Prediction of Au-Associated Minerals in Eastern Thailand Based on Stream Sediment Geochemical Data Analysis by S-A Multifractal Model
Abstract
:1. Introduction
2. Geological Settings
3. Methodology
3.1. Geochemical Data
3.2. Descriptive Statistics
3.3. The Spectrum-Area (S-A) Multifractal Model
4. Results and Discussion
4.1. Descriptive Statistics
4.2. Spatial Distribution of As, Cu, and Zn
4.3. Determining Thresholds Using the S-A Model
5. Conclusions
- Stream sediment geochemical data analysis provides a robust means to identify potential mineral deposits across a large region. Traditional statistical methods may fail to account for spatial variability in complex geological settings, but incorporating the S-A multifractal model helps to better interpret the data. This approach provides an enhanced understanding of the geological processes, furthering our ability to pinpoint exploration targets. Through statistical analysis, this study uncovered a distinct distribution of elements such as As, Cu, and Zn across various geological units. These findings offer crucial insight into the dynamic interactions of elements within different geological contexts, revealing the migration abilities of these elements in specific units. Overall, the study demonstrated that the S-A multifractal model provides a powerful tool for analyzing stream sediment geochemical data. This approach helps to identify specific geological processes that contribute to patterns in the data, improving the understanding of statistical results and the regularity of changes in these properties in spatial and temporal domains. This information proves valuable in identifying precise exploration targets for mineral deposits.
- By applying the S-A multifractal model and the inverse distance weighting (IDW) method, this research has successfully decomposed geochemical maps into anomalous and background patterns. The anomaly map for As, in particular, showed a strong correlation with the gold deposits in the study area, indicating its potential as a reliable indicator for identifying gold deposits. While geochemical maps derived from stream sediment data offer an initial understanding of element distribution, it is important to exercise caution during interpretation due to potential influences from regional geological factors.
- Here, we created prediction maps, pinpointing areas of interest associated with pathfinder elements within the gold deposit zones and beyond. These maps can guide mineral exploration by narrowing down target areas for further investigation. This study underlines the importance of utilizing a variety of analytical methods for accurate results, acknowledging that regional geological factors can contribute to elevated values unrelated to mineralization.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, Q. Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. J. Geochem. Explor. 2012, 122, 55–70. [Google Scholar] [CrossRef]
- Zuo, R.; Cheng, Q.; Xia, Q. Application of fractal models to characterization of vertical distribution of geochemical element concentration. J. Geochem. Explor. 2009, 102, 37–43. [Google Scholar] [CrossRef]
- Cheng, Q. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geol. Rev. 2007, 32, 314–324. [Google Scholar] [CrossRef]
- Parsa, M.; Maghsoudi, A.; Yousefi, M. A Receiver Operating Characteristics-Based Geochemical Data Fusion Technique for Targeting Undiscovered Mineral Deposits. Nat. Resour. Res. 2017, 27, 15–28. [Google Scholar] [CrossRef]
- Zuo, R.; Xiong, Y. Geodata science and geochemical mapping. J. Geochem. Explor. 2019, 209, 106431. [Google Scholar] [CrossRef]
- Grunsky, E.C.; de Caritat, P. State-of-the-art analysis of geochemical data for mineral exploration. Geochem. Explor. Environ. Anal. 2019, 20, 217–232. [Google Scholar] [CrossRef]
- Zuo, R.; Wang, J.; Xiong, Y.; Wang, Z. The processing methods of geochemical exploration data: Past, present, and future. Appl. Geochem. 2021, 132, 105072. [Google Scholar] [CrossRef]
- Cohen, D.; Kelley, D.; Anand, R.; Coker, W. Major advances in exploration geochemistry, 1998–2007. Geochem. Explor. Environ. Anal. 2010, 10, 3–16. [Google Scholar] [CrossRef]
- Winterburn, P.A.; Noble, R.R.P.; Lawie, D. Advances in exploration geochemistry, 2007 to 2017 and beyond. Geochem. Explor. Environ. Anal. 2020, 20, 157–166. [Google Scholar] [CrossRef]
- Zuo, R.; Carranza, E.J.M.; Cheng, Q. Fractal/multifractal modelling of geochemical exploration data. J. Geochem. Explor. 2012, 122, 1–3. [Google Scholar] [CrossRef]
- Xie, S.; Wan, X.; Dong, J.; Wan, N.; Jiang, X.; Carranza, E.J.M.; Wang, X.; Chang, L.; Tian, Y. Quantitative prediction of potential areas likely to yield Se-rich and Cd-low rice using fuzzy weights-of-evidence method. Sci. Total Environ. 2023, 889, 164015. [Google Scholar] [CrossRef]
- Yang, F.; Xie, S.; Hao, Z.; Carranza, E.J.M.; Song, Y.; Liu, Q.; Xu, R.; Nie, L.; Han, W.; Wang, C.; et al. Geochemical Quantitative Assessment of Mineral Resource Potential in the Da Hinggan Mountains in Inner Mongolia, China. Minerals 2022, 12, 434. [Google Scholar] [CrossRef]
- Cohen, D.; Bowell, R. 13.24-Exploration geochemistry. In Treatise on Geochemistry, 2nd ed.; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 623–650. [Google Scholar]
- Xie, S.; Huang, N.; Deng, J.; Wu, S.; Zhan, M.; Carranza, E.J.M.; Zhang, Y.; Meng, F. Quantitative prediction of prospectivity for Pb–Zn deposits in Guangxi (China) by back-propagation neural network and fuzzy weights-of-evidence modelling. Geochem. Explor. Environ. Anal. 2022, 22, geochem2021-085. [Google Scholar] [CrossRef]
- Wang, W.; Xie, S.; Carranza, E.J.M. Introduction to the thematic collection: Applications of innovations in geochemical data analysis. Geochem. Explor. Environ. Anal. 2023, 23, geochem2022-058. [Google Scholar] [CrossRef]
- Parsa, M.; Carranza, E.J.M. Modulating the Impacts of Stochastic Uncertainties Linked to Deposit Locations in Data-Driven Predictive Mapping of Mineral Prospectivity. Nat. Resour. Res. 2021, 30, 3081–3097. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, G.; Zhao, Q. Detection of multivariate geochemical anomalies associated with gold deposits by using distance anomaly factors. J. Geochem. Explor. 2020, 221, 106704. [Google Scholar] [CrossRef]
- Xie, S.; Bao, Z. Fractal and Multifractal Properties of Geochemical Fields. Math. Geol. 2004, 36, 847–864. [Google Scholar] [CrossRef]
- Carranza, E.J.M. Geochemical Anomaly and Mineral Prospectivity Mapping in GIS.; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Harris, D.; Pan, G. Mineral Favorability Mapping: A Comparison of Artificial Neural Networks, Logistic Regression, and Discriminant Analysis. Nat. Resour. Res. 1999, 8, 93–109. [Google Scholar] [CrossRef]
- Harris, J.; Wilkinson, L.; Grunsky, E. Effective use and interpretation of lithogeochemical data in regional mineral exploration programs: Application of Geographic Information Systems (GIS) technology. Ore Geol. Rev. 2000, 16, 107–143. [Google Scholar] [CrossRef]
- Hawkes, H.E.; Webb, J.S. Geochemistry in Mineral Exploration; Harper and Row: New York, NY, USA, 1962. [Google Scholar]
- Sinclair, A. Selection of threshold values in geochemical data using probability graphs. J. Geochem. Explor. 1974, 3, 129–149. [Google Scholar] [CrossRef]
- Tukey, J.W. Exploratory Data Analysis; Addison-Wesley: Reading, MA, USA, 1977; Volume 2. [Google Scholar]
- Stanley, C.R.; Sinclair, A.J. Comparison of probability plots and the gap statistic in the selection of thresholds for exploration geochemistry data. J. Geochem. Explor. 1989, 32, 355–357. [Google Scholar] [CrossRef]
- Matheron, G. Traité de Géostatistique Appliquée, Mém BRGM 14; Éditions Technip: Paris, France, 1962. [Google Scholar]
- Mandelbrot, B.B. The Fractal Geometry of Nature; WH Freeman and Company: New York, NY, USA, 1983. [Google Scholar]
- Turcotte, D.L. Fractals in geology and geophysics. Pure Appl. Geophys. 1989, 131, 171–196. [Google Scholar] [CrossRef]
- Cheng, Q. Multifractality and spatial statistics. Comput. Geosci. 1999, 25, 949–961. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, X.; Xie, S.; Zhou, X.; Awadelseid, S.F.; Yaisamut, O.; Meng, F. Implication of multifractal analysis for quantitative evaluation of mineral resources in the Central Kunlun area, Xinjiang, China. Geochem. Explor. Environ. Anal. 2022, 22, geochem2021-083. [Google Scholar] [CrossRef]
- Cheng, Q.; Agterberg, F.; Ballantyne, S. The separation of geochemical anomalies from background by fractal methods. J. Geochem. Explor. 1994, 51, 109–130. [Google Scholar] [CrossRef]
- Behera, S.; Panigrahi, M.K. Mineral prospectivity modelling using singularity mapping and multifractal analysis of stream sediment geochemical data from the auriferous Hutti-Maski schist belt, S. India. Ore Geol. Rev. 2021, 131, 104029. [Google Scholar] [CrossRef]
- Cheng, Q. Spatial and scaling modelling for geochemical anomaly separation. J. Geochem. Explor. 1999, 65, 175–194. [Google Scholar] [CrossRef]
- Cheng, Q. GeoData Analysis System (GeoDAS) for mineral exploration: User’s guide and exercise manual. In Proceedings of the Material for the Training Workshop on GeoDAS Held at York University, Toronto, ON, Canada, 1–3 November 2000. [Google Scholar]
- Koohzadi, F.; Afzal, P.; Jahani, D.; Pourkermani, M. Geochemical exploration for Li in regional scale utilizing Staged Factor Analysis (SFA) and Spectrum-Area (SA) fractal model in north central Iran. Iran. J. Earth Sci. 2021, 13, 299–307. [Google Scholar]
- Sadeghi, B.; Agterberg, F. Singularity analysis. In Encyclopedia of Mathematical Geosciences; Springer: Cham, Switzerland, 2020; pp. 1–7. [Google Scholar]
- Ali, K.; Cheng, Q.; Chen, Z. Multifractal power spectrum and singularity analysis for modelling stream sediment geochemical distribution patterns to identify anomalies related to gold mineralization in Yunnan Province, South China. Geochem. Explor. Environ. Anal. 2007, 7, 293–301. [Google Scholar] [CrossRef]
- Cheng, Q. Multifractal interpolation method for spatial data with singularities. J. S. Afr. Inst. Min. Met. 2015, 115, 235–245. [Google Scholar] [CrossRef]
- Zuo, R.; Wang, J. ArcFractal: An ArcGIS Add-In for Processing Geoscience Data Using Fractal/Multifractal Models. Nat. Resour. Res. 2020, 29, 3–12. [Google Scholar] [CrossRef]
- Song, W.; Zheng, L.; Liu, J.; Cao, S.; Xie, Z. Genesis, metallogenic model, and prospecting prediction of the Nibao gold deposit in the Guizhou Province, China. Acta Geochim. 2023, 42, 136–152. [Google Scholar] [CrossRef]
- Sunkari, E.D.; Appiah-Twum, M.; Lermi, A. Spatial distribution and trace element geochemistry of laterites in Kunche area: Implication for gold exploration targets in NW, Ghana. J. Afr. Earth Sci. 2019, 158, 103519. [Google Scholar] [CrossRef]
- Agangi, A.; Reddy, S.M.; Plavsa, D.; Fougerouse, D.; Clark, C.; Roberts, M.; Johnson, T.E. Antimony in rutile as a pathfinder for orogenic gold deposits. Ore Geol. Rev. 2019, 106, 1–11. [Google Scholar] [CrossRef]
- Bayari, E.E.; Foli, G.; Gawu, S.K.Y. Geochemical and pathfinder elements assessment in some mineralised regolith profiles in Bole-Nangodi gold belt in north-eastern Ghana. Environ. Earth Sci. 2019, 78, 268. [Google Scholar] [CrossRef]
- Arhin, E.; Boadi, S.; Esoah, M.C. Identifying pathfinder elements from termite mound samples for gold exploration in regolith complex terrain of the Lawra belt, NW Ghana. J. Afr. Earth Sci. 2015, 109, 143–153. [Google Scholar] [CrossRef]
- Anand, R.; Hough, R.; Salama, W.; Aspandiar, M.; Butt, C.; González-Álvarez, I.; Metelka, V. Gold and pathfinder elements in ferricrete gold deposits of the Yilgarn Craton of Western Australia: A review with new concepts. Ore Geol. Rev. 2019, 104, 294–355. [Google Scholar] [CrossRef]
- Behera, S.; Panigrahi, M.K.; Pradhan, A. Identification of geochemical anomaly and gold potential mapping in the Sonakhan Greenstone belt, Central India: An integrated concentration-area fractal and fuzzy AHP approach. Appl. Geochem. 2019, 107, 45–57. [Google Scholar] [CrossRef]
- Mvile, B.N.; Abu, M.; Kalimenze, J. Trace Elements Geochemistry of In Situ Regolith Materials and Their Implication on Gold Mineralization and Exploration Targeting, Dodoma Region, East Africa. Min. Met. Explor. 2021, 38, 2075–2087. [Google Scholar] [CrossRef]
- Moreley, C.K.; Charusiri, P.; Watkinson, I.M.; Ridd, M.; Barber, A.; Crow, M. Structural geology of Thailand during the Cenozoic. In The Geology of Thailand; Geological Society of London: London, UK, 2011. [Google Scholar] [CrossRef]
- Ridd, M.F.; Barber, A.J.; Crow, M.J. Introduction to the geology of Thailand. In The Geology of Thailand; Geological Society of London: London, UK, 2011. [Google Scholar] [CrossRef]
- Charusiri, P. Geotectonic evolution of Thailand: A new synthesis. J. Geol. Soc. Thai. 2002, 1, 1–20. [Google Scholar]
- Metcalfe, I.; Henderson, C.; Wakita, K. Lower Permian conodonts from Palaeo-Tethys Ocean Plate Stratigraphy in the Chiang Mai-Chiang Rai Suture Zone, northern Thailand. Gondwana Res. 2017, 44, 54–66. [Google Scholar] [CrossRef]
- Sone, M.; Metcalfe, I.; Chaodumrong, P. The Chanthaburi terrane of southeastern Thailand: Stratigraphic confirmation as a disrupted segment of the Sukhothai Arc. J. Asian Earth Sci. 2012, 61, 16–32. [Google Scholar] [CrossRef]
- Hara, H.; Tokiwa, T.; Kurihara, T.; Charoentitirat, T.; Ngamnithiporn, A.; Visetnat, K.; Tominaga, K.; Kamata, Y.; Ueno, K. Permian—Triassic back-arc basin development in response to Paleo-Tethys subduction, Sa Kaeo—Chanthaburi area in Southeastern Thailand. Gondwana Res. 2018, 64, 50–66. [Google Scholar] [CrossRef]
- Sone, M.; Metcalfe, I. Parallel Tethyan sutures and the Sukhothai Island-arc system in Thailand and beyond. In Proceedings of the International Symposia on Geoscience Resources and Environments of Asian Terranes (GREAT 2008), 4th IGCP 516 and 5th APSEG, Bangkok, Thailand, 24–26 November 2008. [Google Scholar]
- Saesaengseerung, D.; Agematsu, S.; Sashida, K.; Sardsud, A. Discovery of Lower Permian Radiolarian and Conodont Faunas from the Bedded Chert of the Chanthaburi Area Along the Sra Kaeo Suture Zone, Eastern Thailand. Paleontol. Res. 2009, 13, 119–138. [Google Scholar] [CrossRef]
- Fontaine, H.; Salyapongse, S. Unexpected discovery of early Carboniferous (late Visean-Serpukhovian) corals in East Thailand. In Proceedings of the International Conference on Stratigraphy and Tectonic Evolution of Southeast Asia and the South Pacific, Bangkok, Thailand, 19–24 August 1997. [Google Scholar]
- Fontaine, H.; Salyapongse, S.; Suteethorn, V.; Tansuwan, V.; Vachard, D. Recent biostratigraphic discoveries in Thailand: A preliminary report. CCOP Newsl. 1996, 21, 14–15. [Google Scholar]
- Fontaine, H.; Salyapongse, S.; Vachard, D. The Carboniferous of East Thailand—New information from microfossils. Bull. Geol. Soc. Malays. 1999, 43, 461–465. [Google Scholar] [CrossRef]
- Salyapongse, S. Geology of the Eastern Thailand, Field Excursion Guidebook Route no. 1. In Proceedings of the 1st International conference on Stratigraphy and Tectonic Evolution of Southeast Asia and the South Pacific, Bangkok, Thailand, 19–24 August 1997. [Google Scholar]
- Bunopas, S. Palaeogeographic History of Western Thailand and Adjacent Parts of Southeast Asia. A Plate Tectonics Interpretation; Geological Survey Division, Department of Mineral Resources: Bangkok, Thailand, 1982. [Google Scholar]
- Chaodumrong, P.; Salyapongse, S.; Sarapirome, S.; Palang, P. Geology of SW Khorat Plateau and eastern Thailand. In Post-Symposium Excursion Guidebook of Symposium on Geology of Thailand; Department of Mineral Resources Thailand: Bangkok, Thailand, 2002. [Google Scholar]
- Chutakositkanon, V.; Hisada, K.I.; Choowong, M.; Thitimakorn, T. Tectono-stratigraphy of the Sa Kaeo-Chanthaburi accretionary complex, Eastern Thailand: Reconstruction of tectonic evolution of oceanic plate-Indochina collision. In Proceedings of the International Symposia on Geoscience Resources and Environments of Asian Terranes (GREAT 2008), 4th IGCP 516 and 5th APSEG, Bangkok, Thailand, 24–26 November 2008. [Google Scholar]
- Crow, M. Appendix. Radiometric Ages of Thailand Rocks; The Geology of Thailand; Geological Society: London, UK, 2011; pp. 593–614. [Google Scholar]
- Metcalfe, I. Palaeozoic–Mesozoic History of SE Asia; Special Publications; Geological Society: London, UK, 2011; Volume 355, pp. 7–35. [Google Scholar]
- DMR. Geologic Map of Thailand 1: 2,500,000: Geological Map of Thailand; Geological Survey Division, Department of Mineral Resources: Bangkok, Thailand, 1999. [Google Scholar]
- Tansuwan, V. Geological Map of Changwat Trat 1:250,000; Department of Mineral Resources: Thailand, Bangkok, 1997. [Google Scholar]
- Tansuwan, V. Geology and Mineral Resources Map of Changwat Chanthaburi 1:250,000; Department of Mineral Resources: Bangkok, Thailand, 1997. [Google Scholar]
- Charusiri, P.; Pongsapitch, W.; Daorerk, V.; Charusiri, B. Anatomy of Chanthaburi granitoids: Geochronology, petrochemistry, tectonics, and associated mineralization. In Proceedings of the National Conference on Geologic Resources of Thailand: Potential for Future Development, Bangkok, Thailand, 17–24 November 1992; Department of Mineral Resources, Ministry of Industry: Bangkok, Thailand, 1992. [Google Scholar]
- Bunopas, S.; Vella, P. Tectonic and geologic evolution of Thailand. In Proceedings of the Workshop on Stratigraphic Correlation of Thailand and Malaysia, Bangkok, Thailand, 8–10 September 1983. [Google Scholar]
- Searle, M.P.; Whitehouse, M.J.; Robb, L.J.; Ghani, A.A.; Hutchison, C.S.; Sone, M.; Ng, S.W.-P.; Roselee, M.H.; Chung, S.-L.; Oliver, G.J.H. Tectonic evolution of the Sibumasu–Indochina terrane collision zone in Thailand and Malaysia: Constraints from new U–Pb zircon chronology of SE Asian tin granitoids. J. Geol. Soc. 2012, 169, 489–500. [Google Scholar] [CrossRef]
- Cobbing, E.J.; Mallick, D.I.J.; Pitfield, P.E.J.; Teoh, L.H. The granites of the Southeast Asian Tin Belt. J. Geol. Soc. 1986, 143, 537–550. [Google Scholar] [CrossRef]
- Brown, G.F. Geologic Reconnaissance of the Mineral Deposits of Thailand; US Government Printing Office: Washington, DC, USA, 1951.
- Searle, M.P.; Morley, C.K. Tectonic and thermal evolution of Thailand in the regional context of SE Asia. In The Geology of Thailand; Geological Society of London: London, UK, 2011; pp. 539–571. [Google Scholar] [CrossRef]
- DMR. Minerals Resources Map of Thailand 1:2,500,00; Bureau of Mineral Resources, Department of Mineral Resources: Bangkok, Thailand, 2006. [Google Scholar]
- Rose, A.; Hawkes, H.; Webb, J. Geochemistry in Mineral Exploration; Academic Press: London, UK, 1979. [Google Scholar]
- Xie, S.; Cheng, Q.; Xing, X.; Bao, Z.; Chen, Z. Geochemical multifractal distribution patterns in sediments from ordered streams. Geoderma 2010, 160, 36–46. [Google Scholar] [CrossRef]
- Van Loon, J.; Barefoot, R. Analytical Methods for Geochemical Exploration; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Smith-Forbes, E.V.; Moore-Reed, S.D.; Westgate, P.M.; Ben Kibler, W.; Uhl, T.L. Descriptive analysis of common functional limitations identified by patients with shoulder pain. J. Sport Rehabil. 2015, 24, 179–188. [Google Scholar] [CrossRef]
- Xu, Y.; Cheng, Q. A fractal filtering technique for processing regional geochemical maps for mineral exploration. Geochem. Explor. Environ. Anal. 2001, 1, 147–156. [Google Scholar] [CrossRef]
- Zuo, R.; Wang, J. Fractal/multifractal modeling of geochemical data: A review. J. Geochem. Explor. 2016, 164, 33–41. [Google Scholar] [CrossRef]
- Darnley, A.; Bjorklund, A.; Bolviken, B.; Gustaysson, N.; Koval, P. A Global Geochemical Database. Recommendations for International Geochemical Mapping; UNESCO: Paris, France, 1995. [Google Scholar]
- Clarke, F.W.; Washington, H.S. The Composition of the Earth’s Crust; US Government Printing Office: Washington, DC, USA, 1924; Volume 127.
- Wedepohl, K.H. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Ghezelbash, R.; Maghsoudi, A.; Daviran, M. Combination of multifractal geostatistical interpolation and spectrum–area (S–A) fractal model for Cu–Au geochemical prospects in Feizabad district, NE Iran. Arab. J. Geosci. 2019, 12, 152. [Google Scholar] [CrossRef]
- Xie, X.; Wang, X.; Zhang, Q.; Zhou, G.; Cheng, H.; Liu, D.; Cheng, Z.; Xu, S. Multi-scale geochemical mapping in China. Geochem. Explor. Environ. Anal. 2008, 8, 333–341. [Google Scholar] [CrossRef]
- Ke, X.; Xie, S.; Zheng, Y.; Awadelseid, S.F.; Gao, S.; Tian, L. Multifractal analysis of geochemical stream sediment data in Bange region, northern Tibet. J. Earth Sci. 2015, 26, 317–327. [Google Scholar] [CrossRef]
- Feng, L.; Yang, L.; Carranza, E.J.M.; Zeng, Y.; Le, X.; Zhang, Q.; Lu, J.; Xiao, C.; Huang, S.; Wang, Q. Mapping of geological complexity and analyzing its relationship with the distribution of gold deposits in the Guangxi Gold Ore Province, Southern China. J. Geochem. Explor. 2023, 251, 107238. [Google Scholar] [CrossRef]
- Wu, R.; Chen, J.; Zhao, J.; Chen, J.; Chen, S. Identifying geochemical anomalies associated with gold mineralization using factor analysis and spectrum–area multifractal model in Laowan District, Qinling-Dabie Metallogenic Belt, Central China. Minerals 2020, 10, 229. [Google Scholar] [CrossRef]
- Farahmandfar, Z.; Jafari, M.; Afzal, P.; Ardalan, A.A. Description of gold and copper anomalies using fractal and stepwise factor analysis according to stream sediments in NW Iran. Geopersia 2019, 10, 135–148. [Google Scholar] [CrossRef]
Elements | N | Max 1 | Min 1 | X 1 | SD 1 | CV% | Skewness |
---|---|---|---|---|---|---|---|
As | 5376 | 534.50 | <DL 2 | 7.05 | 12.95 | 183.61 | 16.74 |
Cu | 5376 | 1760.00 | <DL | 20.26 | 32.36 | 159.75 | 31.25 |
Zn | 5376 | 6657.00 | <DL | 46.45 | 140.53 | 302.55 | 6.86 |
Geological Unit | Samples (N) | Elements | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
As | Cu | Zn | ||||||||
X | SD | CV | X | SD | CV | X | SD | CV | ||
Total | 5376 | 7.05 | 12.95 | 1.84 | 20.26 | 32.36 | 1.60 | 46.45 | 140.53 | 3.03 |
Q | 2447 | 7.40 | 15.91 | 2.15 | 16.55 | 43.47 | 2.63 | 57.38 | 206.49 | 3.60 |
Ksk | 32 | 2.83 | 4.38 | 1.55 | 31.12 | 12.62 | 0.41 | 47.47 | 11.23 | 0.24 |
Jk | 132 | 5.94 | 10.82 | 1.82 | 6.61 | 6.24 | 0.94 | 13.83 | 12.16 | 0.88 |
Jkl | 5 | 6.00 | 6.27 | 1.04 | 10.14 | 8.07 | 0.80 | 11.60 | 8.73 | 0.75 |
JKpw | 49 | 2.07 | 1.21 | 0.58 | 6.14 | 4.38 | 0.71 | 23.87 | 14.83 | 0.62 |
Jpk | 60 | 5.94 | 10.82 | 1.82 | 6.61 | 6.24 | 0.94 | 13.83 | 12.16 | 0.88 |
Trpn | 1207 | 6.16 | 8.97 | 1.46 | 22.37 | 12.45 | 0.56 | 38.89 | 18.35 | 0.47 |
Trn | 313 | 6.73 | 6.86 | 1.02 | 26.10 | 15.82 | 0.61 | 40.16 | 21.93 | 0.55 |
PTr | 100 | 19.74 | 17.35 | 0.88 | 17.32 | 7.69 | 0.44 | 32.79 | 17.32 | 0.53 |
Ps-2 | 201 | 19.74 | 17.35 | 0.88 | 17.32 | 7.69 | 0.44 | 32.79 | 17.32 | 0.53 |
Ps-1 | 37 | 3.50 | 6.21 | 1.78 | 15.30 | 12.10 | 0.79 | 27.05 | 18.32 | 0.68 |
Ps | 3 | 5.11 | 2.80 | 0.55 | 22.29 | 18.69 | 0.84 | 22.48 | 16.95 | 0.75 |
C2 | 67 | 22.33 | 14.80 | 0.66 | 15.40 | 6.35 | 0.41 | 39.62 | 31.68 | 0.80 |
DC | 291 | 4.43 | 6.17 | 1.39 | 30.39 | 29.64 | 0.98 | 33.99 | 19.45 | 0.57 |
SD | 26 | 9.03 | 8.43 | 0.93 | 15.71 | 17.57 | 1.12 | 23.96 | 17.47 | 0.73 |
Qbs | 49 | 5.98 | 6.41 | 1.07 | 29.65 | 11.21 | 0.38 | 61.04 | 33.97 | 0.56 |
Trgr | 153 | 9.24 | 12.49 | 1.35 | 15.20 | 12.79 | 0.84 | 36.71 | 27.80 | 0.76 |
PE | 67 | 7.05 | 12.95 | 1.84 | 20.26 | 32.36 | 1.60 | 46.45 | 140.53 | 3.03 |
PTrv/Ptru | 131 | 8.53 | 11.65 | 1.37 | 41.54 | 22.71 | 0.55 | 45.11 | 20.01 | 0.44 |
Pv | 6 | 7.67 | 2.66 | 0.35 | 108.50 | 27.29 | 0.25 | 69.83 | 10.03 | 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yaisamut, O.; Xie, S.; Charusiri, P.; Dong, J.; Wen, W. Prediction of Au-Associated Minerals in Eastern Thailand Based on Stream Sediment Geochemical Data Analysis by S-A Multifractal Model. Minerals 2023, 13, 1297. https://doi.org/10.3390/min13101297
Yaisamut O, Xie S, Charusiri P, Dong J, Wen W. Prediction of Au-Associated Minerals in Eastern Thailand Based on Stream Sediment Geochemical Data Analysis by S-A Multifractal Model. Minerals. 2023; 13(10):1297. https://doi.org/10.3390/min13101297
Chicago/Turabian StyleYaisamut, Oraphan, Shuyun Xie, Punya Charusiri, Jianbiao Dong, and Weiji Wen. 2023. "Prediction of Au-Associated Minerals in Eastern Thailand Based on Stream Sediment Geochemical Data Analysis by S-A Multifractal Model" Minerals 13, no. 10: 1297. https://doi.org/10.3390/min13101297
APA StyleYaisamut, O., Xie, S., Charusiri, P., Dong, J., & Wen, W. (2023). Prediction of Au-Associated Minerals in Eastern Thailand Based on Stream Sediment Geochemical Data Analysis by S-A Multifractal Model. Minerals, 13(10), 1297. https://doi.org/10.3390/min13101297