Characterization and Provenance of Carbonate Rocks for Quicklime and Dololime Production in Twin-Shaft Regenerative Kilns from the Arabian Peninsula and Neighboring Countries
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Sampling and Lithofacies Analysis
3.2. Carbonate Rocks and Burnt Limes Nomenclature
3.3. Petrographic Analysis and Cathodoluminescence Microscopy
3.4. Wavelength Dispersive X-ray Fluorescence Spectroscopy
3.5. Pre-Treatments for Insoluble Residues Extraction
3.6. X-ray Diffraction and Quantitative Phase Analyses
3.7. Stable C-O and Sr Isotopes
3.8. Carbon Speciation and Total Organic Carbon
3.9. Electron Paramagnetic Resonance Spectroscopy
3.10. Burning Tests
3.11. Mechanical Degradation and Drop Test
3.12. Slaking Reactivity Tests
3.13. Overburning Test Method and Sticking Tendency
4. Results and Discussion
4.1. Integrated Microfacies Analysis
4.2. Isotopic Signature and Source Deposits
- Stevin Rock, UAE (USI-2, USI-4, USI-9, USI-11, QSC-1, and QSC-2);
- Gulf Rock, UAE (USI-3, USI-6, and USI-7);
- Mirzaei-Angoran, Iran (HOS-1 and HOS-3);
- Dargaz, Iran (HOS-5 and USI-5);
- Baqiabad-Kashigari, Iran (HOS-2 and HOS-4);
- Jawhart, UAE (USI-8a and USI-15a),
- Bushehr, Iran (USI-8b, USI-12, and USI-15b).
- Site 1 (USI-1, likely from Kuwait);
- Site 2 (USI-10, likely from Kuwait);
- Site 3 (USI-13 and USI-14).
4.3. Slaking Reactivity
4.4. Mechanical Behavior and Sticking Tendency of the Lime
- Dark green field of ‘‘excellent” values (OBT < 10 g; MD < 15%): this field contains only one sample of dololime (QSC-2), which has extremely low MD and ST. This is the best sample in terms of physico-mechanical properties, behavior, and overburning tendency, making it suitable for TSR kilns at high temperatures using solid fuels. Therefore, the expectation for the residual CO2, content will be very low (<1.0 wt%).
- Light green field of ‘‘good” values (OBT = 10–15 g; MD = 15–25%): this field concerns samples with low to medium ST and medium MD (HOS-2, HOS-5, USI-3, and USI-10). These samples have good physico-mechanical properties and combustion behavior, making them suitable for use in TSR kilns at HT using solid fuels. Therefore, the expectation for the residual CO2 content will be low (<2.0 wt%).
- Yellow field of ‘‘average” values (OBT = 15–18 g; MD = 25–30%): this field concerns samples with medium to high ST coupled with medium to high MD (HOS-1, HOS-3, QSC-1, USI-1, USI-4, USI-7, USI-8, USI-9, USI-12, and USI-16). These samples have acceptable physico-mechanical properties and burning behavior and are therefore suitable for use in TSR kilns, but precautions must be taken. In particular, the use of a coarse fraction as kiln feed to counteract the production of fines is highly recommended. Moreover, the prevision for the residual CO2 content will be high (2.0–3.0 wt%).
- Orange field of ‘‘bad” values (OBT = 18–20 g; MD = 30–35%): this field includes samples with high ST combined with high MD (HOS-4, USI-5, and USI-7). These samples are characterized by low physico-mechanical properties and low burning behavior, making them suitable for TSR kilns, but special precautions are required, especially for kilns using solid fuels. The use of a coarse fraction as kiln feed is strongly recommended. In addition, the expectation for the residual CO2 content will be the highest (3.5–5.0 wt%).
- Red field of ‘‘critical” values (OBT > 20 g; MD > 35%): this field concerns samples with very high ST coupled with very high MD (USI-13, USI-14, and USI-15). These samples have critical physico-mechanical properties and are therefore generally not suitable for TSR kilns. No prevision can be given in terms of residual CO2 content, and the customer is invited to change the raw material feeding the kiln.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beach, R.; Bullock, A.; Heller, K.; Domanico, J.L.; Muth, M.K.; O’Connor, A.C.; Spooner, R.B. Lime Production: Industry Profile; Final Report; Crump, E.L., Ed.; Research Triangle Institute: Research Triangle Park, NC, USA, 2000. Available online: https://www3.epa.gov/ttnecas1/regdata/IPs/Lime%20Manufacturing_IP.pdf (accessed on 25 January 2023).
- Boynton, R. Chemistry and Technology of Lime and Limestone; John Wiley & Sons: New York, NY, USA, 1980; pp. 311–315. [Google Scholar]
- Oates, J. Lime and Limestone. Chemistry and Technology, Production and Uses; Wiley-VCH: Weinheim, Germany, 1998; p. 177. [Google Scholar]
- Chang, L. Industrial Mineralogy; Pearson Education: Upper Saddle River, NJ, USA, 2002; pp. 101–191. [Google Scholar]
- EuLA. Innovation in the Lime Sector; The European Lime Association: Bruxelles, Belgium, 2018; Available online: https://www.eula.eu/wp-content/uploads/2019/07/Innovation-in-the-Lime-Sector-.pdf (accessed on 25 January 2023).
- Schorcht, F.; Kourti, I.; Scalet, B.M.; Roudier, S.; Sancho, L.D. Best Available Techniques (BAT) Reference Document for the Production of Cement, Lime and Magnesium Oxide: Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control); EU Publications Office: Luxembourg, 2013; Available online: https://eippcb.jrc.ec.europa.eu/sites/default/files/2019-11/CLM_Published_def_0.pdf (accessed on 25 January 2023).
- Vola, G. High-Grade Burnt Lime Products: Impact of Calcination Kinetics on Slaking Reactivity; Sticking Tendency and Blocks Formation at HT (1300 °C). Ph.D. Thesis, University of Ferrara, Ferrara, Italy, 2019; p. 282. [Google Scholar]
- Vola, G.; Sarandrea, L.; Della Porta, G.; Cavallo, A.F.J.; Cruciani, G. The influence of petrography, mineralogy, and chemistry on burnability and reactivity of quicklime produced in Twin Shaft Regenerative (TSR) kilns from Neoarchean limestone (Transvaal Supergroup, South Africa). Min. Pet. 2018, 112, 555–576. [Google Scholar] [CrossRef]
- Vola, G.; Bresciani, P.; Rodeghero, E.; Sarandrea, L.; Cruciani, G. Impact of rock fabric, thermal behavior, and carbonate decomposition kinetics on quicklime industrial production and slaking reactivity. J. Therm. Anal. Calorim. 2018, 136, 967–993. [Google Scholar] [CrossRef]
- Vola, G.; Sarandrea, L.; Mazzieri, M.; Bresciani, P.; Ardit, M.; Cruciani, G. Reactivity and overburning tendency of quicklime burnt at high temperature. ZKG Int. 2019, 10, 20–31. [Google Scholar]
- Vola, G.; Ardit, M.; Sarandrea, L.; Brignoli, G.; Natali, C.; Cavallo, A.; Bianchini, G.; Cruciani, G. Investigation and prediction of sticking tendency, blocks formation and occasional melting of lime at HT (1300 °C) by the Overburning Test method. Constr. Build. Mater. 2021, 294, 123577. [Google Scholar] [CrossRef]
- Gosselin, C.; Verges-Belmin, V.; Royer, A.; Martinet, G. Natural cement and monumental restoration. Mater. Struct. 2009, 42, 749–763. [Google Scholar] [CrossRef]
- Elsen, J.; Mertens, G.; Snellings, R. Portland cement and other calcareous hydraulic binders: History, production and mineralogy. In Advances in the Characterization of Industrial Minerals; EMU Notes in Mineralogy: London, UK, 2011; Volume 9, pp. 441–479. [Google Scholar]
- Vola, G.; Christiansen, T.; Sarandrea, L.; Ferri, V. Carbonate rocks characterization for industrial lime manufacturing: Worldwide case-studies. In Proceedings of the EMABM 2013—14th Euroseminar on Microscopy Applied to Building Materials, Helsingør, Denmark, 10–14 June 2013. [Google Scholar]
- Vola, G.; Sarandrea, L. Raw materials characterization for industrial lime manufacturing. ZKG Int. 2013, 5, 62–70. [Google Scholar]
- Vola, G.; Sarandrea, L. Investigation and prediction of marble mechanical degradation and dust formation during calcination process in Twin Shaft Regenerative (TSR) kilns. Cem. Int. 2015, 3, 42–47. [Google Scholar]
- Cwik, K.; Broström, M.; Backlund, K.; Fjäder, K.; Hiljanen, E.; Eriksson, M. Thermal Decrepitation and Thermally-Induced Cracking of Limestone Used in Quicklime Production. Minerals 2022, 12, 1197. [Google Scholar] [CrossRef]
- EuLA. A Pathway to Negative CO2 Emissions by 2050: The Contribution of the Lime Industry to a Carbon-Neutral Europe; The European Lime Association: Brussels, Belgium, 2023; Available online: https://eula.eu/resources/a-pathway-to-negative-co2emissions-by-2050/ (accessed on 25 January 2023).
- HaiDo, D.; Specht, E.; Kehse, G.; Ferri, V.; Christiansen, T.L.; Bresciani, P. Simulation of lime calcination in PFR kiln. Influence of energy input and lime throughput. ZKG Int. 2011, 12, 52–64. [Google Scholar]
- Vola, G.; Massa, M.; Ardit, M.; Bresciani, P.; Sarandrea, L.; Cruciani, G. Process optimization and characterization of dolomitic hydrated limes with high BET specific surface area for ”green” applications. In Proceedings of the SGI-SIMP-2022, Torino, Italy, 19–21 September 2022. [Google Scholar]
- Manocha, S.; Ponchon, F. Management of Lime in Steel. Metals 2018, 8, 686. [Google Scholar] [CrossRef]
- Conradt, R., II. 24—The industrial glass-melting process. In The SGTE Casebook, 2nd ed.; Series in Metals and Surface Engineering; Woodhead Publishing: Sawston, UK, 2008; pp. 282–303. [Google Scholar] [CrossRef]
- Lesueur, D. Impact of quicklime reactivity and origin on Autoclaved Aerated Concrete production. Cem. Wapno Beton 2011, 2011, 16–21. [Google Scholar]
- Sadik, C.; Moudden, O.; El BouariIz, A.; El Amrani, I. Review on the elaboration and characterization of ceramics refractories based on magnesite and dolomite. J. Asian Ceram. Soc. 2016, 4, 219–233. [Google Scholar] [CrossRef]
- Al-Bashaireh, K. Ancient white marble trade and its provenance determination. J. Archaeol. Sci. Rep. 2021, 35, 102777. [Google Scholar] [CrossRef]
- Antonelli, F.; Lazzarini, L. An updated petrographic and isotopic reference database for white marbles used in Antiquity. Rend. Fis. Acc. Lincei 2015, 26, 399–413. [Google Scholar] [CrossRef]
- Lazzarini, L. Archaeometric aspects of white and coloured marbles used in antiquity: The state of the art. Period. Mineral. 2004, 73, 113–125. [Google Scholar]
- Vola, G.; Ardit, M.; Frijia, G.; Cavallo, A.; Natali, C.; Mion, C.B.; Lugli, F.; Primavori, P. Characterization and provenance of historical-contemporaneous marbles from Waldensian valleys of Piedmont (Dora-Maira Massif, Cottian Alps, Italy). J. Archaeol. Sci. Rep. 2022, 45, 103562. [Google Scholar] [CrossRef]
- African Geological Surveys. Feuille N° 3: Carte Geologique de l’Afrique; ASGA-UNESCO: Paris, France, 1963. [Google Scholar]
- Munsell Color Co. Munsell Rock Color Book with Genuine Munsell® Color Chips; Munsell COLOR: Grand Rapids, MI, USA, 2009. [Google Scholar]
- Flügel, E. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application; Springer: Berlin/Heidelberg, Germany, 2010; p. 984. [Google Scholar]
- Tucker, M.; Wright, W. Carbonate Sedimentology; Blackwell Science: Oxford, UK, 1990. [Google Scholar]
- Scholle, P.; Ulmer-Scholle, D. Color Guide to the Petrography of Carbonate Rocks: Grains, Textures, Porosity, Diagenesis; AAPG Mem: Tulsa, OK, USA, 2003; Volume 77. [Google Scholar]
- Dunham, R. Classification of Carbonate Rocks According to Depositional Texture; AAPG Mem: Tulsa, OK, USA, 1962; Volume 1, pp. 108–121. [Google Scholar]
- Embry, A.; Klovan, J. A Late Devonian reef tract on Northeastern Banks Island. Bull. Can. Petrol Geol. 1971, 19, 730–781. [Google Scholar]
- Wright, V. A revised classification of limestones. Sediment. Geol. 1992, 76, 177–185. [Google Scholar] [CrossRef]
- Friedman, G. Terminology of recrystallization textures and fabrics in sedimentary rocks. J. Sed. Petrol 1965, 35, 643–655. [Google Scholar]
- Sibley, D.; Gregg, J. Classification of dolomite rock textures. J. Sed. Res. 1987, 57, 967–975. [Google Scholar]
- UNI EN 459-1; Building Lime. Part 1: Definitions, Specifications and Conformity Criteria. European Committee for Standardization: Brussels, Belgium, 2015. Available online: https://standards.iteh.ai/catalog/standards/cen/588081bb-ff4e-4421-997c-2d7dcab1b6ac/en-459-1-2015 (accessed on 25 January 2023).
- Friedman, G. Identification of carbonate minerals by staining methods. J. Sediment. Petrol. 1959, 29, 87–97. [Google Scholar]
- Rigaku. Quantitative Analysis of Dolomite and Limestone by Pressed Powder Method with Supermini 200; Rigaku Application note XRF 1058; Rigaku: Tokyo, Japan, 2015; p. 4. Available online: https://www.rigaku.com/newsletters/mabu/sept2018/app.note_xrf.pdf (accessed on 25 January 2023).
- Moore, D.; Reynolds, R.J. X-ray Diffraction and the Identification and Analysis of Clay Minerals. Clays Clay Miner. 1997, 38, 448. [Google Scholar]
- Cook, R. A comparison of methods for the extraction of smectites from calcareous rocks by acid dissolution techniques. Clay Miner. 1992, 27, 73–80. [Google Scholar] [CrossRef]
- Bish, D.; Howard, S. Quantitative phase analysis using the Rietveld method. J. Appl. Cryst. 1988, 21, 86–91. [Google Scholar] [CrossRef]
- Young, R. The Rietveld Method. IUCr, Monograph on Crystallography; Oxford University Press: Oxford, UK, 1993; p. 298. [Google Scholar]
- Lugli, F.; Cipriani, A.; Peretto, C.; Mazzucchelli, M.; Brunelli, D. In situ high spatial resolution 87Sr/86Sr ratio determination of two Middle Pleistocene (ca 580 ka) Stephanorhinus hundsheimensis teeth by LA–MC–ICP–MS. Int. J. Mass Spectrom. 2017, 412, 38–48. [Google Scholar] [CrossRef]
- McArthur, J.; Howarth, R.; Bailey, T. Strontium Isotope Stratigraphy: Lowess version 3: Best fit to the marine Sr-isotope curve for 0–509 Ma and accompanying look-up table for deriving numerical age. J. Geol. 2001, 109, 155–170. [Google Scholar] [CrossRef]
- Zethof, J.; Leue, M.; Vogel, C.; Stoner, S.; Kalbitz, K. Identifying and quantifying geogenic organic carbon in soils—The case of graphite. Soil 2019, 5, 383–398. [Google Scholar] [CrossRef]
- Natali, C.; Bianchini, G.; Carlino, P. Thermal stability of soil carbon pools: Inferences on soil nature and evolution. Thermochim. Acta 2019, 683, 178478. [Google Scholar] [CrossRef]
- UNI EN 459-2; Building Lime—Part 2: Test Methods. European Committee for Standardization: Brussels, Belgium, 2021. Available online: https://standards.iteh.ai/catalog/standards/cen/7e034aed-a672-467a-8b6c-53c5d4f79a72/en-459-2-2010 (accessed on 25 January 2023).
- Craig, H. Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim. Cosmochim. Acta 1957, 12, 133–149. [Google Scholar] [CrossRef]
- Alaabed, S.; Soltan, M.; Abdelghany, O.; Amin, B.; Tokhi, M.; Khaleel, A.; Musalim, A. United Arab Emirates limestones: Impact of petrography on thermal behaviour. Mineral. Petrol. 2014, 108, 837–852. [Google Scholar] [CrossRef]
- Attanasio, D.; Brilli, M.; Ogle, N. The Isotopic Signature of Classical Marbles; L’Erma di Bretschneider: Rome, Italy, 2006; p. 297. [Google Scholar]
- Romanelli, M.; Buccianti, A.; Di Benedetto, F.; Bellucci, L.; Cemicky, S. An innovative electron paramagnetic resonance and statistical analysis approach to investigate the geographical origin of multi-layered samples from a Renaissance painting. Microchem. J. 2022, 177, 107219. [Google Scholar] [CrossRef]
- Piligkos, S.; Laursen, I.; Morgenstjerne, A.; Weihe, H. Sign and magnitude of Spin Hamiltonian parameters for Mn2+ impurities in calcite. A multi- and low-frequency EPR study. Mol. Phys. 2007, 115, 2025–2050. [Google Scholar] [CrossRef]
- Vassilikou-Dova, A. EPR-determined site distributions of low concentrations of transition-metal ions in minerals: Review and predictions. Am. Miner. 1993, 78, 49–55. [Google Scholar]
- Shepherd, R.; Graham, W. EPR of Mn2+ in polycrystalline dolomite. J. Chem. Phys. 1984, 81, 6080–6084. [Google Scholar] [CrossRef]
- Reeder, R.; Markgraf, S. High-temperature crystal chemistry of dolomite. Am. Miner. 1986, 71, 795–804. [Google Scholar]
No. | Sample | Year | Type | Declared Provenance | Lithofacies | Primary Color | Subordinated Color |
---|---|---|---|---|---|---|---|
1 | HOS-1 | 2014 | Lmt | Mirzaei, Iran | Grain-supported texture | 10 YR 8/6—yellow | 5 YR—7/6 reddish yellow |
2 | HOS-2 | 2014 | Lmt | Baqiabad, Iran | Grain-supported texture | 10 YR 7/2—light gray | 10 YR 7/6 yellow |
3 | HOS-3 | 2014 | Lmt | Angoran, Iran | Grain-supported texture | 7.5 YR 6/6 reddish yellow | - |
4 | HOS-4 | 2014 | Lmt | Kashigari, Iran | Grain-supported texture | 10 YR 7/4—very pale brown | 10 YR 6/6 brownish yellow |
5 | HOS-5 | 2014 | Lmt | Dargaz, Iran | Mud-to grain-supported texture | 2.5 Y pale yellow | - |
6 | QSC-1 | 2014 | Lmt | Nd | Mud-supported texture | 10 YR 5/2 grayish brown | - |
7 | USI-1 | 2016 | Lmt | Nd | Grain-supported texture | 10 YR 8/1 white | 10 YR 7/6 yellow |
8 | USI-2 | 2019 | Lmt | Stevin Rock, UAE | Mud-supported texture | 10 YR 4/1 dark gray | 10 YR 4/2 dark grayish brown |
9 | USI-3 | 2019 | Lmt | Gulf Rock, UAE | Grain-supported texture | 2.5 Y 5/1 gray | 2.5 Y 5/2 grayish brown |
10 | USI-4 | 2019 | Lmt | UAE | Mud-supported texture | 10 YR 7/3 very pale brown | 10 YR 7/4 very pale brown |
11 | USI-5 | 2019 | Lmt | Iran | Mud-to grain-supported texture | 10 YR 7/3 very pale brown | 10 YR 7/4 very pale brown |
12 | USI-6 | 2020 | Lmt | Nd | Grain-supported texture | 10 YR 5/1 gray | 10 YR 4/1 dark gray |
13 | USI-7 | 2020 | Lmt | Nd | Grain-supported texture | 10 YR 7/1 light gray | 10 YR 4/1 dark gray |
14 | USI-8 | 2021 | Lmt | Jawhart, UAE | Grain-supported texture | 10 YR 5/1 gray | - |
15 | USI-9 | 2022 | Lmt | Stevin Rock, UAE | Mud-supported texture | 10 YR 4/1 dark gray | 10 YR 3/1 very dark gray |
16 | QSC-2 | 2014 | Dol | Nd | Breccia-like texture | GLEY 1 7/7 light gray | - |
17 | USI-10 | 2016 | Dol | Nd | Xeno-hypidiotopic mosaic | 2.5 Y 7/1 light gray | 2.5 Y 6/3 light yellowish brown |
18 | USI-11 | 2016 | Dol | Stevin Rock, UAE | Breccia-like texture | 2.5 Y 6/1 gray | 2.5 Y 5/2 grayish brown |
19 | USI-12 | 2019 | Dol | Bushehr, Iran | Hypidio- to porphyrotopic mosaic | 2.5 Y 6/4 light yellowish brown | 2.5 Y 5/3 light olive brown |
20 | USI-13 | 2020 | Dol | Nd | Mud-supported (dolomitic) | 2.5 Y 8/2 pale yellow | 2.5 Y 7/3 pale yellow |
21 | USI-14 | 2020 | Dol | Nd | Mud-supported (dolomitic) | 10 YR 8/1 white | 10 YR 7/2 light gray |
22 | USI-15 | 2020 | Dol | Nd | Hypidio- to porphyrotopic mosaic | 10 YR 7/3 very pale brown | 10 YR 5/2 grayish brown |
23 | USI-16 | 2020 | Dol | Nd | Hypidio- to porphyrotopic mosaic | 10 YR 6/2 light brownish gray | 10 YR 7/2 light gray |
Dolomite Content (wt%) | Time of Acetic Acid Treatment (h) |
---|---|
70–90 | 1.5 |
50–70 | 2.0 |
30–50 | 3.0 |
<30 | No further treatment |
Symbol Color | Blocks Weight (g) | ST Group | Guidelines for Plant Commissioning | |
---|---|---|---|---|
Recommended Size Fractions | Residua CO2 Guarantee (%) | |||
Completely melted | A | No fraction recommended | Material is rejected | |
Very-high (VH-ST: >20 g) | B | Coarse fraction warmly recommended + low lime mechanical degradation | No guarantee | |
High (H-ST: 18–20 g) | Coarse fraction warmly recommended | 5.0 | ||
Medium high (MH-ST: 16–18 g) | C | A coarse fraction to feed the kiln is recommended | 3.5 | |
Medium (M-ST: 14–16 g) | 2.5 | |||
Medium-Low (ML-ST: 12–14 g) | 2.0 | |||
Slight (S-ST: 10–12 g) | D | No specific requirements For raw materials | 1.0 | |
Low (L-ST: <10 g) | 1.0 |
(a) | |||||||
---|---|---|---|---|---|---|---|
No. | Code | Sample | Main Depositional Features | Textural Components | Fossiliferous Content | Diagenetic Features | Estimated Age |
1 | 1849 | HOS-1 | Peloidal-fossiliferous wackestone to poorly sorted packstone. Local accumulation of bioclasts (microfacies-1) | Dark micritic matrix enriched with organic carbon, goethite, and clay minerals, mostly illite | Large sub mm-sized benthic forams, i.e., Orbitolites sp., Penarchaias glynnjonesi sp. (Henson, 1950), Miliolids, Nummulites, plus bivalvia, bryozoan, echinoids, and crinoids | Several moldic porosities were filled in by microsparite and some veins were filled in by neomorphic mosaic of calcite cement | Eocene (Lutetian-Bartonian) |
2 | 1850 | HOS-2 | Extremely porous, sporadically impure, peloidal-ooidal, and fossiliferous poorly sorted packstone (microfacies-1) | Oolithic-peloidal grainstone passing to a Nummulitic grainstone. Vuggy pores filled in by fibrous calcedony. Terrigenous quartz and feldspars extra-basinal grains plus some clay, mostly illite | Large sub mm-sized benthic forams, i.e., Nummulites, and Miliolidae | Early diagenetic dolomitization and fibrous calcedony fillings in vacuole and dissolution porosities | Eocene (Ypresian-Lutetian) |
3 | 1851 | HOS-3 | Quite porous fossiliferous poorly sorted packstone with sporadic benthic foraminifera (microfacies-1) | Dark micritic matrix enriched with organic carbon, iron oxide-hydroxides, and clay minerals, mostly illite and chlorite | Large sub mm-sized forams, i.e., Orbitolites, Nummulites, Neorhipidionina williamsoni, Henson, 1948, Peneroplis flabelliformis Sirel & Özgen-Erdem in Sirel, Özgen-Erdem & Kangal, 2013, plus bivalvia, gastropods, bryozoa, echinoids and rare algae | Several vuggy porosities were filled in by microsparite, and some veins were filled in by neomorphic early diagenetic calcite cement. | Eocene (Bartonian-Priabonian) |
4 | 1852 | HOS-4 | Quite porous poorly sorted packstone to grainstone with large mm-sized benthic foraminifera (microfacies-1) | Dark micritic matrix enriched of organic carbon and clay minerals, mostly illite, smectite, and palygorskite | Benthic forams, i.e., Operculina, Amphistegina, plus scleractinian corals, echinoids, bryozoan, brachiopods, and oyster fragments | Moldic porosity filled in by neomorphic calcite cement. Early diagenetic dolomitization | Oligocene/ Miocene |
5 | 1853 | HOS-5 | Porous fossiliferous wackestone to poorly sorted packstone with sporadic benthic forams (microfacies-2) | Dark micritic matrix enriched of organic carbon, quartz, feldspars, and clay minerals, mostly illite and smectite | Benthic forams, i.e., Nezzazzata sp?, Edomia reicheli, Multispira sp.?, plus gastropods, bivalve, red algae, and bryozoan fragments | Vuggy cavities and moldic porosity are filled in by early diagenetic sparry calcite. Early diagenetic dolomitization | Upper Cretaceous (Late Cenomanian) |
6 | 1880 | QSC-1 | Fossiliferous wackestone passing to poorly sorted packstone with benthic faunas, coated grains and peloids. (microfacies-3) | Dark micritic matrix enriched of organic carbon with quartz and clay mineral, mostly illite. Anoxic depositional conditions because the presence of pyrite within the insoluble residue. | Large sub mm-sized benthic forams, i.e., Palorbitolina sp., Salpingoporella dinarica, plus echinoids, crinoids, and brachiopods | Moldic porosity filled in by mosaic early diagenetic microsparite and/or mosaic calcite cement. | Lower Cretaceous (early Aptian) |
7 | 2306 | USI-1 | Porous and fossiliferous poorly sorted packstone with large benthic forams (microfacies-1) | Dark micritic matrix enriched of organic carbon and clay minerals, i.e., mostly illite and smectite, plus quartz and goethite | Large sub mm-sized benthic forams, i.e., Neorhipidionina williamsoni, Henson, 1948, Coskinolina perpera Hottinger & Drobne, Omanodiscus teniussimus, plus red algae, and brachiopods | Moldic porosity partially filled in by mosaic early diagenetic sparry-calcite cement | Eocene, Lutetian-Priabonian |
8 | 3109 | USI-2 | Fossiliferous wackestone passing to poorly sorted packstone with large mm-sized benthic fauna (microfacies-3) | Dark micritic matrix enriched with organic carbon, illite, goethite, and quartz | Large mm-sized brachiopods, benthic forams, i.e., Palorbitolinoides sp., plus bivalvia, echinos, and gastropods | Sub mm-sized moldic and bioclastic porosity filled in by early diagenetic mosaic sparry-calcite. Sporadic stylolite joints. | Lower Cretaceous (upper Barremian- lower Aptian) |
9 | 3110 | USI-3 | Ooidal-peloidal grainstone with benthic forams, lumps, and coated grains (microfacies-4) | Very thin ooids are very well selected from the granulometric point of view | Benthic Miliolid forams, i.e., Vidalina radoicicae sp., and echinoids | Early diagenetic sparry-calcite cement | Upper Cretaceous (middle/late Cenomanian?) |
10 | 3127 | USI-4 | Fossiliferous wackestone with benthic forams, thin shell fragments and tiny bioclasts (microfacies-3) | Dark micritic matrix enriched with organic matter | Large sub mm-sized benthic forams, i.e., Palorbitolina lenticularis, plus echinoids, gastropods, thin shells, and tiny bioclasts | Early diagenetic sparry-calcite cement in some veins and sporadic moldic porosity | Lower Cretaceous (Aptian) |
11 | 3210 | USI-5 | Fossiliferous wackestone to poorly sorted packstone (microfacies-2) | Dark micritic matrix enriched with organic matter | Both pelagic and benthonic fauna, i.e., calpionella, Trocholina sp., Miliolids, plus brachiopods, echinoids, and mm-sized bivalvia | Sporadic moldic porosity filled in by early diagenetic calcite cement. | Early-’mid’-Cretaceous |
12 | 3222 | USI-6 | Peloidal and fossiliferous poorly sorted packstone to grainstone with large benthic microfossils and lumps (microfacies-4) | Very thin peloidal grains are very well selected from the granulometric point of view | Forams, i.e., Bispiraloconulus sp., echinos, and bivalvia | Some veins are filled in by neomorphic calcite cement. Sporadic chert replacements of calcite cement within some peloidal porosity | Lower Cretaceous (Berrasian/ Valanginian) |
13 | 3352 | USI-7 | Peloidal and fossiliferous poorly sorted packstone to grainstone with large benthic fauna and lumps (microfacies-4) | Very thin peloidal grains are very well selected from the granulometric point of view. | Large mm-sized benthic fauna, including bryozoa, echinoids, and bivalvia, plus Cyanobacteria nodule (cayeuxa like)? | Some erosional surfaces with dissolution and early diagenetic microcrystalline chert replacements. Veins with early diagenetic calcite cement. | Lower Cretaceous? |
14 | 3581 | USI-8 | Peloidal and fossiliferous grainstone with sporadic microfauna content (microfacies-4) | Ooids and peloids of two different sizes appear to be well-selected from the granulometric point of view. | Large mm-sized red algae, echinoids, and small forams | Dolomititic rock fragments with hydiotopic to hypidiotopic texture probably due to a contamination with another raw material | ? |
15 | 3714 | USI-9 | Fossiliferous wackestone with mm-sized benthic forams (microfacies-3) | Dark micritic matrix enriched with organic matter | Large benthic forams, i.e., Orbitolina, Palorbitolinoides, other pelagic forams, plus brachiopods, echinos, and gastropods | Organic carbon concentrated along stylolithes. Some veins are filled in by early diagenetic calcite cement. | Lower Cretaceous (Aptian) |
(b) | |||||||
No. | Code | Sample | Main components | Depositional texture | Diagenetic features | Cathodoluminescence (CLM) | |
16 | 1882 | QSC-2 | Breccia-like texture composed of non-planar xenotopic to planar euhedral idiotopic mosaic of brownish zoned dolomite crystals (microfacies-5) | Probably ghostly peloidal texture with rare sub mm-sized plates of echinoids | Very fractured portions presenting large porosity filled in by zoned rhombohedral brownish mosaic of dolomite crystals. Subordinately, layered non-planar xenotopic mosaic. Organic carbon soaks fractures and interstitial matrix. | Mostly dull red luminescent matrix with bright red insoluble residue along seams and occasional bright spots of calcite. Dull red to non-luminescent, sometimes zoned, or brecciated, large saddle dolomite crystals, replacing brighter luminescent microcrystalline dolomite. Sporadic vuggy filling with thicker dull zoned and brighter rims. Last generation of cements with greenish rims maybe indicating high Sr content | |
17 | 2309 | USI-10 | Planar subhedral mosaic of brownish dolomite crystals with sporadic intercrystalline porosity (microfacies-7) | Not present | Packed mosaic of xenotopic dolomite crystals with lobate boundary shape alternates with mosaic of loosely packed idiotopic-hypidiotopic crystals with amoeboid boundary shape and high moldic intercrystalline porosity. | Non-luminescent saddle dolomite accompanied by bright luminescent insoluble residue. occasional bright luminescent overgrowths on larger dolomite crystals. Additionally, the vuggy filled dolomite cement appears dull luminescent, while the overgrowths exhibit bright luminescence. | |
18 | 3108 | USI-11 | Breccia-like texture composed of planar euhedral idiotopic mosaic of brownish zoned dolomite crystals, fractures, and isolated portions of parental rock, i.e., ghostly peloidal and fossiliferous limestone (microfacies-5) | Ghosts of peloidal and fossiliferous packstone with bivalvia and probably echinoid plates fragments | A breccia-like rock is dominant with non-planar hydiotopic zoned crystals of dolomite. Subordinated xenotopic-to-hypidiotopic mosaics are also present, characterized by dark fine-grained micritic inclusions. Sporadic chert replacements along secondary porosity. | Dull to bright red luminescent matrix, with possible calcite remains, microcrystalline dolomite, and two generations of pore-filling dolomite. Dull red luminescence and brighter rims indicating zoned saddle dolomite crystals. | |
19 | 3228 | USI-12 | Packed mosaic of hypidiotopic equigranular zoned dolomite crystals with lobate boundary shape (microfacies-8) | Ghosts of peloidal and fossiliferous packstone-to-grainstone | Porphyrotopic dolomite mosaic rock with sub-euhedral and zoned dolomite crystals dispersed in a fine-grained matrix. Equigranular fine-grained mosaic of subhedral dolomite crystals. Zoned subhedral inequigranular dolomite crystals with large secondary calcite cement fillings. Sporadic chert replacements along secondary porosity. | Interlocking dolomite mosaic characterized by crystals with cloudy centers and clear overgrowths. The centers of the crystals are non-luminescent, while the overgrowths display a bright red luminescence. The presence of patches of orange luminescence in the matrix suggests the possible presence of residual calcite. Additionally, smaller idiomorphic dolomite crystals are incorporated within larger saddle dolomite crystals. Some saddle dolomite crystals show signs of corrosion and/or micro brecciation. | |
20 | 3238 | USI-13 | Porous peloidal and fossiliferous dolomitic wackestone (microfacies-6) | Dark microcrystalline matrix is dominant. Presence of benthic forams, gastropods, and bivalve microfossils | This sample is a primary dolostone. No diagenetic dolomite replacements. | Dominant dull red luminescent matrix and dull to bright orange clasts | |
21 | 3239 | USI-14 | Porous peloidal and fossiliferous dolomitic wackestone (microfacies-6) | Dark microcrystalline matrix is dominant. Presence of benthic forams, gastropods, and bivalve microfossils | This sample is a primary dolostone. No diagenetic dolomite replacements. | Dominant dull red luminescent to bright orange biotic and abiotic clasts | |
22 | 3353 | USI-15 | Equigranular mosaic of brownish rhombohedral dolomite crystals, presenting ghost traces of the parental limestone texture (microfacies-8) | Ghosts of peloidal and fossiliferous packstone-to-grainstone. sporadic grains of a fossiliferous wackestone probably coming from the contamination from another raw material | Equigranular to non-equigranular mosaic of rhombohedral brownish crystals of dolomite. Irregular and diffused areas of very fine crystals in a coarse mosaic groundmass. | Bright red dolomite matrix with larger dolomite crystals exhibiting variations in luminescence and the presence of dark spots, possibly quartz or anhydrite grains. Sometimes brecciated fabric is observed, featuring a bright red luminescent matrix composed of microcrystalline dolomite and insoluble residue. The larger dolomite crystals and intraclasts show a range of luminescence, with brighter rims or overgrowths. Additionally, there is bright luminescent dolomite cement present in vugs and molds | |
23 | 3387 | USI-16 | Equigranular mosaic of fine-to-medium grained brownish dolomite crystals (microfacies-8) | Not present | Hydiotopic-to-hypidiotopic mosaic of dolomite crystals. Sporadic large porosity filled in by brownish and zoned saddle dolomite crystals. | Idiomorphic equigranular dolomite crystals. The crystals have cloudy centers and clear rims. Pore linings are characterized by bright red luminescent cements, primarily as overgrowths from the dolomite crystals. Additionally, there may be a presence of bright luminescent insoluble residue. |
No. | Sample | LOI | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | Na2O | K2O | MnO | SrO | P2O5 | TiO2 | Cl- | SUM | IR |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
wt% | wt% | wt% | wt% | wt% | wt% | wt% | wt% | wt% | wt% | wt% | wt% | wt% | wt% | wt% | wt% | ||
1 | HOS-1 | 43.89 | 0.17 | 0.06 | 0.08 | 55.11 | 0.45 | 0.03 | 0.02 | 0.12 | 0.01 | 0.03 | 0.01 | 0.03 | <0.01 | 100.0 | 0.40 |
2 | HOS-2 | 41.97 | 1.78 | 0.28 | 0.28 | 50.97 | 2.17 | 0.74 | 0.16 | 0.09 | 0.01 | 1.44 | 0.02 | 0.02 | 0.08 | 100.0 | 3.02 |
3 | HOS-3 | 43.82 | 0.28 | 0.10 | 0.14 | 55.11 | 0.34 | 0.04 | 0.01 | 0.12 | 0.01 | 0.03 | <0.01 | 0.03 | <0.01 | 100.0 | 0.46 |
4 | HOS-4 | 43.22 | 1.19 | 0.34 | 0.33 | 52.11 | 2.55 | 0.07 | 0.01 | 0.01 | 0.01 | 0.08 | 0.01 | 0.07 | 0.01 | 100.1 | 2.49 |
5 | HOS-5 | 43.48 | 1.33 | 0.39 | 0.21 | 52.43 | 1.72 | 0.10 | 0.07 | 0.16 | 0.01 | 0.06 | 0.01 | 0.03 | <0.01 | 100.0 | 2.55 |
6 | QSC-1 | 44.11 | 0.19 | 0.04 | 0.05 | 54.75 | 0.44 | 0.06 | 0.06 | 0.12 | 0.00 | 0.03 | 0.01 | 0.02 | <0.01 | 99.9 | 0.34 |
7 | USI-1 | 43.94 | 0.21 | 0.04 | 0.05 | 54.33 | 0.84 | 0.49 | <0.01 | 0.03 | 0.01 | 0.03 | 0.03 | <0.01 | <0.01 | 100.0 | 0.61 |
8 | USI-2 | 43.70 | 0.52 | 0.22 | 0.16 | 54.13 | 1.09 | 0.04 | <0.01 | 0.08 | 0.00 | 0.03 | 0.01 | 0.03 | <0.01 | 100.0 | 1.11 |
9 | USI-3 | 43.86 | 0.07 | 0.08 | 0.06 | 55.12 | 0.68 | 0.07 | 0.00 | 0.02 | 0.00 | 0.03 | 0.01 | 0.00 | 0.01 | 100.0 | 0.48 |
10 | USI-4 | 43.03 | 0.45 | 0.08 | 0.03 | 55.76 | 0.49 | 0.06 | 0.01 | 0.03 | 0.01 | 0.03 | 0.02 | 0.01 | 0.01 | 100.0 | 2.44 |
11 | USI-5 | 44.03 | 0.06 | 0.05 | 0.04 | 55.15 | 0.46 | 0.05 | 0.03 | 0.02 | 0.01 | 0.01 | 0.01 | 0.00 | 0.10 | 100.0 | 0.15 |
12 | USI-6 | 43.98 | 0.35 | 0.11 | 0.11 | 54.62 | 0.64 | 0.07 | 0.01 | 0.04 | 0.01 | 0.03 | 0.02 | 0.01 | 0.01 | 100.0 | 0.72 |
13 | USI-7 | 43.61 | 0.42 | 0.07 | 0.04 | 55.08 | 0.44 | 0.05 | 0.01 | 0.13 | <0.01 | 0.02 | 0.03 | 0.01 | <0.01 | 99.9 | 0.62 |
14 | USI-8 | 44.10 | 0.24 | 0.13 | 0.11 | 51.86 | 3.40 | 0.04 | <0.01 | 0.04 | <0.01 | 0.03 | 0.04 | <0.01 | 0.02 | 100.0 | 0.42 |
15 | USI-9 | 43.69 | 0.18 | 0.07 | 0.05 | 55.41 | 0.48 | 0.04 | 0.01 | 0.03 | <0.01 | 0.03 | 0.01 | 0.01 | 0.01 | 100.0 | 0.38 |
16 | QSC-2 | 46.86 | 1.59 | 0.03 | 0.06 | 30.60 | 20.40 | 0.01 | 0.04 | 0.13 | 0.01 | 0.01 | 0.05 | 0.01 | 0.01 | 99.8 | 0.87 |
17 | USI-10 | 47.64 | 0.20 | 0.07 | 0.12 | 30.58 | 21.05 | 0.19 | <0.01 | 0.03 | 0.01 | 0.01 | 0.02 | 0.01 | 0.02 | 99.9 | 0.33 |
18 | USI-11 | 46.70 | 0.29 | 0.01 | 0.03 | 32.59 | 20.24 | 0.03 | 0.02 | 0.03 | 0.01 | 0.02 | 0.03 | <0.01 | 0.01 | 100.0 | 0.48 |
19 | USI-12 | 47.72 | 0.27 | 0.06 | 0.11 | 31.23 | 20.25 | 0.11 | 0.12 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.08 | 100.0 | 0.45 |
20 | USI-13 | 47.31 | 0.77 | 0.11 | 0.14 | 29.59 | 21.79 | 0.10 | 0.13 | 0.03 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 100.0 | 0.66 |
21 | USI-14 | 47.75 | 0.65 | 0.10 | 0.09 | 29.51 | 21.58 | 0.09 | 0.09 | 0.02 | 0.01 | 0.08 | <0.01 | 0.01 | 0.01 | 100.0 | 0.79 |
22 | USI-15 | 45.95 | 0.58 | 0.12 | 0.08 | 36.96 | 15.79 | 0.40 | 0.08 | 0.01 | <0.01 | 0.02 | 0.01 | 0.01 | <0.01 | 100.0 | 0.88 |
23 | USI-16 | 47.32 | 0.20 | 0.08 | 0.07 | 32.29 | 19.86 | 0.01 | 0.04 | 0.11 | 0.01 | 0.01 | <0.01 | <0.01 | <0.01 | 100.0 | 0.36 |
(a) | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No. | Sample | Cal | Dol | Qtz | Mic | Sme | Kln | Chl | Ant | Plg | Kfs | Pl | Ep | Amp | Gt | Hem | Py | Gp | Cel | Rt | Fl |
wt% | wt% | wt% | wt% | wt% | wt% | wt% | wt% | wt% | wt% | wt% | wt% | wt% | wt% | wt% | wt% | wt% | wt% | wt% | wt% | ||
1 | HOS-1 | 99.6 | Tr | 0.2 | Tr | Tr | Tr | 0.1 | Tr | ||||||||||||
2 | HOS-2 | 86.4 | 10.4 | 0.6 | 0.9 | 0.1 | Tr | Tr | 0.2 | 0.2 | 1.1 | ||||||||||
3 | HOS-3 | 99.5 | Tr | Tr | 0.2 | Tr | Tr | Tr | Tr | Tr | 0.1 | 0.1 | Tr | ||||||||
4 | HOS-4 | 85.4 | 12.1 | 0.5 | 0.8 | 0.4 | Tr | 0.2 | 0.1 | 0.3 | 0.1 | 0.1 | |||||||||
5 | HOS-5 | 90.0 | 7.5 | 0.4 | 0.9 | Tr | 0.1 | Tr | 0.8 | Tr | Tr | 0.1 | 0.2 | Tr | |||||||
6 | QSC-1 | 99.7 | 0.2 | 0.1 | Tr | Tr | Tr | Tr | Tr | Tr | |||||||||||
7 | USI-1 | 96.4 | 3.0 | 0.1 | 0.3 | 0.1 | Tr | Tr | 0.1 | Tr | |||||||||||
8 | USI-2 | 98.9 | 0.1 | 0.8 | 0.1 | 0.1 | |||||||||||||||
9 | USI-3 | 99.5 | 0.2 | 0.2 | Tr | Tr | 0.1 | ||||||||||||||
10 | USI-4 | 97.6 | 0.5 | 0.2 | 1.7 | ||||||||||||||||
11 | USI-5 | 99.8 | Tr | 0.1 | Tr | Tr | Tr | Tr | Tr | Tr | Tr | ||||||||||
12 | USI-6 | 99.3 | 0.2 | 0.5 | Tr | Tr | Tr | Tr | |||||||||||||
13 | USI-7 | 99.4 | 0.3 | 0.2 | Tr | Tr | Tr | Tr | |||||||||||||
14 | USI-8 | 84.0 | 15.6 | 0.1 | 0.1 | 0.1 | Tr | 0.1 | |||||||||||||
15 | USI-9 | 99.4 | 0.2 | 0.2 | 0.2 | Tr | Tr | Tr | |||||||||||||
16 | QSC-2 | 3.4 | 95.7 | 0.8 | Tr | Tr | |||||||||||||||
17 | USI-10 | 3.7 | 96.1 | Tr | 0.1 | Tr | Tr | Tr | Tr | Tr | |||||||||||
18 | USI-11 | 6.9 | 92.6 | 0.5 | |||||||||||||||||
19 | USI-12 | 6.3 | 93.3 | 0.2 | 0.1 | 0.1 | Tr | Tr | Tr | Tr | |||||||||||
20 | USI-13 | 99.3 | 0.2 | 0.3 | 0.2 | Tr | Tr | Tr | |||||||||||||
21 | USI-14 | 99.2 | 0.2 | 0.1 | 0.2 | 0.1 | 0.1 | Tr | |||||||||||||
22 | USI-15 | 27.2 | 72.0 | 0.4 | 0.1 | Tr | Tr | Tr | 0.3 | Tr | Tr | ||||||||||
23 | USI-16 | 9.3 | 90.4 | 0.1 | 0.2 | Tr | Tr | Tr | Tr | Tr | Tr | Tr | |||||||||
(b) | |||||||||||||||||||||
No. | Sample | IR | Qtz | Mic | Sme | Kln | Chl | Ant | Plg | Kfs | Pl | Ep | Amp | Gt | Hem | Py | Cel | Rt | Fl | ||
wt% | wt% | wt% | wt% | wt% | wt% | wt% | wt% | wt% | wt% | wt% | wt% | wt% | wt% | wt% | wt% | wt% | wt% | ||||
1 | HOS-1 | 0.40 | 0.8 | 56.0 | 7.0 | 6.7 | 2.4 | 21.7 | 4.4 | 1.0 | |||||||||||
2 | HOS-2 | 3.02 | 19.4 | 31.5 | 3.0 | 1.4 | 0.5 | 7.1 | 37.2 | ||||||||||||
3 | HOS-3 | 0.46 | 1.6 | 36.0 | 1.5 | 5.9 | 4.4 | 10.7 | 1.0 | 12.7 | 20.2 | 6.0 | |||||||||
4 | HOS-4 | 2.49 | 20.1 | 32.3 | 16.9 | 1.4 | 6.4 | 2.2 | 13.7 | 4.6 | 2.5 | ||||||||||
5 | HOS-5 | 2.55 | 15.9 | 36.9 | 1.4 | 4.2 | 1.7 | 29.8 | 0.4 | 2.0 | 6.0 | 1.7 | |||||||||
6 | QSC-1 | 0.34 | 45.4 | 42.0 | 2.6 | 0.2 | 1.9 | 4.2 | 0.6 | 3.2 | |||||||||||
7 | USI-1 | 0.61 | 10.7 | 45.2 | 17.3 | 1.7 | 4.0 | 13.3 | 7.8 | ||||||||||||
8 | USI-2 | 1.11 | 11.6 | 72.5 | 5.1 | 10.8 | |||||||||||||||
9 | USI-3 | 0.48 | 38.6 | 43.2 | 6.4 | 0.4 | 11.4 | ||||||||||||||
10 | USI-4 | 2.44 | 21.6 | 7.5 | 70.9 | ||||||||||||||||
11 | USI-5 | 0.15 | 8.6 | 38.4 | 1.0 | 3.7 | 1.2 | 25.6 | 15.7 | 1.0 | 4.7 | ||||||||||
12 | USI-6 | 0.72 | 24.7 | 66.7 | 0.7 | 0.7 | 6.3 | 0.9 | |||||||||||||
13 | USI-7 | 0.62 | 50.5 | 35.5 | 4.6 | 1.3 | 1.8 | 6.4 | |||||||||||||
14 | USI-8 | 0.42 | 23.2 | 18.4 | 27.8 | 3.6 | 27.0 | ||||||||||||||
15 | USI-9 | 0.38 | 40.0 | 46.5 | 10.0 | 1.5 | 2.0 | ||||||||||||||
16 | QSC-2 | 0.87 | 95.2 | 3.9 | 0.9 | ||||||||||||||||
17 | USI-10 | 0.33 | 18.5 | 32.0 | 12.9 | 4.7 | 11.0 | 20.2 | 0.7 | ||||||||||||
18 | USI-11 | 0.48 | 100.0 | ||||||||||||||||||
19 | USI-12 | 0.45 | 42.2 | 27.3 | 11.7 | 8.6 | 0.6 | 8.7 | 0.9 | ||||||||||||
20 | USI-13 | 0.66 | 25.8 | 38.9 | 28.4 | 4.5 | 1.6 | 0.9 | |||||||||||||
21 | USI-14 | 0.79 | 30.9 | 14.1 | 1.0 | 28.9 | 6.7 | 17.0 | 1.5 | ||||||||||||
22 | USI-15 | 0.88 | 45.7 | 11.1 | 0.2 | 0.7 | 4.2 | 33.8 | 2.4 | 1.8 | |||||||||||
23 | USI-16 | 0.36 | 20.0 | 52.7 | 2.0 | 8.2 | 0.5 | 6.3 | 2.6 | 5.6 | 2.0 |
No. | Sample | Type | Bulk/Acd | Declared Provenance | Real Provenance | δ1⁸O (VPDB) | δ13C (VPDB) | Std Corrected. 87Sr/86Sr |
---|---|---|---|---|---|---|---|---|
1 | HOS-1 | Lmt | bulk | Mirzaei, Iran | Iran | −6.14 | 1.48 | 0.707894 |
2-a | HOS-2a | Lmt | bulk | Baqiabad, Iran | Baqiabad, Iran | −2.83 | 0.46 | 0.707953 |
2-b | HOS-2b | Dol | Acd | Baqiabad, Iran | Baqiabad, Iran | −2.64 | 0.61 | Nd |
3 | HOS-3 | Lmt | bulk | Angoran, Iran | Angoran, Iran | −6.28 | 1.72 | 0.707902 |
4-a | HOS-4a | Lmt | bulk | Kashigari, Iran | Iran | −2.89 | 0.63 | 0.708854 |
4-b | HOS-4b | Dol | Acd | Kashigari, Iran | Iran | −2.64 | 0.55 | Nd |
5-a | HOS-5a | Lmt | bulk | Dargaz, Iran | Dargaz, Iran | −5.13 | 0.49 | 0.708816 |
5-b | HOS-5b | Dol | Acd | Dargaz, Iran | Dargaz, Iran | −5.63 | 0.48 | Nd |
6 | QSC-1 | Lmt | bulk | Nd | Stevin Rock, UAE | −4.33 | 2.80 | 0.708174 |
7 | USI-1 | Lmt | bulk | Nd | Unknown site no. 1 | −5.52 | −3.45 | 0.707834 |
8 | USI-2 | Lmt | bulk | Stevin Rock, UAE | Stevin Rock, UAE | −3.90 | 2.72 | 0.708252 |
9 | USI-3 | Lmt | bulk | Gulf Rock, UAE | Gulf Rock, UAE | −2.73 | 1.39 | 0.707616 |
10 | USI-4 | Lmt | bulk | Stevin Rock, UAE | Stevin Rock, UAE | −6.01 | 3.72 | 0.707862 |
11 | USI-5 | Lmt | bulk | Iran | Dargaz, Iran | −4.71 | −0.22 | 0.707490 |
12 | USI-6 | Lmt | bulk | Nd | Gulf Rock, UAE | −3.09 | 1.49 | 0.707704 |
13 | USI-7 | Lmt | bulk | Nd | Gulf Rock, UAE | −2.83 | 1.72 | 0.707712 |
14-a | USI-8a | Lmt | bulk | Jawhart, UAE | Jawhart, UAE | −3.06 | −0.27 | 0.707692 |
14-b | USI-8b | Dol | Acd | Jawhart, UAE | Jawhart, UAE | −3.09 | −0.71 | 0.707560 |
15 | USI-9 | Lmt | bulk | Stevin Rock, UAE | Stevin Rock, UAE | −3.53 | 2.97 | 0.708304 |
16 | QSC-2 | Dol | bulk | Nd | Stevin Rock, UAE | −2.47 | 3.48 | 0.708855 |
17 | USI-10 | Dol | bulk | Nd | Unknown site no. 2 | −8.73 | 3.87 | 0.707634 |
18 | USI-11 | Dol | bulk | Stevin Rock, UAE | Stevin Rock, UAE | −4.23 | 2.34 | Nd |
19 | USI-12 | Dol | bulk | Bushehr, Iran | Bushehr, Iran | −2.47 | −1.76 | 0.707791 |
20 | USI-13 | Dol | bulk | Nd | Unknown site no. 3 | −0.67 | −0.59 | 0.707774 |
21 | USI-14 | Dol | bulk | Nd | Unknown site no. 3 | −0.41 | −0.61 | 0.707757 |
22-a | USI-15a | Dol | bulk | Nd | Jawhart, UAE | −3.19 | −1.58 | 0.707893 |
22-b | USI-15b | Dol | Acd | Nd | Bushehr, Iran | −1.95 | −0.63 | 0.707702 |
23 | USI-16 | Dol | bulk | Nd | Bushehr, Iran | −2.89 | −3.10 | 0.707536 |
No. | Sample | Type | t60/t50 1050 °C | Tmax 1050 °C | TAST 1050 °C | t60/t50 1150 °C | Tmax 1150 °C | TAST 1150 °C | MD 10 mm | MD 19 mm | Drop Test | OBT Blocks Weight | Sticking Tendency |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
min | °C | min | min | °C | min | wt% | wt% | wt% | g | wt% | |||
1 | HOS-1 | Lmt | 0.8 | 81.8 | 3.0 | 2.8 | 72.5 | 7.0 | 7.0 | 8.1 | 40.0 | 17.8 | 42.4 |
2 | HOS-2 | Lmt | 4.9 | 67.4 | 8.5 | 15.8 | 61.5 | 14.5 | 18.2 | 19.7 | 51.3 | 11.5 | 27.4 |
3 | HOS-3 | Lmt | 0.5 | 81.4 | 2.5 | 1.9 | 75.8 | 6.0 | 8.8 | 10.8 | 38.4 | 16.7 | 39.8 |
4 | HOS-4 | Lmt | 2.1 | 74.5 | 5.5 | 6.2 | 68.9 | 10.5 | 34.9 | 38.9 | 60.2 | 11.8 | 28.1 |
5 | HOS-5 | Lmt | 2.8 | 73.7 | 7.0 | 10.0 | 68.8 | 14.0 | 20.1 | 20.1 | 17.8 | 12.9 | 30.7 |
6 | QCS-1 | Lmt | 0.6 | 78.3 | 3.0 | 2.9 | 71.6 | 6.5 | 11.2 | 17.3 | 29.9 | 17.0 | 40.5 |
7 | USI-1 | Lmt | 0.9 | 80.7 | 4.0 | 1.3 | 72.0 | 4.0 | 17.9 | 37.1 | 60.1 | 16.1 | 38.2 |
8 | USI-2 | Lmt | 0.4 | 80.3 | 2.5 | 2.7 | 72.4 | 7.0 | 8.1 | 17.3 | 27.7 | 13.5 | 32.2 |
9 | USI-3 | Lmt | 0.8 | 75.6 | 3.5 | 1.9 | 75.5 | 6.5 | 11.6 | 34.6 | 22.6 | 11.1 | 26.4 |
10 | USI-4 | Lmt | 0.7 | 76.1 | 3.0 | 1.9 | 75.1 | 5.0 | 26.7 | 21.5 | 36.7 | 10.3 | 24.5 |
11 | USI-5 | Lmt | 0.3 | 83.2 | 2.5 | Nd | Nd | Nd | 10.7 | 22.3 | 23.8 | 18.0 | 42.8 |
12 | USI-6 | Lmt | 1.4 | 74.6 | 5.0 | 2.5 | 73.6 | 6.0 | 23.0 | 32.3 | 44.9 | 19.2 | 45.7 |
13 | USI-7 | Lmt | 0.4 | 80.1 | 2.0 | 0.8 | 80.4 | 3.5 | 19.2 | 23.4 | 27.8 | 17.5 | 41.7 |
14 | USI-8 | Lmt | 0.3 | 79.7 | 2.5 | Nd | Nd | Nd | 15.3 | 32.0 | 26.6 | 16.7 | 39.7 |
15 | USI-9 | Lmt | 0.7 | 78.6 | 4.0 | 0.9 | 78.5 | 4.5 | 8.5 | 15.4 | 29.4 | 14.4 | 34.3 |
16 | QSC-2 | Dol | 0.4 | 57.9 | 1.5 | 0.4 | 56.8 | 1.5 | 10.9 | 23.5 | 36.1 | 6.0 | 15.3 |
17 | USI-10 | Dol | 0.4 | 62.2 | 1.5 | 0.4 | 57.5 | 3.0 | 17.7 | 57.2 | 56.1 | 9.9 | 25.2 |
18 | USI-11 | Dol | 0.4 | 58.5 | 1.5 | 0.4 | 70.0 | 1.5 | 25.2 | 37.3 | 49.7 | 2.8 | 7.0 |
19 | USI-12 | Dol | 8.8 | 54.2 | 9.0 | 12.7 | 53.5 | 1.5 | 27.6 | 27.6 | 77.4 | 13.0 | 33.2 |
20 | USI-13 | Dol | 3.0 | 53.3 | 4.5 | 3.3 | 54.7 | 5.5 | 67.0 | 77.4 | 39.0 | 14.2 | 36.3 |
21 | USI-14 | Dol | 3.9 | 51.9 | 4.5 | 24.2 | 51.7 | 16.0 | 57.9 | 59.1 | 24.4 | 13.6 | 34.6 |
22 | USI-15 | Dol | 0.7 | 65.6 | 3.0 | 11.0 | 53.0 | 10.5 | 38.7 | 41.2 | 59.7 | 10.4 | 26.5 |
23 | USI-16 | Dol | 3.6 | 54.1 | 5.5 | 5.0 | 54.7 | 7.0 | 28.4 | 31.6 | 47.5 | 12.4 | 31.7 |
Group | Lithofacies | Microfacies | Impurity Content | Reactivity at 1050 °C | Reactivity at 1150 °C | Overburning Tendency | Sample |
---|---|---|---|---|---|---|---|
1 | Grain-supported, hypidiotopic and breccia-like texture | Microfacies-1 Microfacies-2 Microfacies-4 Microfacies-5 | Low IR < 1.0 wt% | very high (t60 < 1 min) to high (t60 = 1–3 min) | high (t60 = 1–3 min) to medium-high (t60 = 3–4 min) | low gentle slope Figure 8 | HOS-1 HOS-3 USI-1 USI-3 USI-6 USI-7 QSC-2 USI-11 |
Mud-supported; and xenotopic texture | Microfacies-3 Microfacies-7 | QSC-1 (USI-2) USI-9 USI-10 | |||||
2 | Grain-supported, and hypidiotopic | Microfacies-1 Microfacies-8 | High IR > 1.0 wt% | high (t60 = 1–3 min) to medium-high (t60 = 3–4 min) | low (t60 > 6 min) to very low (t60 > 10 min) | high deep slope Figure 8 | HOS-2 HOS-4 (USI-15) |
Mud-supported | Microfacies-2 Microfacies-3 Microfacies-6 | HOS-5 (USI-2) USI-14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vola, G.; Ardit, M.; Frijia, G.; Di Benedetto, F.; Fornasier, F.; Lugli, F.; Natali, C.; Sarandrea, L.; Schmitt, K.E.; Cipriani, A. Characterization and Provenance of Carbonate Rocks for Quicklime and Dololime Production in Twin-Shaft Regenerative Kilns from the Arabian Peninsula and Neighboring Countries. Minerals 2023, 13, 1500. https://doi.org/10.3390/min13121500
Vola G, Ardit M, Frijia G, Di Benedetto F, Fornasier F, Lugli F, Natali C, Sarandrea L, Schmitt KE, Cipriani A. Characterization and Provenance of Carbonate Rocks for Quicklime and Dololime Production in Twin-Shaft Regenerative Kilns from the Arabian Peninsula and Neighboring Countries. Minerals. 2023; 13(12):1500. https://doi.org/10.3390/min13121500
Chicago/Turabian StyleVola, Gabriele, Matteo Ardit, Gianluca Frijia, Francesco Di Benedetto, Flavio Fornasier, Federico Lugli, Claudio Natali, Luca Sarandrea, Katharina Elena Schmitt, and Anna Cipriani. 2023. "Characterization and Provenance of Carbonate Rocks for Quicklime and Dololime Production in Twin-Shaft Regenerative Kilns from the Arabian Peninsula and Neighboring Countries" Minerals 13, no. 12: 1500. https://doi.org/10.3390/min13121500
APA StyleVola, G., Ardit, M., Frijia, G., Di Benedetto, F., Fornasier, F., Lugli, F., Natali, C., Sarandrea, L., Schmitt, K. E., & Cipriani, A. (2023). Characterization and Provenance of Carbonate Rocks for Quicklime and Dololime Production in Twin-Shaft Regenerative Kilns from the Arabian Peninsula and Neighboring Countries. Minerals, 13(12), 1500. https://doi.org/10.3390/min13121500