Geochemical Mapping and Reference Values of Potentially Toxic Elements in a Contaminated Mining Region: Upper Velhas River Basin Stream Sediments, Iron Quadrangle, Brazil
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Arsenic (As)
3.2. Cadmium (Cd)
3.3. Lead (Pb)
3.4. Zinc (Zn)
3.5. Chromium (Cr)
3.6. Nickel (Ni)
3.7. Copper (Cu)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Resolution No. 454/12; Establishing General Guidelines to the Evaluation of Dredging Material in Brazilian Jurisdictional Waters. CONAMA. Environmental National Council: Washington, DC, USA, 2012.
- Giripunje, M.D.; Fulke, A.B.; Meshram, P.U. Remediation techniques for heavy-metals contamination in lakes: A mini-review. Clean–Soil Air Water 2015, 43, 1350–1354. [Google Scholar] [CrossRef]
- Vicq, R.; Matschullat, J.; Leite, M.G.P.; Nalini, H.A., Jr.; Mendonça, F.P.C. Iron Quadrangle stream sediments, Brazil: Geochemical maps and reference values. Environ. Earth Sci. 2015, 75, 25–35. [Google Scholar] [CrossRef]
- Gomez, P.; Valente, T.; Braga, M.A.S.; Grande, J.A.; Torre, M.L. Enrichment of trace elements in the clay size fraction of mining soils. Environ. Sci. Pollut. 2016, 23, 6039–6045. [Google Scholar] [CrossRef] [PubMed]
- Carranza, E.J.M. Geochemical Anomaly Mineral Prospectivity Mapping in. In G.I.S. Handbook of Exploration and Environmental Geochemistry; Elsevier Publications: Budapest, Hungria, 2009; Volume 11, 310p. [Google Scholar]
- Caritat, P.; Cooper, M. National Geochemical Survey of Australia: The Geochemical Atlas of Australia; Record; Geoscience Australia: Symonston, Australia, 2011; Volume 2, 557p.
- Smith, D.B.; Smith, S.M.; Horton, J.D. History and Evaluation of a National Scale Geochemical Data Sets for the United States; Geoscience Frontiers: Beijing, China, 2012. [Google Scholar]
- Albanese, S.; Devivo, B.; Lima, A.; Cicchella, D. Geochemical background and baseline values of toxic elements in stream sediments of Campania region (Italy). J. Geochem. Explor. 2006, 93, 21–34. [Google Scholar] [CrossRef]
- Bai, J.; Porwal, A.; Hart, C.; Ford, A.; Yu, L. Mapping geochemical singularity using multifractal analysis: Application to anomaly definition on stream sediments data from Funin Sheet, Yunnan, China. J. Geochem. Explor. 2009, 104, 1–11. [Google Scholar] [CrossRef]
- Campodonico, M.B.; Garcia, A.I.; Pasquini, B. The geochemical signature of suspended sediments in the Parana River basin: Implications for provenance, weathering and sedimentary recycling. Catena 2016, 143, 201–214. [Google Scholar] [CrossRef]
- Vicq, R.; Matschullat, J.; Leite, M.G.P.; Nalini, H.A., Jr.; Leão, L.P. Geochemical mapping of potentially hazardous elements in surface waters and stream sediments of the Quadrilátero Ferrífero, Brazil. Geochim. Bras. 2018, 32, 243–267. [Google Scholar]
- Borba, R.P.; Figueiredo, B.R.; Rawlins, B.; Matschullat, J. Arsenic in Water and Sediment in the Iron Quadrangle, State of Minas Gerais, Brazil. Appl. Geochem. 2000, 15, 181–190. [Google Scholar] [CrossRef]
- Matschullat, J.; Borba, R.P.; Deschamps, E.; Figueiredo, B.F.; Gabrio, T.; Schwenk, M. Human and environmental contamination in the Iron Quadrangle, Brazil. Appl. Geochem. 2000, 15, 181–190. [Google Scholar] [CrossRef]
- APA SUL RMBH. Projeto de Geoquímica Ambiental, Mapas Geoquímicos Escala 1:225.000; da Cunha, F.G., Machado, G.J., Eds.; SEMAD/CPRM: Belo Horizonte, Brazil, 2005; Volume 7:17 mapas, 80p.
- Deschamps, E.; Matschullat, J. Arsênio Antropogênico e Natural: Um Estudo em Regiões do Quadrilátero Ferrífero; Fundação Estadual do Meio Ambiente—FEAM: Belo Horizonte, Brazil, 2007; 330p. [Google Scholar]
- Pereira, J.C.; Guimarães Silva, A.K.; Nalini, J.R.H.A.; Pacheco Silva, E.; De Lena, J.C. Distribuição, fracionamento e mobilidade de elementos traço em sedimentos superficiais. Quim. Nova 2007, 30, 1249–1255. [Google Scholar] [CrossRef]
- Gonçalves, G.H.T. Avaliação Geoambiental de Bacias Contíguas Situadas na Área de Proteção Ambiental Cachoeira das Andorinhas e Floresta Estadual do Uaimii, Ouro Preto-MG: Diagnóstico e Percepção Ambiental. Master’s Thesis, Universidade Federal de Ouro Preto, Ouro Preto, Brazil, 2010. [Google Scholar]
- Mendonça, F.P.C. Influência da Mineração na Geoquímica das Águas Superficiais e Nos Sedimentos no Alto Curso da Bacia do Ribeirão Mata Porcos, Quadrilátero Ferrífero—Minas Gerais. Master’s Thesis, Federal University of Ouro Preto, Ouro Preto, Brazil, 2012. [Google Scholar]
- Larizzatti, J.H.; Marques, E.D.; Silveira, F.V. Geochemical Mapping of the Quadrilátero Ferrífero, Brazil and Surroundings; (Série metais—Informes Gerais; 2); Informe de Recursos Minerais; CPRM: Rio de Janeiro, Brazil, 2014; 208p. [Google Scholar]
- Leão, L.P.; Vicq, R.; Nalini, H.A., Jr.; Leite, M.G.P. Mapeamento Geoquímico do Manganês e Avaliação da Qualidade de Sedimentos Fluviais e Águas Superficiais do Quadrilátero Ferrífero, Brasil; Anuário do Instituto de Geociências—UFRJ: Rio de Janeiro, Brazil, 2019; Volume 42, pp. 444–455. [Google Scholar]
- Teixeira, W.; Sabaté, P.; Barbosa, J.; Noce, C.M.; Carneiro, M.A. Archean and paleoproterozoic tectonic evolution of the São Francisco Craton. In International Geological Congress; Cordani, U.G., Milani, E.J., Thomaz Filho, A., Campos, D.A., Eds.; Tectonic evolution of South America: Rio de Janeiro, Brazil, 2000; Volume 31, pp. 101–137. [Google Scholar]
- Dorr, J.N. Physiographic, Stratigraphic, and Structural Development of the Quadrilátero Ferrífero, Minas Gerais; Professional Paper; U.S. Geological Survey: Reston, VA, USA, 1969.
- Alkmim, F.F.; Marshak, S. Transamazonian Orogeny in the Southern São Francisco Craton Region, Minas Gerais, Brazil: Evidence for Paleoproterozoic collision and collapse in the Quadrilátero Ferrífero. Precambrian Res. 1998, 90, 29–58. [Google Scholar] [CrossRef]
- Nalini, H.A., Jr. Estudos Geoambientais no Quadrilátero Ferrífero: Mineração e Sustentabilidade; School of Mines; Department of Geology UFOP: Minas Gerais, Brazil, 2009; 52p. [Google Scholar]
- Weber, A.A.; Moreira, D.P.; Melo, R.M.C.; Vieira, A.B.C.; Prado, P.S.; da Silva, M.A.N.; Bazzoli, N.; Rizzo, E. Reproductive effects of oestrogenic endocrine disrupting chemicals in Astyanax rivularis inhabiting headwaters of the Velhas River, Brazil. Sci. Total Environ. 2017, 592, 693–703. [Google Scholar] [CrossRef]
- Bølviken, B.; Bogen, J.; Jartun, M.; Langedal, M.; Ottesen, R.; Volden, T. Overbank sediments: A natural bed blending sampling medium for large—scale geochemical mapping. Chemom. Intell. Lab. Syst. 2004, 74, 183–199. [Google Scholar] [CrossRef]
- Salminen, R.; Tarvainen, T.; Demetriades, A.; Duris, M.; Fordyce, F.M.; Gregorauskiene, V.; Kahelin, H.; Kivisilla, J.; Klaver, G.; Klein, H.; et al. FOREGS Geochemical Mapping Field Manual; Guide 47; Geological Survey of Finland: Espoo, Finland, 1998; 36p. [Google Scholar]
- United States Environmental Protection Agency (USEPA). Method 3005A—Acid Digestion of Waters for Total Recoverable or Dissolved Metals for Analysis by FLAA or ICP Spectroscopy. 2001; [S.l.], 5p. Available online: http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/3005a.pdf (accessed on 6 September 2023).
- Calmano, W.; Förstner, U. Sediments and Toxic Substances: Environmental Effects and Ecotoxicity, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1996; 332p. [Google Scholar]
- Ferreira, A.; Inácio, M.M.; Morgado, P.; Batista, M.J.; Ferreira, L.; Pereira, V.; Pinto, M.S. Low-density geochemical mapping in Portugal. Appl. Geochem. 2001, 16, 1323–1331. [Google Scholar] [CrossRef]
- National Geospatial-Intelligence Agency. World Geodetic System 1984 (WGS 84); National Geospatial-Intelligence Agency: Springfield, VA, USA, 2022.
- Cheng, Q. Spatial and scaling modelling for geochemical anomaly separation. J. Geochem. Explor. 1999, 65, 175–194. [Google Scholar] [CrossRef]
- Reimann, C.; de Caritat, P. Establishing geochemical background variation and threshold values for 59 elements in Australian surface soil. Sci. Total Environ. 2017, 578, 633–648. [Google Scholar] [CrossRef]
- Fernández-Caliani, J.C.; Romero-Baena, A.; González, I.; Galán, E. Geochemical anomalies of critical elements (Be, Co, Hf, Sb, Sc, Ta, V, W, Y and REE) in soils of western Andalusia (Spain). Appl. Clay Sci. 2020, 191, 105610. [Google Scholar] [CrossRef]
- Reimann, C.; Caritat, P. Chemical Elements in the Environment: Factsheets for the Geochemist and Environmental Scientist; Springer: Berlin/Heidelberg, Germany, 1998; 398p. [Google Scholar]
- Costa, A.T. Registro Histórico de Contaminação por Metais Pesados, Associadas à Exploração Aurífera no alto e Médio Curso da bacia do Ribeirão do Carmo, QF: Um Estudo de Sedimentos de Planícies de Inundação e Terraços Aluviais. Ph.D. Thesis, Federal University of Ouro Preto, Ouro Preto, Brazil, 2007. [Google Scholar]
- Varejão, E.V.; Bellato, C.R.; Fontes, M.P.F.; Mello, J.W.V. Arsenic and trace metals in river water and sediments from southeast portion of Iron Quadrangle, Brazil. Environ. Monit. Assess 2010, 172, 631–642. [Google Scholar] [CrossRef]
- Parra, R.R.; Roeser, H.M.P.; Leite, M.G.P.; Nalini, J.R.H.A.; Guimarães, A.T.A.; Pereira, J.C.; Friese, K. Influência Antrópica na Geoquímica de Água e Sedimentos do Rio Conceição, Quadrilátero Ferrífero, Minas Gerais—Brasil. Geochim. Bras. 2007, 21, 36–49. [Google Scholar]
- Merian, E.; Anke, M.; Ihnat, M.; Stoeppler, M. Elements and Their Compounds in the Environment: Occurrence, Analysis and Biological Relevance; WILEY-VCH Verlag GmbH & Co. KGaA: Hoboken, NJ, USA, 2004; Volume 1–3, 1773p. [Google Scholar]
- Stephens, S.; Alloway, B.; Parker, A.; Carter, J.; Hodson, M. Changes in the leachability of metals from dredged canal sediments during drying and oxidation. Environ. Pollut. 2001, 114, 407–413. [Google Scholar] [CrossRef]
- Riba, I.; Luque-Escalona, A.; Costa, M.H. Sediment Contamination and Toxicity in the Guadalquivir River (Southwest, Spain). Appl. Sci. 2023, 13, 3585. [Google Scholar] [CrossRef]
- Pacheco, F.; Silva, M.; Pissarra, T.; Rolim, G.; Melo, M.; Valera, C.; Moura, J.; Fernandes, L. Geochemistry and contamination of sediments and water in rivers affected by the rupture of tailings dams (Brumadinho, Brazil). Appl. Geochem. 2023, 152, 105644. [Google Scholar] [CrossRef]
References | Basin/Cities | No of the Sampled Points | Stream Sediments (mg kg−1) | ||||
---|---|---|---|---|---|---|---|
Deschamps Matschullat (2007) [15] | Velhas River—Nova Lima and Rio Acima | 24 | Min | Mean | Q3 | Max | |
As | 47 | 140 | ---- | 3300 | |||
Mendonça (2012) [18] | Mata Porcos Riverside—Itabirito | 12 | Min | Mean | Q3 | Max | |
As | 1.6 | 7 | 1.6 | 69 | |||
Cr | 8 | 79 | 94 | 198 | |||
Cu | 0.3 | 41 | 48 | 180 | |||
Pb | 1 | 26 | 33 | 47 | |||
Ni | 0.6 | 19 | 30 | 47 | |||
Zn | 30 | 60 | 72 | 119 | |||
Pereira et al. (2007) [16] | Velhas River—Ouro Preto, Itabirito, Rio Acima, Nova Lima, Raposos, Belo Horizonte, and Sabará | 19 | Min | Mean | Q3 | Max | |
As | 2 | ----- | 35 | 580 | |||
Cr | 30 | ----- | 180 | 510 | |||
Cu | 20 | ----- | 60 | 110 | |||
Ni | 5 | ----- | 95 | 480 | |||
Zn | 40 | ----- | 105 | 380 | |||
Gonçalves (2010) [17] | Microbasins of Andaime and D’Ajuda Stream—EPA Cachoeira das Andorinhas and Floresta do Uaimii | 8 | Min | Mean | Q3 | Max | |
As | 1.6 | 50 | 77 | 167 | |||
Cr | 197 | 393 | 520 | 632 | |||
Cu | 8 | 43 | 48 | 97 | |||
Pb | 1 | 10 | 17 | 50 | |||
Ni | 65 | 146 | 177 | 220 | |||
Zn | 50 | 84 | 104 | 131 | |||
APA SUL (2005) [14] | Middle Velhas River—Itabirito, Rio Acima, Nova Lima, Caeté, Raposos | 44 | Min | Mean | Q3 | Max | |
As | 4.1 | 91 | 85.3 | 873 | |||
Cd | 1.6 | 7.3 | 9.3 | 12,2 | |||
Cr | 44 | 293 | 363 | 1077 | |||
Cu | 17 | 85.4 | 87.5 | 841 | |||
Pb | 7 | 20 | 27 | 47 | |||
Ni | 10 | 74 | 84 | 332 | |||
Zn | 28 | 73 | 85 | 175 |
Elements | Detection Limit (mg kg−1) |
---|---|
Al | 2.6 |
As | 1.6 |
Ca | 1.0 |
Cd | 0.4 |
Cr | 0.2 |
Cu | 0.3 |
Fe | 0.8 |
Mg | 0.1 |
Mn | 0.1 |
Ni | 0.6 |
Pb | 1.0 |
Zn | 0.1 |
Elem | Unit | Min | Max | Mean | Median | Avg Crust | Q1 | Q3 | EUR* | AUS** | Port*** | Italy |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Al | % | 0.2 | 8 | 2.5 | 1.9 | --- | 1.0 | 3.8 | 5.5 | 1.5 | 1.6 | 1.5 |
Ca | % | 7.6 × 10−4 | 1.8 | 0.1 | 0.1 | --- | 0.1 | 0.2 | 1.7 | 0.3 | 0.2 | 6.4 |
Fe | % | 1.1 | 62.2 | 12.9 | 10.4 | --- | 5.4 | 16.6 | 2.0 | 2.3 | 2.5 | 2.1 |
Mg | % | 1.3 × 10−4 | 1.3 | 0.1 | 0.1 | --- | 0.1 | 0.1 | 0.7 | 0.3 | 0.4 | 0.6 |
As | mg kg−1 | <LLD | 1687 | 32.3 | 2.0 | 2 | 1.6 | 20.6 | 6 | 2.1 | 9 | 5.7 |
Cd | mg kg−1 | <LLD | 14.7 | 1.1 | 0.4 | 0.1 | 0.4 | 1.1 | 0.3 | 0.1 | n.d. | 0.2 |
Cr | mg kg−1 | 6.5 | 572 | 115 | 92.8 | 126 | 41.7 | 151.3 | 21 | 29.4 | 23 | 20 |
Cu | mg kg−1 | <LLD | 233 | 27.7 | 22.3 | 25 | 12.7 | 37.9 | 14 | 16.5 | 22 | 30 |
Mn | mg kg−1 | 41 | 10,000 | 1317 | 756 | --- | 305 | 1771 | 452 | 387 | 411 | 811 |
Ni | mg kg−1 | 1.2 | 157 | 36.3 | 30.5 | 56 | 11.2 | 56.9 | 16 | 13.8 | 19 | 21 |
Pb | mg kg−1 | <LLD | 70.2 | 22.5 | 20.2 | 15 | 14.6 | 28.4 | 14 | 10.5 | 19 | 22 |
Zn | mg kg−1 | 18.6 | 181 | 53.8 | 48.7 | 65 | 38.4 | 63.1 | 60 | 37.3 | 74 | 71 |
Element | RCV (mg kg−1) | RVC | CONAMA 454 [1] (mg kg−1) | % of Concentration Range to Total Area |
---|---|---|---|---|
As | 1.6–20.6 | RR | 17 | 78 |
>20.6–49 | HRV | 11 | ||
>49 | Anomalies | 11 | ||
Cd | 0.4–1.02 | RR | 3.5 | 76 |
>1.02–1.96 | HRV | 15 | ||
>1.96 | Anomalies | 09 | ||
Cr | 6.48–151.3 | RR | 90 | 74 |
>151.3–315.7 | HRV | 24 | ||
>315.7 | Anomalies | 02 | ||
Cu | 0.3–37.9 | RR | 197 | 76 |
>37.9–75.6 | HRV | 22 | ||
>75.6 | Anomalies | 02 | ||
Pb | 0.4–28.4 | RR | 91.3 | 78 |
>28.4–49 | HRV | 18 | ||
>49 | Anomalies | 04 | ||
Ni | 1.1–56.9 | RR | 35.9 | 77 |
>56.9–125.7 | HRV | 18 | ||
>125.7 | Anomalies | 05 | ||
Zn | 18.6–63.1 | RR | 315 | 75 |
>63.1–100.2 | HRV | 21 | ||
>100.2 | Anomalies | 04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vicq, R.; Leite, M.G.P.; Leão, L.P.; Nallini Júnior, H.A.; Valente, T. Geochemical Mapping and Reference Values of Potentially Toxic Elements in a Contaminated Mining Region: Upper Velhas River Basin Stream Sediments, Iron Quadrangle, Brazil. Minerals 2023, 13, 1545. https://doi.org/10.3390/min13121545
Vicq R, Leite MGP, Leão LP, Nallini Júnior HA, Valente T. Geochemical Mapping and Reference Values of Potentially Toxic Elements in a Contaminated Mining Region: Upper Velhas River Basin Stream Sediments, Iron Quadrangle, Brazil. Minerals. 2023; 13(12):1545. https://doi.org/10.3390/min13121545
Chicago/Turabian StyleVicq, Raphael, Mariangela G. P. Leite, Lucas P. Leão, Hermínio A. Nallini Júnior, and Teresa Valente. 2023. "Geochemical Mapping and Reference Values of Potentially Toxic Elements in a Contaminated Mining Region: Upper Velhas River Basin Stream Sediments, Iron Quadrangle, Brazil" Minerals 13, no. 12: 1545. https://doi.org/10.3390/min13121545
APA StyleVicq, R., Leite, M. G. P., Leão, L. P., Nallini Júnior, H. A., & Valente, T. (2023). Geochemical Mapping and Reference Values of Potentially Toxic Elements in a Contaminated Mining Region: Upper Velhas River Basin Stream Sediments, Iron Quadrangle, Brazil. Minerals, 13(12), 1545. https://doi.org/10.3390/min13121545