Geochronology, Petrogenesis and Geodynamic Setting of the Kaimuqi Mafic–Ultramafic and Dioritic Intrusions in the Eastern Kunlun Orogen, NW China
Abstract
:1. Introduction
2. Regional Geological Setting
3. Geology of the Kaimuqi Area and Cu–Ni Mineralization
4. Analytical Methods and Sample Descriptions
4.1. Analytical Methods
4.1.1. Whole-Rock Geochemistry Analysis
4.1.2. Zircon U–Pb Dating
4.1.3. Zircon Lu–Hf Isotope Analysis
4.2. Sample Descriptions
4.2.1. Occurrence of Zircon
4.2.2. Whole-Rock Samples for Geochemical Analysis
5. Results
5.1. Whole-Rock Geochemistry
5.1.1. Major Elements
5.1.2. Trace Elements
5.2. Zircon U–Pb Dating
5.3. Zircon Lu–Hf Isotope Compositions
6. Discussion
6.1. Late Triassic Mafic–Ultramafic Magmatism
6.2. Geodynamic Setting during the Late Triassic
6.3. Petrogenesis
6.3.1. Mafic–Ultramafic Rocks
6.3.2. Diorites
7. Conclusions
- (1)
- The mafic–ultramafic and dioritic intrusions in Kaimuqi, with diorite and gabbro crystallization ages of 222 ± 1 Ma and 220 ± 1 Ma, respectively, were emplaced in an extensional geodynamic setting after the closure of the Palaeo-Tethys Ocean during the Late Triassic.
- (2)
- The primary magma of the mafic–ultramafic intrusion was derived from the lithospheric mantle that was dominantly metasomatized by subduction fluids and experienced crustal contamination.
- (3)
- The diorite was classified as sanukitic HMAs and originated from the low-degree partial melting of enriched lithospheric mantle that was metasomatized by subduction-derived fluids and sediments.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, L.M.; Song, X.Y.; Hu, R.Z.; Yu, S.Y.; Yi, J.N.; Kang, J.; Huang, K.J. Mg-Sr-Nd isotopic insights into petrogenesis of the Xiarihamu mafic-ultramafic intrusion, Northern Tibetan Plateau, China. J. Petrol. 2021, 62, egaa113. [Google Scholar] [CrossRef]
- Zhai, W.; Zheng, S.Q.; Zhang, L.Y.; Sun, X.M.; Liang, J.L.; Fu, B.; Zhao, J.W.; Guo, H.H.; Zhang, Y.; Han, S.Y.; et al. In situ pyrite sulfide isotope and trace element analyses of the word-class Dachang gold deposit, northern Qinghai-Tibetan Plateau: Implications for metllogenesis. Ore Geol. Rev. 2021, 138, 104347. [Google Scholar] [CrossRef]
- Chen, X.D.; Li, B.; Tang, L.; Zhang, W.D.; Zhu, L. Silver enrichment and trace element deportment in hydrothermal replacement reactions: Perspective from the Nageng Ag-polymetallic deposit, East Kunlun Orogen, NW China. Ore Geol. Rev. 2022, 142, 104691. [Google Scholar] [CrossRef]
- Yu, M.; Mao, J.W.; Li, B. Multistage skarn-related tourmaline from the Galinge deposit, Qiman Tagh, Western China: A fluid evolution perspective. Can. Mineral. 2017, 55, 3–19. [Google Scholar] [CrossRef]
- Zhong, S.H.; Feng, C.Y.; Seltmann, R.; Dolgopolova, A.; Andersen, J.; Li, D.X.; Yu, M. Sources of fluids and metals and evolution models of skarn deposits in the Qimantagh metallogenic belt: A case study from the Weibao deposit, East Kunlun Mountains, northern Tibetan Plateau. Ore Geol. Rev. 2018, 93, 19–37. [Google Scholar] [CrossRef]
- Li, S.J.; Sun, F.Y.; Gao, Y.W.; Zhao, J.W.; Li, L.S.; Yang, Q.A. The theoretical guidance and the practice of small intrusions forming large deposits: The enlightenment and significance for searching breakthrough of Cu-Ni sulfide deposit in Xiarihamu, East Kunlun, Qinghai. Northwestern Geol. 2012, 14, 185–191. [Google Scholar]
- Zhang, Z.W.; Wang, Y.L.; Qian, B.; Liu, Y.G.; Zhang, D.Y.; Lü, P.R.; Dong, J. Metallogeny and tectonomagmatic setting of Ni-Cu magmatic sulfide mineralization, number I Shitoukengde mafic-ultramafic complex, East Kunlun Orogenic Belt, NW China. Ore Geol. Rev. 2018, 96, 236–246. [Google Scholar] [CrossRef]
- Yan, J.M.; Sun, F.Y.; Li, B.L.; Zhang, W.H.; Yan, Z.P.; Zhang, Y.S. Geochronological, geochemical, and mineralogical characteristics of the Akechukesai-I mafic-ultramafic complex in the eastern Kunlun area of the northern Tibet Plateau, west China: Insights into ore potential. Ore Geol. Rev. 2020, 121, 103468. [Google Scholar] [CrossRef]
- Shi, G.H.; Xiong, S.Y.; Li, Y.N.; Wang, Y.; Zhang, L.B. Analysis on prospecting potential of Langmuri Nickel polymetallic deposit in east Kunlun orogenic belt, Qinghai. Miner. Explor. 2018, 9, 1205–1211. [Google Scholar]
- Norbu, N.; Li, J.; Liu, Y.; Jia, Q.; Kong, H. Tectomagmatic setting and Cu-Ni mineralization potential of the Gayahedonggou complex, Northern Qinghai-Tibetan Plateau, China. Minerals 2020, 10, 950. [Google Scholar] [CrossRef]
- Wang, G.; Sun, F.Y.; Li, B.L.; Li, S.J.; Zhao, J.W.; Ao, C.; Yang, Q.A. Petrography, zircon U-Pb geochronology of the mafic-ultramafic intrusion in Xiarihamu Cu-Ni deposit from the East Kunlun, with implications for geodynamic setting. Earth Sci. Front. 2014, 21, 381–401. [Google Scholar] [CrossRef]
- Peng, B.; Sun, F.Y.; Li, B.L.; Wang, G.; Li, S.J.; Zhao, T.F.; Li, L.; Zhi, Y.B. The geochemistry and geochronology of the Xiarihamu II mafic-ultramafic complex, Eastern Kunlun, Qinghai Province, China: Implications for the genesis of magmatic Ni-Cu sulfide deposits. Ore Geol. Rev. 2016, 73, 13–28. [Google Scholar] [CrossRef]
- He, S.Y.; Sun, F.F.; Li, Y.P.; Li, D.S.; Yu, M.; Qian, Y.; Liu, Y.L.; Bai, G.L.; Zhao, M.Q.; Zhang, P.; et al. Geochemical and geochronological significance of the Binggounan gabbro in the Qiman Tage region, Qinghai Province. Bull. Mineral. Petrol. Geochem. 2017, 36, 582–592. [Google Scholar]
- Li, L.; Sun, F.Y.; Li, B.L.; Li, S.J.; Chen, G.J.; Wang, W.; Yan, J.M.; Zhao, T.F.; Dong, J.; Zhang, D.X. Geochronology, geochemistry and Sr-Nd-Pb-Hf isotopes of No. I complex from the Shitoukengde Ni-Cu sulfide deposit in the Eastern Kunlun Orogen, Western China: Implications for the magmatic source, geodynamic setting and genesis. Acta Geol. Sin. (Engl. Ed.) 2018, 92, 106–126. [Google Scholar] [CrossRef]
- Yan, J.M.; Sun, F.Y.; Qian, Y.; Li, L.; Zhang, Y.S.; Yan, Z.P. Geochemistry, geochronology, and Hf-S-Pb isotopes of the Akechukesai IV mafic-ultramafic complex, Western China. Minerals 2019, 9, 275. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.M.; Sun, F.Y.; Li, L.; Yang, Y.Q.; Zhang, D.X. A slab break-off model for mafic-ultramafic igneous complexes in the East Kunlun Orogenic Belt, northern Tibet: Insights from early Palaeozoic accretion related to post-collisional magmatism. Int. Geol. Rev. 2019, 61, 1171–1188. [Google Scholar] [CrossRef]
- Yan, J.M.; Sun, G.S.; Sun, F.Y.; Li, L.; Li, H.R.; Gao, Z.H.; Hua, L.; Yan, Z.P. Geochronology, geochemistry, and Hf isotopic compositions on monzogranites and mafic-ultramafic complexes in the Maxingdawannan area, Eastern Kunlun Orogen, Western China: Implications for magma sources, geodynamic setting, and petrogenesis. J. Earth Sci. 2019, 30, 335–347. [Google Scholar] [CrossRef]
- Li, C.S.; Zhang, Z.W.; Li, W.Y.; Wang, Y.L.; Sun, T.; Ripley, E.M. Geochronology, petrology and Hf-S isotope geochemistry of the newly-discovered Xiarihamu magmatic Ni-Cu sulfide deposit in the Qinghai-Tibet plateau, western China. Lithos 2015, 216–217, 224–240. [Google Scholar] [CrossRef]
- Liu, Y.G.; Li, W.Y.; Jia, Q.Z.; Zhang, Z.W.; Wang, Z.A.; Zhang, Z.B.; Zhang, J.W.; Qian, B. The dynamic sulfide saturation process and a possible slab break-off model for the giant Xiarihamu magmatic nickel ore deposit in the East Kunlun Orogenic Belt, northern Qinghai-Tibet Plateau, China. Econ. Geol. 2018, 113, 1383–1417. [Google Scholar] [CrossRef]
- Li, L.; Zhang, D.X.; Tan, S.C.; Sun, F.Y.; Wang, C.; Zhao, T.F.; Li, S.J.; Yang, Y.Q. The parental magma composition, crustal contamination process, and metallogenesis of the Shitoukengde Ni-Cu sulfide deposit in the Eastern Kunlun Orogenic Belt, NW China. Resour. Geol. 2021, 71, 339–362. [Google Scholar] [CrossRef]
- Sun, F.Y.; Chen, G.H.; Chi, X.G. Report of Metallogenic Regularity and Prospecting Direction for the Eastern Kunlun Metallogenic Belt in Xinjiang-Qinghai; Geological Survey of Jilin University: Changchun, China, 2009. (In Chinese) [Google Scholar]
- Sun, F.Y.; Li, B.L.; Ding, Q.F.; Zhao, J.W.; Pan, T.; Yu, X.F.; Wang, L.; Chen, G.J.; Ding, Z.J. Report of Significant Exploration Problem for Eastern Kunlun Metallogenic Belt in Qinghai Province; Geological Survey of Jilin University: Changchun, China, 2009. (In Chinese) [Google Scholar]
- Jiang, C.F.; Yang, J.S.; Feng, B.G.; Zhu, Z.Z.; Zhao, M.; Chai, Y.C. Opening-Closing Evolution of the Kunlun Mountains; Geological Memoirs Series; Geological Publishing House: Beijing, China, 1992. (In Chinese) [Google Scholar]
- Zhang, D.Q.; Feng, C.Y.; Li, D.X.; Xu, W.Y.; Yan, S.H.; She, H.Q.; Dong, Y.J.; Cui, Y.H. Orogenic gold deposits in the north Qaidam and East Kunlun Orogen, West China. Miner. Depos. 2001, 20, 137–146. (In Chinese) [Google Scholar]
- Li, T.D. The uplifting process and mechanism of the Qinghai-Tibet Plateau. Acta Geosci. Sin. 1995, 1, 1–9. (In Chinese) [Google Scholar]
- Wu, G.J.; Xiao, X.C.; Li, T.D. Expose the uplift of Qinghai-Tibet Plateau: Yadong-Golmud geoscience transect in Qinghai-Tibet Plateau, China. Earth Sci. 1996, 21, 34–40. (In Chinese) [Google Scholar]
- Gao, R.; Li, T.D.; Wu, G.J. Lithospheric evolution and geodynamic process of the Qinghai-Tibet Plateau. Geol. Rev. 1998, 44, 389–395. (In Chinese) [Google Scholar]
- Yin, H.F.; Zhang, K.Q. Characteristics of the Eastern Kunlun Orogenic Belt. Earth Sci. 1997, 22, 339–342. (In Chinese) [Google Scholar]
- Li, L.; Liu, H.T.; Wang, C.B.; Sun, F.Y.; Zhang, K.; You, C.C.; Sun, Y.G.; Tan, S.C. Metallogeny of the Dagangou Au-Ag-Cu-Sb deposit in the Eastern Kunlun Orogen, NW China: Constraints from ore-forming fluid geochemistry and S-H-O isotopes. Geofluids 2021, 4, 1–26. [Google Scholar] [CrossRef]
- Li, L. Features of the Mafic-Ultramafic Rocks in the Periphery of Qaidam Block, Qinghai Province and Their Metallogenesis. Ph.D. Thesis, Jilin University, Changchun, China, 2018. (In Chinese). [Google Scholar]
- Yuan, C.; Zhou, M.F.; Sun, M.; Zhao, Y.; Wilde, S.; Long, X.; Yan, D.P. Triassic granitoids in the eastern Songpan Ganzi Fold Belt, SW China: Magmatic response to geodynamics of the deep lithosphere. Earth Planet. Sci. Lett. 2010, 290, 481–492. [Google Scholar] [CrossRef]
- Li, L.; Yan, Z.P.; Song, Z.J.; Tan, S.C.; Li, X.L.; Xin, W.; Tian, N.; Wang, G.; Wang, C.; Li, J.Y. Late Permian-Middle Triassic intermediate-acid intrusive rocks in the Eastern Kunlun Orogenic Belt, NW China: Petrogenesis and implications for geodynamic evolution. Int. Geol. Rev. 2021, 2, 1–23. [Google Scholar] [CrossRef]
- Ding, Q.F.; Yan, W.; Zhang, B.L. Sulfur- and lead-isotope geochemistry of the Balugou Cu-Pb-Zn skarn deposit in the Wulonggou area in the eastern Kunlun Orogen, NW China. J. Earth Sci. (Engl. Ed.) 2015, 27, 740–750. [Google Scholar] [CrossRef]
- Liu, Y.J.; Genser, J.; Neubauer, F.; Wei, J.; Ge, X.H.; Handler, R.; Takasu, A. 40Ar/39Ar mineral ages from basement rocks in the Eastern Kunlun Mountains, NW China, and their tectonic implications. Tectonophysics 2005, 398, 199–224. [Google Scholar] [CrossRef]
- Li, L.; Sun, F.Y.; Li, S.J.; Li, B.L.; Qian, Y.; Wang, C.; Zhao, T.F.; Yu, L.; Wang, G.; Huo, L.; et al. Metallogenic geological conditions and regularity of magmatic Cu-Ni sulfide deposits in the Eastern Kunlun metallogenic belt. J. Jilin Univ. (Earth Sci. Ed.) 2022, 52, 1–37. (In Chinese) [Google Scholar]
- Zhang, L.; Li, B.L.; Liu, L.; Wang, P.X.; Li, L. Geochronology, geochemistry and geological significance of the Early Devonian bimodal intrusive rocks in Wulonggou area, East Kunlun Orogen. Acta Petrol. Sin. 2021, 37, 2007–2028. (In Chinese) [Google Scholar]
- Xin, W.; Sun, F.Y.; Li, L.; Yan, J.M.; Zhang, Y.T.; Wang, Y.C.; Shen, T.S.; Yang, Y.J. The Wulonggou metaluminous A2-type granites in the Eastern Kunlun Orogenic Belt, NW China: Rejuvenation of subduction-related felsic crust and implications for post-collision extension. Lithos 2018, 312–313, 108–127. [Google Scholar] [CrossRef]
- Liu, Y.G.; Chen, Z.G.; Li, W.Y.; Xu, X.H.; Kou, X.; Jia, Q.Z.; Zhang, Z.W.; Liu, F.; Wang, Y.L.; You, M.X. The Cu-Ni mineralization potential of the Kaimuqi mafic-ultramafic complex and the indicators for the magmatic Cu-Ni sulfide deposit exploration in the East Kunlun Orogenic Belt, Northern Qinghai-Tibet Plateau, China. J. Geochem. Explor. 2019, 198, 41–53. [Google Scholar] [CrossRef]
- Warr, L.N. IMA-CNMNC approved mineral symbols. Mineral. Mag. 2021, 85, 291–320. [Google Scholar] [CrossRef]
- Cheng, T.; Nebel, O.; Sossi, P.A.; Chen, F.K. Evaluation of Hf-Fe isotopic compositions of National Standard Material GSR-1, GSR-2 and GSR-3 for igneous rocks. Acta Geol. Sin. 2015, 89. (In Chinese) [Google Scholar]
- Yuan, H.L.; Gao, S.; Liu, X.M.; Li, H.M.; Gunther, D.; Wu, F.Y. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostand. Geoanalytical Res. 2004, 28, 353–370. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Gao, S.; Günther, D.; Xu, J.; Gao, C.G.; Chen, H.H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Ludwig, K.R. User’s manual for Isoplot 3.00: A geochronological toolkit for Microsoft Execl. Berkeley Geochronol. Cent. Spec. Publ. 2003, 4, 1–70. [Google Scholar]
- Hou, K.J.; Li, Y.H.; Zou, T.R.; Qu, X.M.; Shi, Y.R.; Xie, G.Q. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological Applications. Acta Petrol. Sin. 2007, 23, 2595–2604. (In Chinese) [Google Scholar]
- Wu, F.Y.; Yang, Y.H.; Xie, L.W.; Yang, J.H.; Xu, P. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chem. Geol. 2006, 234, 105–126. [Google Scholar] [CrossRef]
- Guo, C.L.; Chen, Y.C.; Zeng, Z.L.; Lou, F.S. Petrogenesis of the Xihuashan granites in southeastern China: Constraints from geochemistry and in-situ analyses of zircon U-Pb-Hf-O isotopes. Lithos 2012, 148, 209–227. [Google Scholar] [CrossRef]
- Middlemost, E.A.K. Naming materials in the magma/igneous rock system. Earth-Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Irvine, T.N.; Barager, W.R.A. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci. 1971, 8, 523–548. [Google Scholar] [CrossRef]
- Peccerillo, A.; Taylor, S.R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib. Mineral. Petrol. 1976, 58, 63–81. [Google Scholar] [CrossRef]
- Boynton, W.V. Geochemistry of the rare earth elements: Meteorite studies. In Rare Earth Element Geochemistry; Henderson, P., Ed.; Elsevier: Amsterdam, The Netherlands, 1984; pp. 63–114. [Google Scholar]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Wei, X.P.; Wang, H.; Zhang, X.Y.; Dong, R.; Zhu, S.B.; Xing, C.H.; Li, P.; Yan, Q.H.; Zhou, K.L. Petrogenesis of Triassic high-Mg diorites in Western Kunlun Orogen and its tectonic implication. Geochimica 2018, 47, 363–379. (In Chinese) [Google Scholar]
- Taylor, R.N.; Nesbitt, R.W.; Vidal, P.; Harmon, R.S.; Auvray, B.; Croudace, I.W. Mineralogy, chemistry, and genesis of the boninite series volcanics, Chichijima, Bonin Islands, Japan. J. Petrol. 1994, 35, 577–617. [Google Scholar] [CrossRef]
- Martin, H. Adakitic magmas: Modern analogues of Archaean granitoids. Lithos 1999, 46, 411–429. [Google Scholar] [CrossRef]
- Wu, F.Y.; Li, X.H.; Zheng, Y.F.; Gao, S. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrol. Sin. 2007, 23, 185–220. (In Chinese) [Google Scholar]
- Song, X.Y.; Yi, J.N.; Chen, L.M.; She, Y.W.; Liu, C.Z.; Dang, X.Y.; Yang, Q.A.; Wu, S.K. The giant Xiarihamu Ni-Co sulfide deposit in the East Kunlun Orogenic Belt, Northern Tibet Plateau, China. Econ. Geol. 2016, 111, 29–55. [Google Scholar] [CrossRef]
- Li, H.R.; Qian, Y.; Sun, F.Y.; Sun, J.L.; Wang, G. Zircon U-Pb dating and sulfide Re-Os isotopes of the Xiarihamu Cu-Ni sulfide deposit in Qinghai Province, NW China. Can. J. Earth Sci. 2020, 57, 1–21. [Google Scholar] [CrossRef]
- Zhou, W.; Du, W.; Wang, Z.X. Geochronology and its significance of the mafic-ultramafic complex in Shitoukengde Cu-Ni mineral occurrence, Eastern Kunlun. J. Jilin Univ. (Earth Sci. Ed.) 2015, 45 (Suppl. 1), 1–2. (In Chinese) [Google Scholar]
- Jia, L.H.; Mao, J.W.; Li, B.L.; Zhang, D.Y.; Sun, T.T. Geochronology and petrogenesis of the Late Silurian Shitoukengde mafic–ultramafic intrusion, NW China: Implications for the tectonic setting and magmatic Ni-Cu mineralization in the East Kunlun Orogenic Belt. Int. Geol. Rev. 2021, 63, 549–570. [Google Scholar] [CrossRef]
- Lü, L.S.; Mao, J.W.; Li, H.B.; Pirajno, F.; Zhang, Z.H.; Zhou, Z.H. Pyrrhotite Re-Os and SHRIMP zircon U-Pb dating of the Hongqiling Ni-Cu sulfide deposits in Northeast China. Ore Geol. Rev. 2011, 43, 106–119. [Google Scholar] [CrossRef]
- Wei, B.; Wang, C.Y.; Arndt, N.T.; Prichard, H.M.; Fisher, P.C. Textural relationship of sulfide ores, PGE, and Sr-Nd-Os isotope compositions of the Triassic Piaohechuan Ni-Cu sulfide deposit in NE China. Econ. Geol. 2015, 110, 2041–2062. [Google Scholar] [CrossRef]
- Wang, Z.G.; Xi, A.H.; Ge, Y.H.; Gong, P.H.; Wang, B. Chronology, significance of the intrusion group in Sandaogang Cu-Ni sulfide deposit, Panshi, Jilin Province. J. Jilin Univ. (Earth Sci. Ed.) 2011, 41 (Suppl. 1), 126–133. (In Chinese) [Google Scholar]
- Ao, C.; Sun, F.Y.; Li, B.L.; Wang, G.; Li, L.; Li, S.J.; Zhao, J.W. U-Pb dating, geochemistry and tectonic implications of Xiaojianshan gabbro in Qimantage Mountain, Eastern Kunlun Orogenic Belt. Geotecton. Et Metallog. 2015, 39, 1176–1184. (In Chinese) [Google Scholar]
- Luo, Z.H.; Ke, S.; Cao, Y.Q.; Deng, J.F.; Shen, H.W. Late Indosinian mantle-derived magmatism in the East Kunlun. Geol. Bull. China 2002, 21, 292–297. (In Chinese) [Google Scholar]
- Yang, X.M.; Sun, F.Y.; Zhao, T.F.; Liu, J.L.; Peng, B. Zircon U-Pb dating, geochemistry and tectonic implications of Akechukesai gabbro in East Kunlun orogenic belt. Geol. Bull. China 2018, 37, 1842–1852. (In Chinese) [Google Scholar]
- Zhao, C.S.; Yang, F.Q.; Dai, J.Z. Metallogenic age of the Kendekeke Co, Bi, Au deposit in East Kunlun Mountains, Qinghai Province, and its significance. Miner. Depos. 2006, 25, 427–430. (In Chinese) [Google Scholar]
- Wang, S.; Feng, C.Y.; Li, S.J.; Jiang, J.H.; Li, D.S.; Su, S.S. Zircon SHRIMP U-Pb dating of granodiorite in the Kaerqueka poly metallic ore deposit, Qimantage Mountain, Qinghai Province, and its geological implications. Geol. China 2009, 36, 74–84. [Google Scholar]
- Li, B.L.; Sun, F.Y.; Yu, X.F.; Qian, Y.; Wang, G.; Yang, Y.Q. U-Pb dating and geochemistry of diorite in the eastern section from eastern Kunlun middle uplifted basement and granitic belt. Acta Petrol. Sin. 2012, 28, 1163–1172. [Google Scholar]
- Zhang, J.Y.; Ma, C.Q.; Xiong, F.H.; Liu, B. Petrogenesis and tectonic significance of the Late Permian-Middle Triassic calc-alkaline granites in the Balong region, eastern Kunlun Orogen, China. Geol. Mag. 2012, 149, 892–908. [Google Scholar] [CrossRef]
- Feng, C.Y.; Wang, S.; Li, G.C.; Ma, S.C.; Li, D.S. Middle to Late Triassic in the Qimantage area, Qinghai Province, China: Chronology, geochemistry and metallogenic significances. Acta Petrol. Sin. 2012, 28, 665–678. [Google Scholar]
- Xu, Q.L.; Sun, F.Y.; Li, B.L.; Qian, Y.; Li, L.; Yang, Y.Q. Geochronological dating, geochemical characteristics and tectonic setting of the granite-porphyry in the Mohexiala silver polymetallic deposit, Eastern Kunlun Orogenic Belt. Geotecton. Et Metallog. 2014, 38, 421–433. [Google Scholar]
- Li, S.J.; Sun, F.Y.; Feng, C.Y.; Liu, Z.H.; Zhao, J.W.; Li, Y.C.; Wang, S. Geochronological study on Yazigou polymetallic deposit in Eastern Kunlun, Qinghai Province. Acta Geol. Sin. 2008, 82, 949–955. [Google Scholar]
- Gao, H.C.; Sun, H.C. Middle to Late Triassic granitic magmatism in the East Kunlun Orogenic Belt, NW China: Petrogenesis and implications for a transition from subduction to post-collision setting of the Palaeo-Tethys Ocean. Geol. J. 2021, 56, 3378–3395. [Google Scholar] [CrossRef]
- Fan, X.Z.; Sun, F.Y.; Xu, C.H.; Wu, D.Q.; Yu, L.; Wang, L.; Yan, C.; Bakht, S. Volcanic rocks of the Elashan Formation in the Dulan-Xiangride basin, East Kunlun Orogenic Belt, NW China: Petrogenesis and implications for Late Triassic geodynamic evolution. Int. Geol. Rev. 2022, 64, 1270–1293. [Google Scholar] [CrossRef]
- Hu, Y.; Niu, Y.L.; Li, J.Y.; Ye, L.; Kong, J.J.; Chen, S.; Zhang, Y.; Zhang, G.R. Petrogenesis and tectonic significance of the late Triassic mafic dykes and felsic volcanic rocks in the East Kunlun Orogenic Belt, Northern Tibet Plateau. Lithos 2016, 245, 205–222. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.X.; Zeng, X.P.; Wei, X.L.; Wei, Y.X.; Yang, Y.Q.; Li, J.T. Geochemistry and tectonic setting of Late Triassic volcanics in Elashan Formation in south of Nalinggelehe river, East Kunlun. Contrib. Geol. Miner. Resour. Res. 2017, 32, 245–253. [Google Scholar]
- Shao, F.L. Petrogenesis of Triassic Granitoids and Rhyolites in the East Kunlun Orogenic Belt and Their Tectonic Implications. Ph.D. Thesis, Institute of Oceanology, Chinese Academy of Science, Qingdao, China, 2017. [Google Scholar]
- Luo, B.J. Petrogenesis and Geodynamic Processes of the Indosinian Magmatism in the West Qinling Orogenic Belt, Central China. Ph.D. Thesis, China University of Geosciences, Wuhan, China, 2013. [Google Scholar]
- Zhang, H.F.; Sun, Y.L.; Tang, Y.J.; Xiao, Y.; Zhang, W.H.; Zhao, X.M.; Santosh, M.; Mensies, M.A. Melt-peridotite interaction in the Pre-Cambrian mantle beneath the western North China Craton: Petrology, geochemistry and Sr, Nd and Re isotopes. Lithos 2012, 149, 100–114. [Google Scholar] [CrossRef]
- Zhao, Y.; Zheng, J.P.; Xiong, Q.; Zhang, H. Destruction of the North China Craton triggered by the Triassic Yangtze continental subduction/collision: A review. J. Asian Earth Sci. 2018, 164, 72–82. [Google Scholar] [CrossRef]
- Niu, Y.L. Geological understanding of plate tectonics: Basic concepts, illustrations, examples and new perspectives. Glob. Tecton. Metallog. 2014, 10, 23–46. [Google Scholar] [CrossRef]
- Dai, L.Q.; Zheng, Y.F.; Zhao, Z.F. Termination time of peak decratonization in North China: Geochemical evidence from mafic igneous rocks. Lithos 2016, 240–243, 327–336. [Google Scholar] [CrossRef]
- Niu, Y.L.; O’hara, M.J. Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics consideration. J. Geophys. Res. Solid Earth 2003, 108, 2209. [Google Scholar] [CrossRef] [Green Version]
- Niu, Y.L.; Wilson, M.; Humphreys, E.R.; O’hara, M.J. A trace element perspective on the source of ocean island basalts (OIB) and fate of subducted ocean crust (SOC) and mantle lithosphere (SML). Episodes 2012, 35, 310–327. [Google Scholar] [CrossRef]
- Zhang, J.J.; Guo, P.Y.; Sun, P.; Chen, M.Q.; Xiao, Y.Y. Discovery of phlogopite-bearing pyroxenites from Darinoor in Inner Mongolia and its geological implication. Glob. Geol. 2020, 39, 30–45. (In Chinese) [Google Scholar]
- Guo, Y.P.; Niu, Y.L.; Sun, P.; Ye, L.; Liu, J.J.; Zhang, Y.; Feng, Y.X.; Zhao, J.X. The origin of Cenozoic basalts from central Inner Mongolia, East China: The consequence of recent mantle metasomatism genetically associated with seismically observed paleo-Pacific slab in the mantle transition zone. Lithos 2016, 240–243, 104–118. [Google Scholar] [CrossRef]
- Griffin, W.L.; Pearson, N.J.; Belousova, E.; Jackson, S.E.; Achterbergh, E.V.; O’Reilly, S.Y.; Shee, S.R. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Et Cosmochim. Acta 2000, 64, 133–147. [Google Scholar] [CrossRef]
- Thompson, R.N.; Morrison, M.A. Asthenospheric and lowerlithospheric mantle contributions to continental extensional magmatism: An example from the British Tertiary province. Chem. Geol. 1988, 68, 1–15. [Google Scholar] [CrossRef]
- Ewart, A.; Milner, S.C.; Armstrong, R.A.; Duncan, A.R. Etendeka volcanism of the goboboseb Mountains and messum igneous complex, Namibia. Part II: Voluminous quartz latite volcanism of the Awahab magma system. J. Petrol. 1998, 39, 227–253. [Google Scholar] [CrossRef]
- Taylor, S.R.; Mclennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell: London, UK, 1985; pp. 57–72. [Google Scholar]
- Hawkesworth, C.J.; Gallagher, K.; Hergt, J.M.; Mcdernott, F. Mantle and slab contribution in arc magmas. Annu. Rev. Earth Planet. 1993, 21, 175–204. [Google Scholar] [CrossRef]
- Mir, A.R.; Alvi, S.H.; Balaram, V. Geochemistry of the mafic dykes in parts of the Singhbhum granitoid complex: Petrogenesis and tectonic setting. Arab. J. Geosci. 2011, 4, 933–943. [Google Scholar] [CrossRef]
- Li, L.; Sun, F.Y.; Liu, H.W.; Tan, S.C.; Yü, L.; Wang, F.; Shen, D.L.; Wang, X.P.; Wang, Y.G. Mineral chemistry, S-Pb-O isotopes, and S/Se ratios of the Niubiziliang Ni-(Cu) sulfide deposit in north Qaidam orogenic belt, NW China: Constraints on the parental magma composition, evolution, and sulfur saturation mechanism. Minerals 2020, 10, 837. [Google Scholar] [CrossRef]
- Ihlenfeld, C.; Keays, R.R. Crustal contamination and PGE mineralization in the Platreef, Bushveld Complex, South Africa: Evidence for multiple contamination events and transport of magmatic sulfide. Miner. Depos. 2011, 46, 813–832. [Google Scholar] [CrossRef]
- Smith, J.W.; Holwell, D.A.; McDonald, I. Precious and base–metal geochemistry and mineralogy of the grasvally-norite-pyroxenite-anorthosite (GNPA) member, northern Bushveld Complex, South Africa: Implications for a multistage emplacement. Miner. Depos. 2014, 49, 667–692. [Google Scholar] [CrossRef] [Green Version]
- Kepezhinskas, P.; McDermott, F.; Defant, M.J.; Hochstaedter, A.; Drummond, M.; Hawkesworth, C.J.; Koloskov, A.; Maury, R.C.; Bellon, H. Trace element and Sr-Nd-Pb isotopic constraints on a three-component model of Kamchatka arc petrogenesis. Geochim. Cosmochim. Acta 1997, 61, 577–600. [Google Scholar] [CrossRef]
- He, Y.H.; Zhao, G.C.; Sun, M.; Han, Y. Petrogenesis and tectonic setting of volcanic rocks in the Xiaoshan and Waifangshan areas along the southern margin of the North China Craton: Constraints from bulk-rock geochemistry and Sr-Nd isotopic composition. Lithos 2010, 114, 186–199. [Google Scholar] [CrossRef]
- Smith, J.W.; Holwell, D.A.; McDonald, I.; Boyce, A.J. The application of S isotopes and S/Se ratios in determining ore-forming processes of magmatic Ni-Cu-PGE sulfide deposits: A cautionary case study from the northern Bushveld Complex. Ore Geol. Rev. 2016, 73, 148–174. [Google Scholar] [CrossRef] [Green Version]
- Neal, C.R.; Mahoney, J.J.; Chazey, W.J. Mantle sources and the highly variable role of continental lithosphere in basalt petrogenesis of the Kerguelen Plateau and Broken Ridge LIP: Results from ODP Leg 183. J. Petrol. 2002, 43, 1177–1205. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.; Hoernes, S.; Mezger, K. Geochronology and petrogenesis of Pan-African, syn-tectonic, S-type and post-tectonic A-type granite (Namibia): Products of melting of crustal sources, fractional crystallization and wall rock entrainment. Lithos 2000, 50, 259–287. [Google Scholar] [CrossRef]
- Cerny, P.; Corkery, M.T.; Halden, N.M.; Ferreira, K.; Brisbin, W.C.; Chackowsky, L.E.; Meintzer, R.E.; Longstaffe, F.J.; Trueman, D.L. Extreme fractionation and deformation of the leucogranite-pegmatite suite at Red Cross Lake, Manitoba, Canada. I. Geological setting. Can. Mineral. 2013, 50, 1793–1806. [Google Scholar] [CrossRef]
- Macpherson, C.G.; Dreher, S.T.; Thirlwall, M.F. Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet. Sci. Lett. 2006, 243, 581–593. [Google Scholar] [CrossRef] [Green Version]
- Kamei, A.; Owada, M.; Nagao, T.; Shraki, K. High-Mg diorites derived from sanukitic HMA magmas, KyusHu Island, Southwest Japan arc: Evidence from clinopyroxene and whole rock compositions. Lithos 2004, 75, 359–371. [Google Scholar] [CrossRef]
- Duan, F.H.; Li, Y.J.; Zhi, Q.; Wan, Y.; Ren, Y. Geochemical characteristics, Petrogenesis of the Sanukitic dikes in the Miaoergou area of West Junggar, Xinjiang, NW China and their geological significance. Geotecton. Et Metallog. 2018, 42, 759–776. (In Chinese) [Google Scholar]
- Song, C.M.; Li, J.; Zhou, J.B.; Song, Y.X.; Li, S.Y.; Wang, B.; Ding, Z.J. The discovery and tectonic setting of the Early Cretaceous high-Mg diorites in the Jiaodong Peninsula. Acta Petrol. Sin. 2020, 36, 279–296. (In Chinese) [Google Scholar]
- Wang, A.Q.; Yang, D.B.; Xu, W.L.; Wang, Q.H.; Liang, J.H. Petrogenesis of the Early Cretaceous adakitic intrusive rocks in Chuzhou and Guandian, Anhui Province: Constraints from zircon U-Pb geochronology and Sr-Nd-Pb isotopic compositions. Acta Petrol. Sin. 2021, 37, 3559–3574. (In Chinese) [Google Scholar]
- Rickwood, P.C. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos 1989, 22, 247–263. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Wang, Y.J.; Fan, W.M.; Zhang, A.M.; Ma, L.Y. Geochronological and geochemical constraints on the metasomatised source for the Neoproterozoic (~825 Ma) high-Mg volcanic rocks from the Cangshuipu area (Hunan Province) along the Jiangnan domain and their tectonic implications. Precambrian Res. 2012, 220–221, 139–157. [Google Scholar] [CrossRef]
- Defant, M.J.; Drummond, M.S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 1990, 347, 662–665. [Google Scholar] [CrossRef]
- Stern, C.R.; Kilian, R. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contrib. Mineral. Petrol. 1996, 123, 263–281. [Google Scholar] [CrossRef]
- Saunders, A.D.; Rogers, G.; Marriner, G.F.; Terrell, D.J.; Verma, S.P. Geochemistry of Cenezoic volcanic rocks, Baja California, Mexico: Implications for the petrogenesis of post-subduction magmas. J. Volcanol. Geotherm. Res. 1987, 32, 223–245. [Google Scholar] [CrossRef]
- Hickey, R.L.; Frey, F.A. Geochemical characteristics of boninite series volcanics: Implications for their source. Geochim. Et Cosmochim. Acta 1982, 46, 2099–2115. [Google Scholar] [CrossRef]
- Wang, J.; Sun, F.Y.; Jiang, H.F.; Yu, L.; Wang, F.; Ning, C.Q.; Zhang, W.H. Age, petrogenesis and tectonic implications of high-Mg diorite in Chayong Region, Yushu, Qinghai. Earth Sci. 2018, 43, 733–752. (In Chinese) [Google Scholar]
- McCarron, J.J.; Smellie, J.L. Tectonic implication of ore-arc magmatism and generation of high-magnesian andesites: Alexander island, Antarctica. J. Geol. Soc. 1998, 155, 269–280. [Google Scholar] [CrossRef]
- Shimoda, G.; Tatsumi, Y.; Nohda, S. Setouchi high-Mg andesites revisited: Geochemical evidence for melting of subducted sediments. Earth Planet. Sci. Lett. 1998, 160, 479–492. [Google Scholar] [CrossRef]
- Plank, T.; Langmuir, C.H. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 1998, 145, 325–394. [Google Scholar] [CrossRef]
- Labanien, S.; Chauvel, C.; Germa, A.; Quidelleur, X. Martinique: A clear case for sediment melting and slab dehydration as a function of distance to the trench. J. Petrol. 2012, 53, 2441–2464. [Google Scholar] [CrossRef] [Green Version]
- Rapp, R.P.; Watson, E.B. Dehydration melting of metabasalt at 8~32 kbar: Implications for continental growth and crust-mantle recycling. J. Petrol. 1995, 36, 891–931. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, D.; Tan, S.; Wang, X.; Qin, Z.; Zhao, J.; Yang, L.; Zhang, W.; Li, X.; Yan, Z.; Yang, G.; et al. Geochronology, Petrogenesis and Geodynamic Setting of the Kaimuqi Mafic–Ultramafic and Dioritic Intrusions in the Eastern Kunlun Orogen, NW China. Minerals 2023, 13, 73. https://doi.org/10.3390/min13010073
Fan D, Tan S, Wang X, Qin Z, Zhao J, Yang L, Zhang W, Li X, Yan Z, Yang G, et al. Geochronology, Petrogenesis and Geodynamic Setting of the Kaimuqi Mafic–Ultramafic and Dioritic Intrusions in the Eastern Kunlun Orogen, NW China. Minerals. 2023; 13(1):73. https://doi.org/10.3390/min13010073
Chicago/Turabian StyleFan, Dongxu, Shucheng Tan, Xia Wang, Zeli Qin, Junfang Zhao, Le Yang, Wanhui Zhang, Xiaoliang Li, Zhengping Yan, Guizhong Yang, and et al. 2023. "Geochronology, Petrogenesis and Geodynamic Setting of the Kaimuqi Mafic–Ultramafic and Dioritic Intrusions in the Eastern Kunlun Orogen, NW China" Minerals 13, no. 1: 73. https://doi.org/10.3390/min13010073
APA StyleFan, D., Tan, S., Wang, X., Qin, Z., Zhao, J., Yang, L., Zhang, W., Li, X., Yan, Z., Yang, G., & Li, L. (2023). Geochronology, Petrogenesis and Geodynamic Setting of the Kaimuqi Mafic–Ultramafic and Dioritic Intrusions in the Eastern Kunlun Orogen, NW China. Minerals, 13(1), 73. https://doi.org/10.3390/min13010073