Method for the Analysis of Respirable Airborne Particulates on Filter Using the Mineral Liberation Analyser
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection Methodology
2.2. MLA Methodology
2.3. MLA Methodology Checks
3. Results
3.1. Resulting Improvements to MLA Methodology
3.2. Sample Results
4. Discussion
4.1. MLA Methodology
4.1.1. Low Counts
4.1.2. Data Checks
4.1.3. Mineral Reference Library
4.2. Mine 1–4 MLA Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coal Workers Pneumoconiosis Select Committee. Black Lung White Lies: Inquiry into the Reidentification of Coal Workers’ Pneumoconiosis in Queensland; Report No. 2, 55th Parliament; Queensland Government: Brisbane, Australia, 2017.
- Queensland Government. Mine Dust Lung Diseases; Queensland Government: Brisbane, Australia, 2023. Available online: https://www.business.qld.gov.au/industries/mining-energy-water/resources/safety-health/mining/accidents-incidents/mine-dust-lung-diseases (accessed on 17 October 2023).
- Blackley, D.J.; Halldin, C.N.; Laney, A.S. Continued Increase in Prevalence of Coal Workers’ Pneumoconiosis in the United States, 1970–2017. Am. J. Public Health 2018, 108, 1220–1222. [Google Scholar] [CrossRef] [PubMed]
- Hall, N.B.; Blackley, D.J.; Halldin, C.N.; Laney, A.S. Current Review of Pneumoconiosis Among US Coal Miners. Curr. Environ. Health Rep. 2019, 6, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Hurley, J.F.; MacLaren, W.M. Dust-Related Risks of Radiological Changes in Coalminers over a 40-Year Working Life: Report on Work Commissioned by NIOSH; Institute of Occupational Medicine: Edinburgh, UK, 1987. [Google Scholar]
- LaBranche, N.; Cliff, D.; Johnstone, K.; Bofinger, C. Respirable Coal Dust and Silica Exposure Standards in Coal Mining: Science or Black Magic? In Proceedings of the 2021 Resource Operators Conference, University of Wollongong—Mining Engineering, Springfield, QLD, Australia, 10–12 February 2021. [Google Scholar]
- Sapko, M.J.; Cashdollar, K.L.; Green, G.M. Coal Dust Particle Size Survey of U.S. Mines. 2007. Available online: https://www.cdc.gov/niosh/mining/UserFiles/works/pdfs/cdpss.pdf (accessed on 9 September 2019).
- World Health Organization. Hazard Prevention and Control in the Work Environment: Airborne Dust; World Health Organization: Geneva, Switzerland, 1999; p. 224. [Google Scholar]
- Mutmansky, J.M.; Lee, C. An Analysis of the Size and Elemental Composition of Airborne Coal Mine Dust. In Proceedings of the Coal Mine Dust Conference, West Virginia University, Morgantown, WV, USA, 8–10 October 1984. [Google Scholar]
- Lee, C. Statistical Analysis of the Size and Elemental Composition of Airborne Coal Mine Dust, in Mining Engineering; The Pennsylvania State University: State College, PA, USA, 1986. [Google Scholar]
- Fandrich, R.; Gu, Y.; Burrows, D.; Moeller, K. Modern SEM-based mineral liberation analysis. Int. J. Miner. Process. 2007, 84, 310–320. [Google Scholar] [CrossRef]
- Johann-Essex, V.; Keles, C.; Sarver, E. A Computer-Controlled SEM-EDX Routine for Characterizing Respirable Coal Mine Dust. Minerals 2017, 7, 15. [Google Scholar] [CrossRef]
- LaBranche, N.; Keles, C.; Sarver, E.; Johnstone, K.; Cliff, D. Characterization of Particulates from Australian Underground Coal Mines. Minerals 2021, 11, 447. [Google Scholar] [CrossRef]
- Sarver, E.; Keles, C.; Rezaee, M. Beyond conventional metrics: Comprehensive characterization of respirable coal mine dust. Int. J. Coal Geol. 2019, 207, 84–95. [Google Scholar] [CrossRef]
- Moreno, T.; Trechera, P.; Querol, X.; Lah, R.; Johnson, D.; Wrana, A.; Williamson, B. Trace element fractionation between PM10 and PM2.5 in coal mine dust: Implications for occupational respiratory health. Int. J. Coal Geol. 2019, 203, 52–59. [Google Scholar] [CrossRef]
- Shangguan, Y.; Zhuang, X.; Querol, X.; Li, B.; Moreno, N.; Trechera, P.; Sola, P.C.; Uzu, G.; Li, J. Characterization of deposited dust and its respirable fractions in underground coal mines: Implications for oxidative potential-driving species and source apportionment. Int. J. Coal Geol. 2022, 258, 104017. [Google Scholar] [CrossRef]
- Trechera, P.; Moreno, T.; Córdoba, P.; Moreno, N.; Zhuang, X.; Li, B.; Li, J.; Shangguan, Y.; Kandler, K.; Dominguez, A.O.; et al. Mineralogy, geochemistry and toxicity of size-segregated respirable deposited dust in underground coal mines. J. Hazard. Mater. 2020, 399, 122935. [Google Scholar] [CrossRef]
- Kollipara, V.K.; Chugh, Y.P.; Mondal, K. Physical, mineralogical and wetting characteristics of dusts from Interior Basin coal mines. Int. J. Coal Geol. 2014, 127, 75–87. [Google Scholar] [CrossRef]
- Erol, I.; Aydin, H.; Didari, V.; Ural, S. Pneumoconiosis and quartz content of respirable dusts in the coal mines in Zonguldak, Turkey. Int. J. Coal Geol. 2013, 116–117, 26–35. [Google Scholar] [CrossRef]
- Pan, L.; Golden, S.; Assemi, S.; Sime, M.F.; Wang, X.; Gao, Y.; Miller, J. Characterization of Particle Size and Composition of Respirable Coal Mine Dust. Minerals 2021, 11, 276. [Google Scholar] [CrossRef]
- Pokhrel, N.; Agioutanti, E.; Keles, C.; Afrouz, S.; Sarver, E. Comparison of Respirable Coal Mine Dust Constituents Estimated using FTIR, TGA, and SEM–EDX. Min. Met. Explor. 2022, 39, 291–300. [Google Scholar] [CrossRef]
- Zazouli, M.A.; Dehbandi, R.; Mohammadyan, M.; Aarabi, M.; Dominguez, A.O.; Kelly, F.J.; Khodabakhshloo, N.; Rahman, M.M.; Naidu, R. Physico-chemical properties and reactive oxygen species generation by respirable coal dust: Implication for human health risk assessment. J. Hazard. Mater. 2020, 405, 124185. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Liu, S.; Zheng, S. Characterization of nano-to-micron sized respirable coal dust: Particle surface alteration and the health impact. J. Hazard. Mater. 2021, 413, 125447. [Google Scholar] [CrossRef] [PubMed]
- Santa, N.; Keles, C.; Saylor, J.R.; Sarver, E. Demonstration of Optical Microscopy and Image Processing to Classify Respirable Coal Mine Dust Particles. Minerals 2021, 11, 838. [Google Scholar] [CrossRef]
- Walker, R.L.T.; Cauda, E.; Chubb, L.; Krebs, P.; Stach, R.; Mizaikoff, B.; Johnston, C. Complexity of Respirable Dust Found in Mining Operations as Characterized by X-ray Diffraction and FTIR Analysis. Minerals 2021, 11, 383. [Google Scholar] [CrossRef]
- Johann-Essex, V.; Keles, C.; Rezaee, M.; Scaggs-Witte, M.; Sarver, E. Respirable coal mine dust characteristics in samples collected in central and northern Appalachia. Int. J. Coal Geol. 2017, 182, 85–93. [Google Scholar] [CrossRef]
- LaBranche, N.; Teale, K.; Wightman, E.; Johnstone, K.; Cliff, D. Characterization Analysis of Airborne Particulates from Australian Underground Coal Mines Using the Mineral Liberation Analyser. Minerals 2022, 12, 796. [Google Scholar] [CrossRef]
- Creelman, R.A.; Ward, C.R. A scanning electron microscope method for automated, quantitative analysis of mineral matter in coal. Int. J. Coal Geol. 1996, 30, 249–269. [Google Scholar] [CrossRef]
- Ward, C.R. Analysis, origin and significance of mineral matter in coal: An updated review. Int. J. Coal Geol. 2016, 165, 1–27. [Google Scholar] [CrossRef]
- Elmes, M.; Delbem, I.; Gasparon, M.; Ciminelli, V. Single-particle analysis of atmospheric particulate matter using automated mineralogy: The potential for monitoring mine-derived emissions. Int. J. Environ. Sci. Technol. 2020, 17, 2743–2754. [Google Scholar] [CrossRef]
- Hanlon, J.; Galea, K.S.; Verpaele, S. Review of Published Laboratory-Based Aerosol Sampler Efficiency, Performance and Comparison Studies (1994–2021). Int. J. Environ. Res. Public Heal. 2023, 20, 267. [Google Scholar] [CrossRef]
- SKC. SKC Plastic Cyclone Notice. 2018. Available online: http://weber.hu/Downloads/SKC/SKC_PlasticCyclone225_69.pdf (accessed on 15 October 2023).
- Zosky, G.; Beamish, B. C29035 Effect of Rock Dust and Pre-Existing Lung Disease on the Risk of “Mixed Dust Lung Disease” (MDLD); Australian Coal Association Research Program: Brisbane, Australia, 2022. [Google Scholar]
- Thomas, D.; Charvet, A.; Bardin-Monnier, N.; Appert-Collin, J.-C. 1—An Introduction to Aerosols. In Aerosol Filtration; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–30. [Google Scholar]
- Mischler, S.E.; Cauda, E.G.; Di Giuseppe, M.; McWilliams, L.J.; Croix, C.S.; Sun, M.; Franks, J.; Ortiz, L.A. Differential activation of RAW 264.7 macrophages by size-segregated crystalline silica. J. Occup. Med. Toxicol. 2016, 11, 57. [Google Scholar] [CrossRef]
- Cohen, R.A.; Petsonk, E.L.; Rose, C.; Young, B.; Regier, M.; Najmuddin, A.; Abraham, J.L.; Churg, A.; Green, F.H.Y. Lung Pathology in U.S. Coal Workers with Rapidly Progressive Pneumoconiosis Implicates Silica and Silicates. Am. J. Respir. Crit. Care Med. 2016, 193, 673–680. [Google Scholar] [CrossRef]
Sample | Mine No. | Test Day | Sample Duration (min) | Location Code | Location |
---|---|---|---|---|---|
1CM_02 | 1 | 2 | 297 | CM | Continuous Miner Development Heading |
1MG_08 | 1 | 1 | 169 | MG | Longwall Maingate hung from Shield 3 |
2CM_15 | 2 | 3 | 243 | CM | Continuous Miner in Development Heading |
2MF_19 | 2 | 4 | 251 | MF | Longwall Midface Shield 76 |
2MG_24 | 2 | 4 | 270 | MG | Longwall Maingate Shield 10 |
3CM_29 | 3 | 5 | 242 | CM | Continuous Miner in Mains Development |
3CV_26 | 3 | 5 | 310 | CV | Mains Development Conveyor Roadway |
4CM_34 | 4 | 6 | * | CM | Continuous Miner |
4MF_32 | 4 | 7 | * | MF | Longwall Midface |
4MG_36 | 4 | 7 | * | MG | Longwall Maingate |
Mine 1 | Mine 2 | Mine 3 | Mine 4 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Mineral | 1CM_02 | 1MG_08 | 2CM_15 | 2MF_19 | 2MG_24 | 3CM_29 | 3CV_26 | 4CM_34 | 4MF_32 | 4MG_36 |
Native Copper | 0 | 0 | 0 | 0.03 | 0 | 0 | 0 | 0 | 0 | 0 |
Chalcopyrite | 0.02 | 0 | 0 | 0.01 | 0 | 0 | 0 | 0 | 0 | 0.02 |
Bornite | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Enargite | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.01 | 0.01 |
Copper Sulphate | 0 | 0 | 0 | 0.01 | 0 | 0 | 0 | 0 | 0.03 | 0.04 |
Pyrite | 0.01 | 0.01 | 0 | 1.34 | 0 | 1.84 | 2.97 | 0.09 | 1.76 | 1.53 |
Pyrrhotite | 0 | 0 | 0 | 0.11 | 0 | 0 | 0 | 0 | 0.03 | 0.03 |
Arsenopyrite | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Galena | 0 | 0 | 0 | 0.9 | 0 | 0 | 0.02 | 0 | 0.05 | 0.85 |
Sphalerite | 0 | 0 | 0 | 0.57 | 0 | 0 | 0 | 0.01 | 0.01 | 0.57 |
Cobaltite | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Chlorite | 8.11 | 7.87 | 3.5 | 0.2 | 3.71 | 1.01 | 0.78 | 0.86 | 0.59 | 1.19 |
Muscovite | 8.22 | 9.35 | 6.72 | 7.75 | 7.08 | 29.29 | 15.4 | 12.46 | 51.56 | 25.13 |
Biotite | 0 | 0 | 0 | 0.55 | 0 | 0.99 | 1.48 | 0.17 | 0.49 | 0.69 |
Amphibole | 0.29 | 0.24 | 0.15 | 6.01 | 0.24 | 0.94 | 9.99 | 2.27 | 0.67 | 2.42 |
Quartz | 0.28 | 0.29 | 0.16 | 0.85 | 0.34 | 10.85 | 11.6 | 20.73 | 2.7 | 15.37 |
Plagioclase | 2.6 | 4.07 | 2.8 | 0.28 | 3.34 | 3.85 | 6.31 | 2.96 | 0.52 | 3.5 |
Orthoclase | 0.21 | 0.6 | 0.28 | 1.32 | 0.25 | 39.51 | 24.25 | 47.51 | 15.55 | 21.6 |
Kaolinite | 0.43 | 0.62 | 0.55 | 1.02 | 0.51 | 3.22 | 2.34 | 4.27 | 3.58 | 2.79 |
Zircon | 0 | 0 | 0 | 0 | 0 | 0.01 | 0 | 0.01 | 0.01 | 0.02 |
Pyroxene | 0.04 | 0.01 | 0 | 0.02 | 0.02 | 0.01 | 0 | 0 | 0 | 0 |
Calcium Silicate | 7.19 | 3.6 | 7.68 | 5.56 | 10.41 | 0.71 | 5.61 | 1.05 | 0.88 | 2.61 |
FeOxide | 0 | 0 | 0 | 0.78 | 0 | 0.06 | 0.16 | 0.09 | 0.34 | 0.75 |
Rutile | 0 | 0 | 0 | 0.01 | 0 | 0 | 0.01 | 0 | 0 | 0 |
Ilmenite | 0.28 | 0.33 | 0.16 | 0.13 | 0.21 | 0.08 | 0.12 | 0.13 | 0.6 | 1.34 |
Stainless Steel | 0.76 | 0.69 | 0.51 | 1.6 | 1.22 | 0.02 | 0.03 | 0.06 | 0.44 | 0.72 |
Magnesite | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Calcite | 10.84 | 5.19 | 6.21 | 5.87 | 10.15 | 0.31 | 8.65 | 0.46 | 0.43 | 4.81 |
Dolomite | 0 | 0 | 0 | 0.51 | 0 | 0 | 0 | 0 | 0.03 | 0.25 |
Gypsum | 0.2 | 0.06 | 0.01 | 0.15 | 0.07 | 0.02 | 0.01 | 0.62 | 0.02 | 1.51 |
Barite | 0 | 0 | 0 | 0.11 | 0 | 0.01 | 0 | 0 | 0.02 | 0.11 |
Jarosite | 0 | 0 | 0 | 1.17 | 0 | 1.4 | 0.74 | 0.64 | 3.57 | 1.79 |
Sylvite | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Halite | 0.05 | 0.01 | 0.03 | 0.5 | 0.24 | 0 | 0 | 0 | 0.02 | 0 |
Apatite | 0.43 | 0.38 | 0.72 | 0.37 | 0.86 | 0.02 | 0.05 | 0.01 | 0.16 | 0.05 |
Carbon | 59.78 | 66.61 | 70.47 | 61.36 | 61.18 | 4.9 | 8.31 | 4.28 | 15.02 | 8.68 |
Other | 0 | 0 | 0 | 0.22 | 0 | 0.24 | 0.39 | 0.46 | 0.19 | 0.27 |
Tramp | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.01 | 0.25 |
Unknown | 0.14 | 0.03 | 0.02 | 0.69 | 0.12 | 0.69 | 0.78 | 0.86 | 0.7 | 1.08 |
Low_Counts | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
No_XRay | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Clinochlore | 0.04 | 0.04 | 0.01 | - | 0.04 | - | - | - | - | - |
MgOxide | 0.01 | 0 | 0 | - | 0 | - | - | - | - | - |
AlOxide | 0.06 | 0 | 0 | - | 0 | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
LaBranche, N.; Wightman, E.; Teale, K.; Johnstone, K.; Cliff, D. Method for the Analysis of Respirable Airborne Particulates on Filter Using the Mineral Liberation Analyser. Minerals 2023, 13, 1526. https://doi.org/10.3390/min13121526
LaBranche N, Wightman E, Teale K, Johnstone K, Cliff D. Method for the Analysis of Respirable Airborne Particulates on Filter Using the Mineral Liberation Analyser. Minerals. 2023; 13(12):1526. https://doi.org/10.3390/min13121526
Chicago/Turabian StyleLaBranche, Nikky, Elaine Wightman, Kellie Teale, Kelly Johnstone, and David Cliff. 2023. "Method for the Analysis of Respirable Airborne Particulates on Filter Using the Mineral Liberation Analyser" Minerals 13, no. 12: 1526. https://doi.org/10.3390/min13121526
APA StyleLaBranche, N., Wightman, E., Teale, K., Johnstone, K., & Cliff, D. (2023). Method for the Analysis of Respirable Airborne Particulates on Filter Using the Mineral Liberation Analyser. Minerals, 13(12), 1526. https://doi.org/10.3390/min13121526