Investigation into the Adsorption Mechanism of a Novel Collector Cetyl Trimethyl Ammonium Chloride on the Surface of Hematite and Quartz
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Micro-Flotation Tests
2.3. Zeta-Potential Measurements
2.4. XPS Measurement
3. Results
3.1. Micro-Flotation Tests
3.2. Zeta-Potential Measurements
3.3. XPS Measurements
4. Conclusions
- Micro-flotation experiments found that there was at least a 45.48% difference between hematite and quartz as the concentration of CTAC was 26.25 × 10−4 mmol/L under pH 5.0.
- The positive CTAC+ species could selectively increase the surface potential of quartz, but had rather a weak effect on the hematite.
- More quantities of CTAC were adsorbed onto quartz than hematite owing to the stronger binding ability between CTAC and oxygen elements of the quartz surface.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, W.G.; Liu, W.B.; Dai, S.J.; Wang, B.Y. Adsorption of bis(2-hydroxy-3-chloropropyl) dodecylamine on quartz surface and its implication on flotation. Results Phys. 2018, 9, 1096–1101. [Google Scholar] [CrossRef]
- Filippov, L.O.; Severov, V.V.; Filippova, I.V. An overview of the beneficiation of iron ores via reverse cationic flotation. Int. J. Miner. Process. 2014, 127, 62–69. [Google Scholar] [CrossRef]
- Wu, H.; Qiu, T.; Zhao, G.; Zhu, D.; Li, X.; Feng, B. Investigations on the reverse cationic flotation separation of quartz from hematite using polyaspartic acid as depressant. Appl. Surf. Sci. 2023, 614, 156143. [Google Scholar] [CrossRef]
- Han, W.; Zhu, Y.; Liu, J.; Li, Y. A novel depressant HPAM of the hematite in reverse cationic flotation of iron ore. Colloids Surf. A 2022, 641, 128547. [Google Scholar] [CrossRef]
- Zhang, H.; Lin, S.; Guo, Z.; Sun, W.; Zhang, C. Selective separation mechanism of hematite from quartz by anionic reverse flotation: Implications from surface hydroxylation. Appl. Surf. Sci. 2023, 614, 156056. [Google Scholar] [CrossRef]
- Safari, M.; Hoseinian, F.; Deglon, D.; Filho, L.; Souza, P. Impact of flotation operational parameters on the optimization of fine and coarse Itabirite iron ore beneficiation. Powder Technol. 2022, 408, 117772. [Google Scholar] [CrossRef]
- Francisco, G.; Mehdi, S.; David, D.; Laurindo, D. Influence of agitation intensity on flotation rate of apatite particles. Mining REM Int. Eng. J. 2017, 70, 491–495. [Google Scholar]
- Safari, M.; Hoseinian, F.; Deglon, D.; Filho, L.; Souza, P. Investigation of the reverse flotation of iron ore in three different flotation cells: Mechanical, oscillating grid and pneumatic. Miner. Eng. 2020, 150, 106283. [Google Scholar] [CrossRef]
- Sun, H.; Yang, B.; Zhu, Z.; Yin, W.; Sheng, Q.; Hou, Y.; Yao, J. New insights into selective-depression mechanism of novel depressant EDTMPS on magnesite and quartz surfaces: Adsorption mechanism, DFT calculations, and adsorption model. Miner. Eng. 2021, 160, 106660. [Google Scholar] [CrossRef]
- Han, C.; Zhang, H.; Tan, R.; Shen, Y.; Wei, D.; Liu, W. Effects of monohydric alcohols of varying chain lengths and isomeric structures on magnesite and dolomite flotation by dodecylamine. Powder Technol. 2020, 374, 233–240. [Google Scholar] [CrossRef]
- Weng, X.; Mei, G.; Zhao, T.; Zhu, Y. Utilization of novel ester-containing quaternary ammonium surfactant as cationic collector for iron ore flotation. Sep. Purif. Technol. 2013, 103, 187–194. [Google Scholar] [CrossRef]
- Liu, W.; Wei, D.; Wang, B.; Ping, F.; Wang, X.; Cui, B. A new collector used for flotation of oxide minerals. Trans. Nonferr. Metal. Soc. 2009, 19, 1326–1330. [Google Scholar] [CrossRef]
- Sahoo, H.; Sinha, N.; Rath, S.S.; Das, B. Ionic liquids as novel quartz collectors: Insights from experiments and theory. Chem. Eng. J. 2015, 273, 46–54. [Google Scholar] [CrossRef]
- Tahani, A.; Karroua, M.; Van, H.; Damme, P.; Levitz, F. Adsorption of a cationic surfactant on Na–montmorillonite: Inspection of adsorption layer by X-ray and fluorescence spectroscopies. J. Colloid Interface Sci. 1999, 216, 242–249. [Google Scholar] [CrossRef]
- Sun, H.; Yin, W.; Yang, B.; Chen, K.; Sheng, Q. Efficiently separating magnesite from quartz using N-hexadecyltrimethylammonium chloride as a collector via reverse flotation. Miner. Eng. 2021, 166, 106899. [Google Scholar] [CrossRef]
- Sun, H.; Yin, W. Selective flotation separation of magnesite from quartz by palmitoyl trimethylammonium chloride. Sep. Purif. Technol. 2022, 295, 121201. [Google Scholar] [CrossRef]
- Wang, D.; Liu, Q. Influence of aggregation/dispersion state of hydrophilic particles on their entrainment in fine mineral particle flotation. Miner. Eng. 2021, 166, 106835. [Google Scholar] [CrossRef]
- Sheng, Q.; Yin, W.; Yang, B.; Chen, K.; Sun, H. Promotion of oxidation pretreatment on sulfidation of cuprite surface and its contribution to flotation. Miner. Eng. 2021, 174, 107256. [Google Scholar] [CrossRef]
- Yang, B.; Zhu, Z.; Yin, W.; Sun, Q.; Sun, H.; Han, H.; Sheng, Q.; Yao, J. Selective adsorption of an eco-friendly and efficient depressant PBTCA onto dolomite for effective flotation of fluorapatite from dolomite. Chem. Eng. J. 2020, 400, 125780. [Google Scholar] [CrossRef]
- Yang, Z.; Han, Y.; Teng, Q.; Zhang, G.; Liu, S. Aggregation process of fine hematite particles suspension using xanthan gum in the presence of Fe(III). Arab. J. Chem. 2023, 16, 104539. [Google Scholar] [CrossRef]
- Liu, W.; Peng, X.; Liu, W.; Tong, K.; Shen, Y.; Zhao, Q.; Zhao, S.; Sun, W. Novel polyhydroxy cationic collector N-(2,3-propanediol)-N-dodecylamine: Synthesis and flotation performance to hematite and quartz. Int. J. Min. Sci. Technol. 2023, 33, 115–122. [Google Scholar] [CrossRef]
- Neitzke, P.; Dantas, T.; Peres, M.; Neto, A. Depressants in nanoemulsion systems applied to quartz and hematite microflotation. J. Mater. Res. Technol. 2019, 8, 5529–5535. [Google Scholar] [CrossRef]
- Mičušík, M.; Šlouf, M.; Stepura, A.; Soyka, Y.; Ovodok, E.; Procházka, M.; Omastová, M. Aging of 2D MXene nanoparticles in air: An XPS and TEM study. Appl. Surf. Sci. 2023, 610, 155351. [Google Scholar] [CrossRef]
- Zhidkov, I.; Maksimov, R.; Kukharenko, A.; Finkelstein, L.; Cholakh, S.; Osipov, E.V. Effect of post-annealing in air on optical and XPS spectra of Y2O3 ceramics doped with CeO2. Mendeleev Commun. 2019, 29, 102–104. [Google Scholar] [CrossRef]
- Dobrovolsky, V.D.; Khyzhun, O.Y.; Sinelnichenko, A.K.; Ershova, O.G.; Solonin, Y.M. XPS study of influence of exposure to air on thermal stability and kinetics of hydrogen decomposition of MgH2 films obtained by direct hydrogenation from gaseous phase of metallic Mg. J. Electron Spectrosc. 2017, 215, 28–35. [Google Scholar] [CrossRef]
Sample | Fe2O3 | SiO2 | Al2O3 | MnO | MgO | CaO | P2O3 |
---|---|---|---|---|---|---|---|
Hematite | 97.12 | 0.84 | 0.11 | 1.65 | 0.01 | — | — |
Quartz | 0.03 | 98.51 | 1.00 | — | 0.01 | 0.03 | — |
CTAC Concentration (×10−4 mmol/L) | Yield (%) | Grade (%) | Recovery (wt%) | ||
---|---|---|---|---|---|
Fe2O3 | SiO2 | Hematite | Quartz | ||
17.50 | 51.27 | 25.79 | 74.22 | 26.44 | 77.26 |
26.25 | 69.99 | 33.76 | 66.24 | 48.65 | 94.13 |
35.00 | 71.12 | 37.13 | 62.86 | 54.38 | 90.76 |
Feed sample | 100.00 | 48.56 | 49.26 | 100.00 | 100.00 |
Sample | Element at% | ||||
---|---|---|---|---|---|
C1s | N1s | O1s | Si2p | Fe2p | |
Hematite | 32.73 | — | 59.47 | — | 7.80 |
Hematite + CTAC | 35.13 | 0.43 | 57.34 | — | 7.10 |
offset | 2.40 | 0.43 | −2.13 | — | −0.70 |
Quartz | 13.54 | — | 58.87 | 27.59 | — |
Quartz + CTAC | 23.74 | 1.22 | 51.06 | 23.98 | — |
offset | 10.20 | 1.22 | −7.81 | −3.61 | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Wang, Y.; Yao, J.; Yin, W.; Yang, S.; Su, D. Investigation into the Adsorption Mechanism of a Novel Collector Cetyl Trimethyl Ammonium Chloride on the Surface of Hematite and Quartz. Minerals 2023, 13, 1283. https://doi.org/10.3390/min13101283
Sun H, Wang Y, Yao J, Yin W, Yang S, Su D. Investigation into the Adsorption Mechanism of a Novel Collector Cetyl Trimethyl Ammonium Chloride on the Surface of Hematite and Quartz. Minerals. 2023; 13(10):1283. https://doi.org/10.3390/min13101283
Chicago/Turabian StyleSun, Haoran, Yulian Wang, Jin Yao, Wanzhong Yin, Shaobin Yang, and Desheng Su. 2023. "Investigation into the Adsorption Mechanism of a Novel Collector Cetyl Trimethyl Ammonium Chloride on the Surface of Hematite and Quartz" Minerals 13, no. 10: 1283. https://doi.org/10.3390/min13101283