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Abstract: With changes in mining depth, the dynamic mechanical characteristics of the same type of
rock also change, so that the blasting excavation process must be constantly adjusted and optimized
to meet the requirements of safe and efficient mining. To study the energy evolution law and fractal
characteristics of deep marble during the destruction process, dynamic impact tests under different
strain rates were carried out on a deep marble sample using the three-axis dynamic combination
Hopkinson pressure bar system. The experimental results show that the larger the incident energy
is, the more energy is transmitted. The proportion of absorbed energy does not increase with the
increase in the incident energy. Only 30%–38% of the incident energy is absorbed by the impacted
rock. With an increase in the strain rate, the energy consumption density gradually increases, the
fragmentation degree is intensified, the fractal dimension gradually increases, and the failure mode
changes from compression–shear failure to crushing failure.

Keywords: deep-mine marble; static–dynamic coupling load; energy transfer law; energy density;
fractal dimension

1. Introduction

With the rapid development of the economy, shallow mineral resources are gradu-
ally being exhausted, and the resource exploitation process is being extended to greater
depths [1–5]. Human activities (such as blasting excavation) or natural disasters (such
as earthquakes) produce different degrees of disturbance in deep rocks, inducing rock
instability and failure [6,7] and resulting in huge losses of personnel or property. As a
result, research on the dynamic characteristics of deep rock under different intensities of
disturbance is of great importance for the exploitation of mines and the protection of life
and property. In this paper, the stress characteristics of deep rock are simplified, and the
split Hopkinson pressure bar (SHPB) system is used to simulate the stress situation of deep
rock with a triaxial static–dynamic coupling load [8]. The confining and axial pressures
are selected in accordance with the in situ stress environment [9] to study the stress–strain
relationship, energy regularity, and broken fractal features of deep rock under different
load excitations [10–13].

Many researchers have performed high-strain rate characterization of rocks using
the split Hopkinson pressure bar (SHPB). Wang et al. (2021) conducted a series of triaxial
repetitive impact tests using SHPB to reveal the dynamic stress–strain characteristics of
sandstones under perimeter pressure [14]. Zhu et al. (2021) used a modified SHPB to

Minerals 2023, 13, 275. https://doi.org/10.3390/min13020275 https://www.mdpi.com/journal/minerals

https://doi.org/10.3390/min13020275
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/minerals
https://www.mdpi.com
https://orcid.org/0000-0002-8981-7628
https://orcid.org/0000-0002-9954-5494
https://doi.org/10.3390/min13020275
https://www.mdpi.com/journal/minerals
https://www.mdpi.com/article/10.3390/min13020275?type=check_update&version=1


Minerals 2023, 13, 275 2 of 13

conduct dynamic triaxial compression tests for a series of incident energies, confining
pressures, and shock times to study the mechanical behavior and permeability evolution of
sandstones under realistic dynamic loading [15]. Feng et al. (2020) used the SHPB system
to study the failure behavior of coal under uniaxial dynamic compressive loading. They
pointed out that the transverse fracture of the specimen was caused by the tensile stress
wave reflected from the interface between the coal sample and the transmission rod [16].
Bing et al. (2022) carried out cyclic impact tests on granite samples with circular holes under
different axial pressures using a split Hopkinson pressure bar (SHPB) and established a
damage value criterion based on energy dissipation [17]. Fakhimi et al. (2018) evaluated
the strength characteristics of sandstone under uniaxial compressive loading using SHPB
testing [18]. Li et al. (2022) conducted compression experiments on deep marble at different
strain rates and high temperatures [19]. Wang et al. (2021) provide a useful reference for
the analysis of the dynamic crushing mechanism, crushing block size distribution, and
crushing energy consumption in roadway-surrounding rock [20].

In response to the statistical self-similarity characteristics of rock fracture processes,
Zuo et al. (2022) introduced fractal theory into the research field of rock fracture and
fragmentation [21]. Sanchidrián et al. (2014) analyzed a large number of rock chips
and obtained an optimal two-parameter function describing the scale distribution of the
chips [22]. Frenelus et al. (2022) combined the SHPB test system and DIC technology to
analyze the dynamic compression failure process of a coal sample and to quantitatively
analyze, by the box fractal dimension, the dynamic change in the coal sample crack under
impact by conducting simulation studies on deep rock mass [23]. Feng et al. (2022) indicated
that failure behavior should be the integrated response of the excavation unloading effect,
geological conditions, and external dynamic disturbances [24]. Li et al. (2022) fully clarified
the deformation and failure mechanisms of a deep composite-roof roadway, with cable
bolts as the primary support, under particularly extreme geological conditions, and put
forward reasonable control measures for the surrounding rock [25]. Zhao et al. (2019)
studied the evolution law of rock damage and permeability using acoustic emission (AE)
seepage experiment on deep roof sandstone with cyclic loading [26]. Saeidi et al. (2022)
pointed out that the energy consumption density of rock samples increases with an increase
in fractal dimension [27]. Wang et al. (2019) used fractal dimension to quantify the energy
consumption characteristics of rock crushing under impact loading [28].

Research on rock dynamics has been very fruitful, but the complexity of deeper fossil
conditions, with their changing physical and mechanical properties, and the consequent
change in the dynamic form of damage to the rock mass, directly affects the efficiency of
blasting breakage. Based on the background of optimizing the blasting parameters for the
roadway excavation of the 400-level copper mine at Dahongshan, this paper investigates the
stress–strain relationship, energy evolution law, and fractal characteristics of deeply buried
submarine marble with the aid of a triaxial dynamic–static combination test device to
provide a certain reference for optimizing the blasting parameters for roadway excavation
at Yuxi Mining.

2. Test Material and Device
2.1. Sample Preparation

Rock blocks with good homogeneity and integrity were selected as the test objects from
the rock surrounding the 400 horizontal roadways in Dahongshan Copper Mine. Cylindrical
rock samples with a size of Φ 50 mm × 50 mm were processed according to the test
requirements recommended by the International Standard Rock Mechanics (ISRM) [29,30].
The 2S-200 vertical coring machine and the SHM-200 double-end grinder were used to
grind the end face, and the end face roughness was controlled within ±0.02 mm to meet
the uniformity assumption of the test requirements. Finally, an acoustic test was carried out
on the rock samples, and rock samples with roughly the same wave velocity were selected.
Some of the rock samples are shown in Figure 1. The same loading test was repeated three
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times, and the basic mechanical parameters of the rock samples were obtained, as shown in
Table 1.
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Figure 1. Part of the rock specimen.

Table 1. Static mechanical parameters of marble.

Longitudinal
Wave Speed/

(m·s−1)

Compressive
Strength/MPa

Tensile
Strength/MPa

Shear Strength
Elastic

Modulus/GPa
Poisson

Ratio
Bulk Density/

(g·cm−3)Cohesion/MPa
Internal
Friction
Angle/◦

3167.65 60.75 7.61 23.04 18.34 38.71 0.32 2.70

2.2. SHPB Test System

As shown in Figure 2, the SHPB system is mainly composed of a launching device,
a speed device, a pressure bar system (made up of spindle bullets, an incident bar, and
a transmission bar), axial pressure, a peripheral loading device, and a data acquisition
device. The compressive bar has a diameter of 50 mm, the lengths of the incident bar
and transmission bar are 2000 mm and 1200 mm, respectively, the elastic modulus is
210 GPa, and the compressional wave velocity is 5196.5 m/s. The rock sample (Figure 2)
is located between the transmission bar and the incident bar. When the bullet strikes the
incident bar, an incident pulse is formed in the incident bar. In turn, when the incident
pulse propagates forward to the rock sample, a reflected pulse and a transmitted pulse
are formed at the heterogeneous interface, that is, the contact surface between the incident
rod, the transmission rod, and the rock sample. Due to the difference in wave impedance
and the incident pulse, the reflected pulse and the transmitted pulse are captured by strain
gauges [31].
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2.3. Dynamic Stress Balance Verification

The SHPB test system is based on one-dimensional assumptions and stress uniformity
assumptions: when the spindle-shaped bullet hits the incident rod with different impact
velocities, it generates half-sine waves with different impact velocities [32], which can better
satisfy the one-dimensional stress wave assumption. The stress balance curve at both ends
of the specimen during the impact process, when the strain rate was 50.57 s−1, is shown
in Figure 3. It can be seen that the incident stress and the reflected stress are equal to the
transmission stress after superposition, which satisfies the assumption of stress balance
at both ends of the specimen, indicating that the test results are reliable. The specimen
is placed between the incident rod and the transmission rod. To reduce the end friction
effect, both ends of the specimen should be evenly smeared with Vaseline in advance, to
ensure close contact between the specimen and the device [33]. The voltage signal can be

processed using the two-wave method to obtain the σ(t) (stress),
•.
ε(t) (strain rate), and ε(t)

(strain) during the impact [34]. 
σ(t) = − EA

As
εt(t)

•.
ε(t) = − 2C

Ls
εr(t)

ε(t) = 2C
Ls

∫ t
0 εr(t)dt

(1)

where E is the elastic modulus of the bar, GPa; C is the elastic wave velocity of the bar, m/s;
LS is the length of the rock sample, mm; A is the cross-sectional area of the bar, m2; and AS
is the cross-sectional area of the specimen, m2.
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2.4. Dynamic Impact Test Results

The variation law of the in situ stress field in the Dahongshan copper mine is shown
in Equation (2). 

σhmax = 0.0586H − 0.02231
σhmin = 0.0393H − 1.0035
σv = 0.0027H − 0.0514

(2)

where σhmax is the maximum horizontal principal stress, MPa; σhmin is the minimum
horizontal principal stress value, MPa; and H is the depth of burial, m.

The maximum principal stress in the 400-level roadway at the Dahongshan Copper
Mine is 25 MPa, the minimum principal stress is 20 MPa, and the vertical principal stress
value is 10 MPa. Therefore, an axial pressure of 25 MPa and a circumferential pressure
of 10 MPa were set in this test. To study the kinetic characteristics of deep marines, the
rock sample was taken at a 0.5 MPa impact pressure, and the rock sample was cracked.
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Therefore, the impact pressures for the rock samples were selected as 0.5 MPa, 0.6 MPa,
0.7 MPa, 0.8 MPa, and 0.9 MPa. To improve the accuracy of the test results, three replicate
tests were conducted for each impact pressure, and the average value was taken for each
set of replicate tests. The experimental results are shown in Table 2. Among them, the
dynamic compressive strength represents the peak stress on the rock sample, reflecting the
strength indicator of the rock sample. The dynamic strength growth factor (DIF) is the ratio
of the dynamic strength to the static strength of rock samples and is an index that reflects
the increase in the compressive strength of rock samples under impact compression. It is
expressed as follows: DIF = fcd/fcs, where fcd and fcs are the static compressive strength and
dynamic compressive strength of the rock samples, respectively.

Table 2. Impact test results.

Number

Loading Parameters Intensity Parameter Energy Parameter

Impact
Pressure

(MPa)

Impact
Velocity/
(m·s−1)

Strain Rate
(s−1)

Dynamic
Compressive

Strength
(MPa)

DIF Incident
Energy (J)

Absorption
Energy (J)

Energy
Consumption

Density
(J·cm−3)

2# 0.5 15.45 50.57 118.01 1.94 138.77 45.28 0.48
5# 0.6 18.01 64.90 150.09 2.47 162.04 61.26 0.66
7# 0.7 20.86 71.37 168.30 2.77 212.21 74.79 0.85
9# 0.8 23.20 78.13 198.10 3.26 258.28 71.76 0.89
14# 0.9 25.39 87.76 205.57 3.38 282.29 91.71 1.07

3. Analysis of Test Results
3.1. Stress–Strain Curve Analysis

The dynamic stress–strain curves of the rock samples under different strains are shown
in Figure 4.
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As can be seen from Figure 4, the shape of the stress–strain curves are similar for all
groups of rock samples. The stress–strain curves of the rock samples enter the phase of
elasticity from the beginning. The slope of the linear elasticity of the stress–strain curve
is defined as the dynamic elasticity modulus (E) of the specimen. The dynamic modulus
of elasticity increases with the increasing strain rate over the range of test impacts. The
dynamic modulus of elasticity of the rock samples increases from 33.8 GPa to 78.3 GPa for
strain rates of 50.57 s−1~87.76 s−1. The strength growth factor increases with the increasing
strain rate, and the dynamic strength growth factors are 1.94, 2.47, 2.77, 3.26, and 3.38,
indicating that the strain-rate-strengthening effect of the rock samples is significant. To
quantify the relationship between the strain rate and the dynamic compressive strength of
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the rock samples, a scatter plot between the dynamic compressive strength and the strain
rate of the rock samples was fitted using a multiplicative power function σp = 1.89

.
ε

1.05 [35].
It can be seen from Figure 5, there is a close fit between the dynamic compressive strength
and the strain rate. As the strain rate increases, the dynamic compressive strength of the
rock samples gradually increases, with a maximum increase of 74.2%.
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3.2. Energy Dissipation Analysis

Under the action of a dynamic load, the deformation and damage of rock samples are
accompanied by energy conversion. As a result, it is very important to analyze the frag-
mentation characteristics of rock samples from the perspective of energy conversion [36].

During the impact process, the total incident energy transferred from the incident rod
passes through the rock sample and undergoes energy conversion. Part of the energy is
absorbed by the rock sample and transformed into absorbed energy, part of the energy
is transmitted and transformed into transmitted energy, and the rest is reflected in the
incident bar. According to the principle of energy conservation, and neglecting the energy
lost during the impact, the incident energy, reflected energy, transmitted energy, and
absorbed energy of the rock sample during impact are calculated using Equation (3) [37].

EI =
AbCb

Eb

∫ t
0 σ2

i dt
ER = AbCb

Eb

∫ t
0 σ2

r dt
ET = AbCb

Eb

∫ t
0 σ2

t dt
ES = EI − (ER + ET)

(3)

where σi, σr, σt are the incident, reflected, and transmitted pulses, respectively, MPa; EI, ER,
ET, and ES are the incident, reflected, transmitted, and absorbed energies, respectively, J; Ab
is the cross-sectional area of the bar, m2; Cb is the elastic wave velocity of the bar, m/s; Eb is
the elastic modulus of the bar, GPa.

To eliminate the influence of the volume factor on the test results, the energy consump-
tion density (ωd) was introduced to quantify the energy absorbed by the fragmentation of
the rock sample [38]. ωd is calculated as follows:

ωd =
ES
V

, (4)

where ES indicates the energy absorbed by the rock sample, J, and V is the volume of the
rock sample, cm3.

The above energy values for the strain rate are shown in Figure 6. Within the test
range, the incident, transmitted, and absorbed energies of the rock samples all show a
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clear increase with the increasing strain rate, while the reflected energy increases at a lower
rate. This is due to a better match between the rock sample and the pressure bar wave
impedance, resulting in a higher transmitted energy and lower absorbed energy. The fitted
relationship between each energy and strain rate is shown in Equation (5).

EI = −33.1837 + 3.2672
•
ε, R2 = 0.9689

ER = 7.1664 + 1.1811
•
ε, R2 = 0.8721

ET = −16.8640 + 1.6878
•
ε, R2 = 0.9045

ES = −23.4861 + 1.2938
•
ε, R2 = 0.9730

, (5)
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Figure 6. The relationship between the energy and strain rate.

Figure 7 shows the absorbed energy, transmitted energy, and reflected energy of the
rock samples as a percentage of the total incident energy, respectively. It can be seen that
the relationship between the three types of energy under different incident energies is
ET > ES > ER. As the incident energy increases, the percentages of transmitted energy,
absorbed energy, and reflected energy in the incident energy remain roughly the same,
being 45%–56%, 30%–38%, and 12%–17%, respectively. It can be assumed that the larger the
incident energy is, the more energy is transmitted. More than half the energy is transmitted,
and less than 40% of the incident energy is absorbed by the rock sample.
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The energy densities of the rock samples during impact were calculated according to
Equation (4). Figure 8 shows the quantitative relationship between the energy consumption
density and strain rate of the rock samples. It can be seen that the energy consumption
density increases linearly with the strain rate over the range of test impacts. Combined with
the damage patterns of the rock samples after impact, it is concluded that when the energy
consumption density is less than 0.85 J/cm3, the primary fractures are not fully developed
under the impact, and, therefore, the rock samples still have a certain load-bearing capacity.
As the strain rate increases, the energy consumption density increases from 0.89 J/cm3 to
1.07 J/cm3, and more energy is consumed on the sprouting, expansion, and penetration
of new internal fractures, and the primary fractures and fully developed new fractures
gradually transform from a coarse-grained to a fine-grained state [39].
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3.3. Distribution Patterns of Fracture Particle Size

Through dynamic loading tests at different strain rates, crushed rock chips from
each rock sample were collected, screened, and classified to obtain the morphological
characteristics of the rock samples at different strain rates, as shown in Figure 9.
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Figure 9. Fragmentation patterns.

The nature of rock sample failure is such that many internal cracks and pores continue
to sprout, expand, and converge under the driving action of a dynamic load, which
finally leads to the macro-crushing process. The damage patterns and the sizes of the
fragments reflect the degree of breakage and the initial damage characteristics of the rock
samples [40]. In terms of fragmentation patterns, the rock samples underwent compression–
shear damage and became two large pieces when the strain rate was 50.57 s−1. When
the strain rate was 64.90 s−1, the rock samples were broken into three large blocks with
some small blocks. When the strain rate was 71.37 s−1, core failure occurred in the rock
samples, producing a large quantity of debris. When the strain rate was 78.13 s−1, rock
crushing damage occurred. Crushing damage also occurred in the rock samples when the
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strain rate was 87.76 s−1. In terms of fragment size, with the increase in the strain rate, the
average scale of rock sample failure changed from coarse to fine. The fragmentation of the
rock samples gradually deepened, and the proportion of fine grains gradually increased.
This is because at strain rates of 50.57 s−1~71.37 s−1, the energy carried by the incident
waves was not large enough to destroy the primary fractures within the rock samples,
resulting in a low dissipation density of the samples. When the strain rate was greater than
78.13 s−1, the energy carried by the incident waves increased, and the primary cracks and
new microcracks were stably developed and fully destroyed, resulting in the increasing
degree of rock sample fragmentation and the decreasing fragment size [41].

To quantify the variation rules of the crystallization size under different strain rates,
the fragments were sieved according to the size of the cuttings. The quality of each level of
screening was determined with a high-sensitivity electronic scale, and the test data were
recorded. The particle size corresponding to 50% of the mass percentage is represented as
d50. The particle size distributions of the rock samples at different strain rates are shown in
Figure 10.
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It can be seen from Figure 10 that when the strain rate is 87.76s−1, the d50 is 10.9 mm,
indicating that the sample is crushed. The sample is seriously broken. At strain rates of
64.90 s−1 to 71.37 s−1, the d50 of the specimen debris ranges from 40 to 50 mm, indicating
a low level of damage to the rock samples. This is because the higher the strain rate is,
the higher the total dissipated energy density of the rock sample is, the more energy the
specimen absorbs, and the smaller the size of the particle fragments is.

Regarding the relationship between the crushed rock particle size and quantity, a
fractal model that uses particle mass distribution to describe the fractal characteristics
of rocks has been proposed [42]. In this paper, a fractal model of the mass distribution
is used to calculate the fractal dimension of the specimens at different strain rates. The
fractal dimension D can be obtained according to the mass-frequency relationship of the
screening test, and the distribution equation of rock fragments generated under an impact
load is [43–45]:

Md(x < d)
Ms

=
d3−D − d3−D

m

d3−D
M − d3−D

m
, (6)

where Md is the mass of particles in a fractured rock sample with a particle size less than d,
g; Ms is the total mass of the fractured rock sample, g; d indicates the size of the particle,
mm; dm is the minimum particle size, mm; dM is the maximum particle size, mm; and D is
the fractal dimension of the rock chip.
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Assuming that the minimum particle size (dm) among the fractured specimen particles
is 0, Equation (7) can be written as:

Md(x < d)
Ms

=

(
d

dM

)3−D
, (7)

taking the logarithm of both sides of Equation (7), it can be expressed as:

lg(Md/MS) = (3 − D)lg(d/dM), (8)

According to Equation (8), if lg[Md/Ms] is taken as the vertical coordinate, with
lg(d/dM) as the horizontal coordinate and (3 − D) as the slope, the fractal dimension D
can be obtained from the screening data of the specimen [46–48].

After the dynamic impact experiments, we obtained a linear fit to the particle size
classification data screened for each specimen. From the fitting results shown in Figure 11,
it can be seen that D gradually increased as the strain rate increased. This illustrates
that as the strain rate increases, the degree of fragmentation and the proportion of fine
particles in the rock samples gradually increases. It also shows that the distribution of the
fragmentation mass of the rock samples under impact loading conforms to the fractal law.
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3.4. Relationship between the Energy Consumption Density and Fractal Dimension

According to the theory of rock fracture mechanics, particle breakage and frictional
sliding are the main forms of energy dissipation in granular materials, both of which have a
decisive influence on the macroscopic mechanical properties of granular materials [49,50]. The
entire process of rock deformation and damage is accompanied by energy evolution [51–53].
It is thus clear that energy and fragmentation are closely related. To quantitatively describe
the relationship between the crushing of rock samples and energy, the relationship between
the crushing fractal dimension of the samples and the energy consumption density was
plotted. As can be seen from Figure 12, D grew gradually as the energy consumption density
value of the rock samples increased. This shows that as the energy density value increases,
the degree of fragmentation of the rock sample is increased, the size of the fragmentation
particles decreases, and the block distribution gradually tends to become uniform.
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(1) The overall law of incident energy (EI), transmission energy (ET), absorption energy
(ES), and reflection energy (ER) is shown as EI > ET > ES > ER. In the impact pro-
cess, only 30%–38% of the incident energy is absorbed by the marble sample for the
development of cracks, and more than half of the energy is transmitted.

(2) As the strain rate increases, the energy consumption gradually increases, and the
fractal dimension (D) gradually increases. The damaged state of the marble sample is
transformed from the crimped destruction to the pulverized state, and the crushing
scale gradually decreases and stabilizes.

(3) There is a power function relationship between the fractal dimension and the energy
consumption density. As the energy density increases, the fragmentation degree of
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