cohesion/MPa | Internal Friction Angle/° | ||||||
3167.65 | 60.75 | 7.61 | 23.04 | 18.34 | 38.71 | 0.32 | 2.70 |
Number | Loading Parameters | Intensity Parameter | Energy Parameter | |||||
---|---|---|---|---|---|---|---|---|
Impact Pressure (MPa) | Impact Velocity/ (m·s−1) | Strain Rate (s−1) | Dynamic Compressive Strength (MPa) | DIF | Incident Energy (J) | Absorption Energy (J) | Energy Consumption Density (J·cm−3) | |
2# | 0.5 | 15.45 | 50.57 | 118.01 | 1.94 | 138.77 | 45.28 | 0.48 |
5# | 0.6 | 18.01 | 64.90 | 150.09 | 2.47 | 162.04 | 61.26 | 0.66 |
7# | 0.7 | 20.86 | 71.37 | 168.30 | 2.77 | 212.21 | 74.79 | 0.85 |
9# | 0.8 | 23.20 | 78.13 | 198.10 | 3.26 | 258.28 | 71.76 | 0.89 |
14# | 0.9 | 25.39 | 87.76 | 205.57 | 3.38 | 282.29 | 91.71 | 1.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Lei, L.; Liu, Y.; Yang, Y.; Huang, Y. Fracture Fractal and Energy Transfer Characteristics of Deep-Mine Marble under an Impact Load. Minerals 2023, 13, 275. https://doi.org/10.3390/min13020275
Wang J, Lei L, Liu Y, Yang Y, Huang Y. Fracture Fractal and Energy Transfer Characteristics of Deep-Mine Marble under an Impact Load. Minerals. 2023; 13(2):275. https://doi.org/10.3390/min13020275
Chicago/Turabian StyleWang, Jianguo, Lugang Lei, Yang Liu, Yang Yang, and Yonghui Huang. 2023. "Fracture Fractal and Energy Transfer Characteristics of Deep-Mine Marble under an Impact Load" Minerals 13, no. 2: 275. https://doi.org/10.3390/min13020275
APA StyleWang, J., Lei, L., Liu, Y., Yang, Y., & Huang, Y. (2023). Fracture Fractal and Energy Transfer Characteristics of Deep-Mine Marble under an Impact Load. Minerals, 13(2), 275. https://doi.org/10.3390/min13020275