Comprehensive Environmental and Health Risk Assessment of Soil Heavy Metal(loid)s Considering Uncertainties: The Case of a Typical Metal Mining Area in Daye City, China
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Research Framework
2.2. Probability-Based Risks
2.2.1. Environmental Risk (ER)
2.2.2. Health Risk (HR)
2.3. Probabilistic–Fuzzy General Risk (PFGR) Assessment
2.3.1. Fuzzification of the Probabilistic Risk
2.3.2. Fuzzy Risk Aggregation and De-Fuzzification
2.4. Study Area and Materials
2.4.1. Study Area and Sampling
2.4.2. Chemical Analysis
3. Results and Discussion
3.1. Probabilistic Environmental Risk Assessment
3.2. Probabilistic Health Risk Assessment
3.3. General Risk Based on Probabilistic–Fuzzy Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HM | Heavy metal(loid) |
ER | Environmental risk |
HR | Health risk |
SCR | Soil contamination risk |
PER | Potential ecological risk |
CR | Carcinogenic risk |
NCR | Non-carcinogenic risk |
FER | Fuzzy environmental risk |
FHR | Fuzzy health risk |
PFGR | Probabilistic-fuzzy general risk |
TCR | Multi-element total carcinogenic risk |
TNCR | Multi-element total non-carcinogenic risk |
The probability of environmental risk violating the environmental guidelines | |
The probability of health risk violating the health guidelines | |
The probability of soil contamination risk violating the environmental guidelines | |
The probability of potential ecological risk violating the environmental guidelines | |
The probability of carcinogenic risk violating the health guidelines | |
The probability of non-carcinogenic risk violating the health guidelines |
References
- Antoniadis, V.; Shaheen, S.M.; Levizou, E.; Shahid, M.; Niazi, N.K.; Vithanage, M.; Ok, Y.S.; Bolan, N.; Rinklebe, J. A critical prospective analysis of the potential toxicity of trace element regulation limits in soils worldwide: Are they protective concerning health risk assessment?—A review. Environ. Int. 2019, 127, 819–847. [Google Scholar] [CrossRef]
- Binner, H.; Sullivan, T.; Jansen, M.; McNamara, M. Metals in urban soils of Europe: A systematic review. Sci. Total Environ. 2023, 854, 158734. [Google Scholar] [CrossRef]
- Wang, F.; Huo, L.; Li, Y.; Wu, L.; Zhang, Y.; Shi, G.; An, Y. A hybrid framework for delineating the migration route of soil heavy metal pollution by heavy metal similarity calculation and machine learning method. Sci. Total Environ. 2023, 858, 160065. [Google Scholar] [CrossRef] [PubMed]
- Faraji, M.; Alizadeh, I.; Conti, G.O.; Mohammadi, A. Investigation of health and ecological risk attributed to the soil heavy metals in Iran: Systematic review and meta-analysis. Sci. Total Environ. 2023, 857, 158925. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, Z.; Tian, B.; Li, J.; Luo, J.; Wang, X.; Ai, S.; Wang, X. Assessment of soil heavy metal pollution in provinces of China based on different soil types: From normalization to soil quality criteria and ecological risk assessment. J. Hazard. Mater. 2023, 441, 129891. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, Y.; Li, Z.; Li, J.; Wei, S.; Chen, W.; Ren, D.; Zhang, S. Assessment soil cadmium and copper toxicity on barley growth and the influencing soil properties in subtropical agricultural soils. Environ. Res. 2023, 217, 114968. [Google Scholar] [CrossRef]
- Wu, L.; Yue, W.; Wu, J.; Cao, C.; Liu, H.; Teng, Y. Metal-mining-induced sediment pollution presents a potential ecological risk and threat to human health across China: A meta-analysis. J. Environ. Manag. 2023, 329, 117058. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yao, J.; Sunahara, G.; Min, N.; Li, C.; Duran, R. Quantifying ecological and human health risks of metal (loid) s pollution from non-ferrous metal mining and smelting activities in Southwest China. Sci. Total Environ. 2023, 873, 162364. [Google Scholar] [CrossRef] [PubMed]
- Qiao, P.; Wang, S.; Lei, M.; Guo, G.; Yang, J.; Wei, Y.; Gou, Y.; Li, P.; Zhang, Z. Influencing factors identification and the nested structure analysis of heavy metals in soils in entire city and surrounding the multiple pollution sources. J. Hazard. Mater. 2023, 449, 130961. [Google Scholar] [CrossRef]
- Xie, P.; Liu, Z.; Li, J.; Ju, D.; Ding, X.; Wang, Y.; Hower, J.C. Pollution and health-risk assessments of Cr-contaminated soils from a tannery waste lagoon, Hebei, north China: With emphasis on Cr speciation. Chemosphere 2023, 317, 137908. [Google Scholar] [CrossRef]
- Jiang, Y.; Hu, B.; Shi, H.; Yi, L.; Chen, S.; Zhou, Y.; Cheng, J.; Huang, M.; Yu, W.; Shi, Z. Pollution and risk assessment of potentially toxic elements in soils from industrial and mining sites across China. J. Environ. Manag. 2023, 336, 117672. [Google Scholar] [CrossRef]
- Tan, C.; Wang, H.; Yang, Q.; Yuan, L.; Zhang, Y.; Martín, J.D. An integrated approach for quantifying source apportionment and source-oriented health risk of heavy metals in soils near an old industrial area. Environ. Pollut. 2023, 323, 121271. [Google Scholar] [CrossRef]
- Gu, Y.G.; Lin, Q.; Gao, Y.P. Metals in exposed-lawn soils from 18 urban parks and its human health implications in southern China’s largest city, Guangzhou. J. Clean. Prod. 2016, 115, 122–129. [Google Scholar] [CrossRef]
- Huang, J.; Wu, Y.; Sun, J.; Li, X.; Geng, X.; Zhao, M.; Sun, T.; Fan, Z. Health risk assessment of heavy metal (loid) s in park soils of the largest megacity in China by using Monte Carlo simulation coupled with Positive matrix factorization model. J. Hazard. Mater. 2021, 415, 125629. [Google Scholar] [CrossRef]
- Yang, S.; Zhao, J.; Chang, S.X.; Collins, C.; Xu, J.; Liu, X. Status assessment and probabilistic health risk modeling of metals accumulation in agriculture soils across China: A synthesis. Environ. Int. 2019, 128, 165–174. [Google Scholar] [CrossRef]
- Ghosh, S.; Banerjee, S.; Prajapati, J.; Mandal, J.; Mukherjee, A.; Bhattacharyya, P. Pollution and health risk assessment of mine tailings contaminated soils in India from toxic elements with statistical approaches. Chemosphere 2023, 324, 138267. [Google Scholar] [CrossRef]
- Zhang, R.; Han, D.; Jiang, L.; Zhong, M.; Liang, J.; Xia, T.; Zhao, Y. Derivation of site-specific remediation goals by incorporating the bioaccessibility of polycyclic aromatic hydrocarbons with the probabilistic analysis method. J. Hazard. Mater. 2020, 384, 121239. [Google Scholar] [CrossRef]
- Gu, X.; Wang, Z.; Wang, J.; Ouyang, W.; Wang, B.; Xin, M.; Lian, M.; Lu, S.; Lin, C.; He, M.; et al. Sources, trophodynamics, contamination and risk assessment of toxic metals in a coastal ecosystem by using a receptor model and Monte Carlo simulation. J. Hazard. Mater. 2022, 424, 127482. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, F.; Song, J.; Tan, M.L.; Kung, H.-t.; Johnson, V.C. Pollutant source, ecological and human health risks assessment of heavy metals in soils from coal mining areas in Xinjiang, China. Environ. Res. 2021, 202, 111702. [Google Scholar] [CrossRef]
- Chen, H.; Wang, L.; Hu, B.; Xu, J.; Liu, X. Potential driving forces and probabilistic health risks of heavy metal accumulation in the soils from an e-waste area, southeast China. Chemosphere 2022, 289, 133182. [Google Scholar] [CrossRef]
- Mishra, H.; Singh, J.; Karmakar, S.; Kumar, R. An integrated approach for modeling uncertainty in human health risk assessment. Environ. Sci. Pollut. Res. 2021, 28, 56053–56068. [Google Scholar] [CrossRef]
- Zhang, F.; Peng, G.; Xu, P.; Zhu, L.; Li, C.; Wei, N.; Li, D. Ecological risk assessment of marine microplastics using the analytic hierarchy process: A case study in the Yangtze River Estuary and adjacent marine areas. J. Hazard. Mater. 2022, 425, 127960. [Google Scholar] [CrossRef]
- MEEP. Exposure Factors Handbook of Chinese Population (Adults); China Environmental Press: Wuhan, China, 2013. [Google Scholar]
- Li, F.; Zhang, J.; Liu, W.; Liu, J.; Huang, J.; Zeng, G. An exploration of an integrated stochastic-fuzzy pollution assessment for heavy metals in urban topsoil based on metal enrichment and bioaccessibility. Sci. Total Environ. 2018, 644, 649–660. [Google Scholar] [CrossRef]
- Chen, X.; Li, F.; Zhang, J.; Liu, S.; Ou, C.; Yan, J.; Sun, T. Status, fuzzy integrated risk assessment, and hierarchical risk management of soil heavy metals across China: A systematic review. Sci. Total Environ. 2021, 785, 147180. [Google Scholar] [CrossRef]
- Guan, Q.; Liu, Z.; Shao, W.; Tian, J.; Luo, H.; Ni, F.; Shan, Y. Probabilistic risk assessment of heavy metals in urban farmland soils of a typical oasis city in northwest China. Sci. Total Environ. 2022, 833, 155096. [Google Scholar] [CrossRef]
- Loh, T.Y.; Brito, M.P.; Bose, N.; Xu, J.; Tenekedjiev, K. Fuzzy system dynamics risk analysis (FuSDRA) of autonomous underwater vehicle operations in the Antarctic. Risk Anal. 2020, 40, 818–841. [Google Scholar] [CrossRef]
- Miao, F.; Zhang, Y.; Li, Y.; Liang, X.; Lin, Q.; Zhou, Y. Establishing a weighted methodology for human health risk assessment of cadmium based on its equilibrium speciation in groundwater. J. Clean. Prod. 2021, 322, 129053. [Google Scholar] [CrossRef]
- Zhao, R.; Guan, Q.; Luo, H.; Lin, J.; Yang, L.; Wang, F.; Pan, N.; Yang, Y. Fuzzy synthetic evaluation and health risk assessment quantification of heavy metals in Zhangye agricultural soil from the perspective of sources. Sci. Total Environ. 2019, 697, 134126. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, Z.; Wen, J.; Li, Y. Stochastic fuzzy environmental risk characterization of uncertainty and variability in risk assessments: A case study of polycyclic aromatic hydrocarbons in soil at a petroleum-contaminated site in China. J. Hazard. Mater. 2016, 316, 143–150. [Google Scholar] [CrossRef]
- Jiang, L.; Sun, H.; Peng, T.; Ding, W.; Liu, B.; Liu, Q. Comprehensive evaluation of environmental availability, pollution level and leaching heavy metals behavior in non-ferrous metal tailings. J. Environ. Manag. 2021, 290, 112639. [Google Scholar] [CrossRef]
- Zerizghi, T.; Guo, Q.; Tian, L.; Wei, R.; Zhao, C. An integrated approach to quantify ecological and human health risks of soil heavy metal contamination around coal mining area. Sci. Total Environ. 2022, 814, 152653. [Google Scholar] [CrossRef]
- Fei, X.; Lou, Z.; Xiao, R.; Ren, Z.; Lv, X. Source analysis and source-oriented risk assessment of heavy metal pollution in agricultural soils of different cultivated land qualities. J. Clean. Prod. 2022, 341, 130942. [Google Scholar] [CrossRef]
- Li, H.; Yao, J.; Min, N.; Duran, R. Comprehensive assessment of environmental and health risks of metal (loid) s pollution from non-ferrous metal mining and smelting activities. J. Clean. Prod. 2022, 375, 134049. [Google Scholar] [CrossRef]
- Zhou, H.; Chen, Y.; Liu, Y.; Wang, Q.; Liang, Y. Farmers’ adaptation to heavy metal pollution in farmland in mining areas: The effects of farmers’ perceptions, knowledge and characteristics. J. Clean. Prod. 2022, 365, 132678. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, T.; Guo, Z.; Xie, H.; Hu, Z.; Ran, H.; Li, C.; Jiang, Z. Spatial heterogeneity and source apportionment of soil metal (loid) s in an abandoned lead/zinc smelter. J. Environ. Sci. 2023, 127, 519–529. [Google Scholar] [CrossRef] [PubMed]
- MEEP. China Ecological Environment Bulletin; Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2021. [Google Scholar]
- Yang, Q.; Zhang, L.; Wang, H.; Martín, J.D. Bioavailability and health risk of toxic heavy metals (As, Hg, Pb and Cd) in urban soils: A Monte Carlo simulation approach. Environ. Res. 2022, 214, 113772. [Google Scholar] [CrossRef] [PubMed]
- Lei, M.; Li, K.; Guo, G.; Ju, T. Source-specific health risks apportionment of soil potential toxicity elements combining multiple receptor models with Monte Carlo simulation. Sci. Total Environ. 2022, 817, 152899. [Google Scholar] [CrossRef]
- Zhou, H.; Chen, Y.; Yue, X.; Ren, D.; Liu, Y.; Yang, K. Identification and hazard analysis of heavy metal sources in agricultural soils in ancient mining areas: A quantitative method based on the receptor model and risk assessment. J. Hazard. Mater. 2023, 445, 130528. [Google Scholar] [CrossRef]
- MEEP. Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land; Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2018. [Google Scholar]
- Men, C.; Liu, R.; Xu, L.; Wang, Q.; Guo, L.; Miao, Y.; Shen, Z. Source-specific ecological risk analysis and critical source identification of heavy metals in road dust in Beijing, China. J. Hazard. Mater. 2020, 388, 121763. [Google Scholar] [CrossRef]
- USEPA. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part A); Interim Final; Technical Report, EPA/540/1-89/002; Office of Emergency and Remedial Response: Washington, DC, USA, 1989. Available online: https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-part (accessed on 2 March 2023).
- Gui, H.; Yang, Q.; Lu, X.; Wang, H.; Gu, Q.; Martín, J.D. Spatial distribution, contamination characteristics and ecological-health risk assessment of toxic heavy metals in soils near a smelting area. Environ. Res. 2023, 222, 115328. [Google Scholar] [CrossRef] [PubMed]
- Yao, Q.; Huang, M.; Zheng, Y.; Chen, M.; Huang, C.; Lin, Q. Prediction and Health Risk Assessment of Copper, Lead, Cadmium, Chromium, and Nickel in Tieguanyin Tea: A Case Study from Fujian, China. Foods 2022, 11, 1593. [Google Scholar] [CrossRef]
- Li, Y.; Ye, Z.; Yu, Y.; Li, Y.; Jiang, J.; Wang, L.; Wang, G.; Zhang, H.; Li, N.; Xie, X.; et al. A combined method for human health risk area identification of heavy metals in urban environments. J. Hazard. Mater. 2023, 449, 131067. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Du, Q.; Guan, Q.; Luo, H.; Shan, Y.; Shao, W. A Monte Carlo simulation-based health risk assessment of heavy metals in soils of an oasis agricultural region in northwest China. Sci. Total Environ. 2023, 857, 159543. [Google Scholar] [CrossRef] [PubMed]
- MEEP. Technical Guidelines for Risk Assessment of Contaminated Sites; Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2014. [Google Scholar]
- Li, T.; Song, Y.; Yuan, X.; Li, J.; Ji, J.; Fu, X.; Zhang, Q.; Guo, S. Incorporating bioaccessibility into human health risk assessment of heavy metals in rice (Oryza sativa L.): A probabilistic-based analysis. J. Agric. Food Chem. 2018, 66, 5683–5690. [Google Scholar] [CrossRef]
- Li, J.; Huang, G.H.; Zeng, G.; Maqsood, I.; Huang, Y. An integrated fuzzy-stochastic modeling approach for risk assessment of groundwater contamination. J. Environ. Manag. 2007, 82, 173–188. [Google Scholar] [CrossRef]
- Hu, G.; Bakhtavar, E.; Hewage, K.; Mohseni, M.; Sadiq, R. Heavy metals risk assessment in drinking water: An integrated probabilistic-fuzzy approach. J. Environ. Manag. 2019, 250, 109514. [Google Scholar] [CrossRef] [PubMed]
- MEEP. The Technical Specification for Soil Environmental Monitoring; Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2004. [Google Scholar]
- MEEP. Soil and Sediment-Determination of Aqua Regia Extracts of 12 Metal Elements-Inductively Coupled Plasma Mass Spectrometry; Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2016. [Google Scholar]
- Yoon, S.; Kim, D.M.; Yu, S.; Park, J.; Yun, S.T. Metal (loid)-specific sources and distribution mechanisms of riverside soil contamination near an abandoned gold mine in Mongolia. J. Hazard. Mater. 2023, 443, 130294. [Google Scholar] [CrossRef]
- Wen, Y.; Li, W.; Yang, Z.; Zhang, Q.; Ji, J. Enrichment and source identification of Cd and other heavy metals in soils with high geochemical background in the karst region, Southwestern China. Chemosphere 2020, 245, 125620. [Google Scholar] [CrossRef]
- Guo, X.; Zhou, T.; Wang, F.; Fan, Y.; Fu, P.; Kong, F. Distribution of Co, Se, Cd, In, Re and other critical metals in sulfide ores from a porphyry-skarn system: A case study of Chengmenshan Cu deposit, Jiangxi, China. Ore Geology Reviews 2023, 158, 105520. [Google Scholar] [CrossRef]
- Yang, S.; He, M.; Zhi, Y.; Chang, S.X.; Gu, B.; Liu, X.; Xu, J. An integrated analysis on source-exposure risk of heavy metals in agricultural soils near intense electronic waste recycling activities. Environ. Int. 2019, 133, 105239. [Google Scholar] [CrossRef]
- Wang, C.C.; Zhang, Q.C.; Kang, S.G.; Li, M.Y.; Zhang, M.Y.; Xu, W.M.; Xiang, P.; Ma, L.Q. Heavy metal (loid) s in agricultural soil from main grain production regions of China: Bioaccessibility and health risks to humans. Sci. Total Environ. 2023, 858, 159819. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.H.; Cai, L.M.; Wen, H.H.; Hu, G.C.; Chen, L.G.; Luo, J. An integrated approach to quantifying ecological and human health risks from different sources of soil heavy metals. Sci. Total Environ. 2020, 701, 134466. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Cao, H.; Du, P.; Ren, J.; Chen, J.; Zhang, H.; Zhang, Y.; Luo, H. Source-oriented probabilistic health risk assessment of soil potentially toxic elements in a typical mining city. J. Hazard. Mater. 2023, 443, 130222. [Google Scholar] [CrossRef] [PubMed]
- Qu, C.; Shi, W.; Guo, J.; Fang, B.; Wang, S.; Giesy, J.P.; Holm, P.E. China’s soil pollution control: Choices and challenges. Environ. Sci. Technol. 2016, 50, 13181–13183. [Google Scholar] [CrossRef]
- Sun, J.; Zhao, M.; Huang, J.; Liu, Y.; Wu, Y.; Cai, B.; Han, Z.; Huang, H.; Fan, Z. Determination of priority control factors for the management of soil trace metal (loid) s based on source-oriented health risk assessment. J. Hazard. Mater. 2022, 423, 127116. [Google Scholar] [CrossRef]
- Long, Z.; Zhu, H.; Bing, H.; Tian, X.; Wang, Z.; Wang, X.; Wu, Y. Contamination, sources and health risk of heavy metals in soil and dust from different functional areas in an industrial city of Panzhihua City, Southwest China. J. Hazard. Mater. 2021, 420, 126638. [Google Scholar] [CrossRef]
- Hadzi, G.Y.; Ayoko, G.A.; Essumang, D.K.; Osae, S.K. Contamination impact and human health risk assessment of heavy metals in surface soils from selected major mining areas in Ghana. Environ. Geochem. Health 2019, 41, 2821–2843. [Google Scholar] [CrossRef]
Element | Soil Contamination Risk (SCR) | (%) | Potential Ecological Risk (PER) | (%) | (%) | ||||
---|---|---|---|---|---|---|---|---|---|
Mean | Median | 90th P | Mean | Median | 90th P | ||||
As | 0.77 | 0.66 | 1.33 | 23.12 | 0.39 | 0.33 | 0.67 | 2.49 | 23.12 |
Cd | 1.61 | 0.96 | 3.50 | 48.05 | 2.36 | 1.44 | 5.16 | 64.55 | 64.55 |
Cr | 0.22 | 0.21 | 0.32 | 0.00 | 0.02 | 0.02 | 0.03 | 0.00 | 0.00 |
Pb | 0.35 | 0.25 | 0.71 | 4.54 | 0.09 | 0.06 | 0.18 | 0.00 | 4.54 |
Cu | 1.91 | 1.32 | 3.95 | 62.34 | 0.48 | 0.33 | 0.98 | 9.56 | 62.34 |
Ni | 0.13 | 0.11 | 0.23 | 0.00 | 0.03 | 0.03 | 0.06 | 0.00 | 0.00 |
Zn | 0.46 | 0.39 | 0.81 | 4.92 | 0.02 | 0.02 | 0.04 | 0.00 | 4.92 |
Total | 2.01 | 1.47 | 3.81 | 73.60 | 1.76 | 1.10 | 3.71 | 54.41 | 73.60 |
HMs | Age | Non-Cancer Risk (NCR, Represented by HI) | Cancer Risk (CR) | ||||
---|---|---|---|---|---|---|---|
Mean | Median | 90th Percentile | Mean | Median | 90th Percentile | ||
As | Children | 5.97 × 10 | 4.12 × 10 | 1.08 × 10 | 2.85 × 10 | 1.77 × 10 | 5.94 × 10 |
Adults | 1.24 × 10 | 1.02 × 10 | 2.24 × 10 | 2.06 × 10 | 1.52 × 10 | 4.45 × 10 | |
Cd | Children | 7.56 × 10 | 3.19 × 10 | 1.49 × 10 | 3.30 × 10 | 1.19 × 10 | 6.58 × 10 |
Adults | 1.59 × 10 | 8.61 × 10 | 3.60 × 10 | 1.39 × 10 | 6.00 × 10 | 3.26 × 10 | |
Cr | Children | 1.16 × 10 | 8.78 × 10 | 1.95 × 10 | 1.85 × 10 | 1.25 × 10 | 3.49 × 10 |
Adults | 2.26 × 10 | 2.03 × 10 | 3.60 × 10 | 1.11 × 10 | 9.17E-06 | 2.24 × 10 | |
Pb | Children | 9.03 × 10 | 5.07 × 10 | 1.79 × 10 | 2.35 × 10 | 1.35 × 10 | 6.11 × 10 |
Adults | 1.23 × 10 | 8.12 × 10 | 2.59 × 10 | 1.21 × 10 | 6.78 × 10 | 2.81 × 10 | |
Cu | Children | 2.77 × 10 | 1.52 × 10 | 5.92 × 10 | |||
Adults | 3.64 × 10 | 2.26 × 10 | 7.81 × 10 | ||||
Ni | Children | 5.22 × 10 | 3.82 × 10 | 9.11 × 10 | |||
Adults | 7.55 × 10 | 6.52 × 10 | 1.33 × 10 | ||||
Zn | Children | 2.85 × 10 | 1.77 × 10 | 5.12 × 10 | |||
Adults | 3.66 × 10 | 2.77 × 10 | 7.19 × 10 | ||||
Total | Children | 8.47 × 10 | 6.10 × 10 | 1.45 × 10 | 5.06 × 10 | 3.40 × 10 | 9.78 × 10 |
Adults | 1.66 × 10 | 1.43 × 10 | 2.80 × 10 | 3.32 × 10 | 2.69 × 10 | 6.77 × 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Yue, X.; Chen, Y.; Liu, Y.; Gong, G. Comprehensive Environmental and Health Risk Assessment of Soil Heavy Metal(loid)s Considering Uncertainties: The Case of a Typical Metal Mining Area in Daye City, China. Minerals 2023, 13, 1389. https://doi.org/10.3390/min13111389
Zhou H, Yue X, Chen Y, Liu Y, Gong G. Comprehensive Environmental and Health Risk Assessment of Soil Heavy Metal(loid)s Considering Uncertainties: The Case of a Typical Metal Mining Area in Daye City, China. Minerals. 2023; 13(11):1389. https://doi.org/10.3390/min13111389
Chicago/Turabian StyleZhou, Hao, Xuemei Yue, Yong Chen, Yanzhong Liu, and Gaoxu Gong. 2023. "Comprehensive Environmental and Health Risk Assessment of Soil Heavy Metal(loid)s Considering Uncertainties: The Case of a Typical Metal Mining Area in Daye City, China" Minerals 13, no. 11: 1389. https://doi.org/10.3390/min13111389
APA StyleZhou, H., Yue, X., Chen, Y., Liu, Y., & Gong, G. (2023). Comprehensive Environmental and Health Risk Assessment of Soil Heavy Metal(loid)s Considering Uncertainties: The Case of a Typical Metal Mining Area in Daye City, China. Minerals, 13(11), 1389. https://doi.org/10.3390/min13111389