Mineralogical Characteristic and Beneficiation Evaluation of a Ta-Nb-Li-Rb Deposit
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Mineralogical Characteristic
3.1.1. Mineral Composition and Content of the Ore
3.1.2. Modes of Occurrence of Tantalum and Niobium
3.1.3. Modes of Occurrence of Lithium and Rubidium
3.1.4. Main Gangue Minerals
3.2. Benefication Evaluation of the Ta-Nb-Li-Rb Deposit
3.2.1. Separation of Tantalum-Niobium Minerals
3.2.2. Separation of Lithium and Rubidium
3.2.3. Comprehensive Utilization of Nonmetallic Minerals
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schulz, K.J.; DeYoung, J.H.; Seal, R.R.; Bradley, D.C. Critical Mineral Resources of the United States: Economic and Environmental Geology and Prospects for Future Supply; Geological Survey: Reston, VA, USA, 2017. [Google Scholar]
- Wagner, F.S. Rubidium and rubidium compounds. Kirk-Othmer Encycl. Chem. Technol. 2000, 1–11. [Google Scholar] [CrossRef]
- Linnen, R.; Trueman, D.L.; Burt, R. Tantalum and niobium. Crit. Met. Handb. 2014, 45, 361–384. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, S.; Xu, H.; Zhang, Y. Leaching of niobium and tantalum from a low-grade ore using a KOH roast–water leach system. Hydrometallurgy 2009, 98, 219–223. [Google Scholar] [CrossRef]
- Choubey, P.K.; Kim, M.-S.; Srivastava, R.R.; Lee, J.-C.; Lee, J.-Y. Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: From mineral and brine resources. Miner. Eng. 2016, 89, 119–137. [Google Scholar] [CrossRef]
- Rosales, G.D.; del Carmen Ruiz, M.; Rodriguez, M.H. Novel process for the extraction of lithium from β-spodumene by leaching with HF. Hydrometallurgy 2014, 147, 1–6. [Google Scholar] [CrossRef]
- Jandova, J.; Dvořák, P.; Formánek, J.; Vu, H.N. Recovery of rubidium and potassium alums from lithium-bearing minerals. Hydrometallurgy 2012, 119, 73–76. [Google Scholar] [CrossRef]
- Gulley, A.L.; Nassar, N.T.; Xun, S. China, the United States, and competition for resources that enable emerging technologies. Proc. Natl. Acad. Sci. USA 2018, 115, 4111–4115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gislev, M.; Grohol, M. Report on Critical Raw Materials and the Circular Economy; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Bale, M.; May, A. Processing of ores to produce tantalum and lithium. Miner. Eng. 1989, 2, 299–320. [Google Scholar] [CrossRef]
- Melcher, F.; Graupner, T.; Gäbler, H.-E.; Sitnikova, M.; Henjes-Kunst, F.; Oberthür, T.; Gerdes, A.; Dewaele, S. Tantalum–(niobium–tin) mineralisation in African pegmatites and rare metal granites: Constraints from Ta–Nb oxide mineralogy, geochemistry and U–Pb geochronology. Ore Geol. Rev. 2015, 64, 667–719. [Google Scholar] [CrossRef]
- Reichel, S.; Aubel, T.; Patzig, A.; Janneck, E.; Martin, M. Lithium recovery from lithium-containing micas using sulfur oxidizing microorganisms. Miner. Eng. 2017, 106, 18–21. [Google Scholar] [CrossRef]
- Lajoie-Leroux, F.; Dessemond, C.; Soucy, G.; Laroche, N.; Magnan, J.-F. Impact of the impurities on lithium extraction from β-spodumene in the sulfuric acid process. Miner. Eng. 2018, 129, 1–8. [Google Scholar] [CrossRef]
- Liu, J.; Yin, Z.; Li, X.; Hu, Q.; Liu, W. A novel process for the selective precipitation of valuable metals from lepidolite. Miner. Eng. 2019, 135, 29–36. [Google Scholar] [CrossRef]
- Chi, M.; Min, W.; Xiaodong, B.; Huijuan, Z.; Honghui, S.; Shoujing, W. Process mineralogy in super large Hengfeng tantalum-niobium deposit in Jiangxi Province. Chin. J. Rare Met. 2011, 35, 736–746. [Google Scholar]
- He, G.-W.; YE, Z.-P. Comprehensive Utilization for Low Grade Tantalite-columbite Ore with Granite-albite Type. Nonferrous Met. 2008, 60, 98–110. (In Chinese) [Google Scholar]
- GB/T 25283-2010, 48; Specification for Comprehensive Exploration and Evaluation of Mineral Resources. Department of Geological Exploration, Ministry of Land & Resources: Beijing, China, 2010. (In Chinese)
- DZ/T 0203-2002; Specifications for Rare Metal Mineral Exploration. Jiangxi Nonferrous Geological Survey Bureau, State Bureau of Nonferrous Metals Industry: Beijing, China, 2002. (In Chinese)
- Zhou, F.; Su, J.; Li, J.; Liu, X.; Huang, Z.; Li, P.; Huang, X.; Chen, H.; Hu, X.; Zeng, L. Comprehensive Utilization Evaluation of Tantalum-niobium-beryllium Rare Metal Deposits in Renli Deposit, Hunan Province. Conserv. Util. Miner. Resour. 2020, 40, 112–118. [Google Scholar]
- Habinshuti, J.B.; Munganyinka, J.P.; Adetunji, A.R.; Mishra, B.; Ofori-Sarpong, G.; Komadja, G.C.; Tanvar, H.; Mukiza, J.; Onwualu, A.P. Mineralogical and physical studies of low-grade tantalum-tin ores from selected areas of Rwanda. Results Eng. 2021, 11, 100248. [Google Scholar] [CrossRef]
- Martin, G.; Schneider, A.; Voigt, W.; Bertau, M. Lithium extraction from the mineral zinnwaldite: Part II: Lithium carbonate recovery by direct carbonation of sintered zinnwaldite concentrate. Miner. Eng. 2017, 110, 75–81. [Google Scholar] [CrossRef]
- Xie, R.; Zhu, Y.; Liu, J.; Li, Y. The flotation behavior and adsorption mechanism of a new cationic collector on the separation of spodumene from feldspar and quartz. Sep. Purif. Technol. 2021, 264, 118445. [Google Scholar] [CrossRef]
- Shu, K.; Xu, L.; Wu, H.; Xu, Y.; Luo, L.; Yang, J.; Tang, Z.; Wang, Z. In Situ Adsorption of Mixed Anionic/Cationic Collectors in a Spodumene–Feldspar Flotation System: Implications for Collector Design. Langmuir 2020, 36, 8086–8099. [Google Scholar] [CrossRef] [PubMed]
Component | Li2O | Na2O | MgO | Al2O3 | SiO2 | S | K2O |
Content wt.% | 0.12 | 6.06 | 0.010 | 15.74 | 72.35 | 0.038 | 3.60 |
Component | TiO2 * | CaO | Fe | Zn | Rb2O | ZrO2 | Nb2O5 * |
Content wt.% | 83 | 0.16 | 0.42 | 0.035 | 0.16 | 0.090 | 228 |
Component | Sn * | Ta2O5 * | WO3 * | Pb * | Bi * | ThO2 * | U3O8 * |
Content wt.% | 120 | 130 | 13 | 160 | 1 | 32 | 32 |
Mineral | Content wt.% |
---|---|
Columbite | 0.038 |
Microlite | 0.003 |
Cassiterite | 0.029 |
Zinnwaldite | 4.90 |
Sphalerite | 0.13 |
Galena | 0.025 |
Pyrite | 0.068 |
Goethite | 0.014 |
Zircon | 0.033 |
Topaz | 2.91 |
Orthoclase | 18.33 |
Albite | 52.20 |
Quartz | 19.21 |
Muscovite | 0.51 |
Mineral | Content wt.% | Ta2O5 wt.% | Nb2O5 wt.% | ||
---|---|---|---|---|---|
Grade | Distribution Rates | Grade | Distribution Rates | ||
Columbite | 0.038 | 20.58 | 55.31 | 50.59 | 82.95 |
Microlite | 0.003 | 65.06 | 13.81 | 5.06 | 0.65 |
Cassiterite | 0.029 | 6.487 | 13.31 | 1.397 | 1.75 |
Sphalerite | 0.13 | 0.1288 | 1.18 | 0.297 | 1.66 |
Zinnwaldite | 4.90 | 0.00896 | 3.11 | 0.027 | 5.71 |
Topaz | 2.91 | 0.00551 | 1.13 | 0.00237 | 0.30 |
Quartz | 19.21 | 0.0016 | 2.17 | 0.00107 | 0.89 |
Feldspar (albitite and orthoclase) | 70.53 | 0.002 | 9.98 | 0.002 | 6.09 |
Total | 99.75 | 0.01446 | 100.00 | 0.02371 | 100.00 |
Grain Grade (mm) | Intergranular Distribution (%) | Inclusion Distribution (%) | Total (%) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Albite and Quartz | Zinnwaldite and Albite | Albite | Muscovite and Albite | Zinnwaldite and Quartz | Muscovite and Quartz | Zinnwaldite | Quartz | Chlorite and Zinnwaldite | Albite and Topaz | Topaz and Quartz | Zinnwaldite | Quartz | Orthoclase and Albite | Content | Cumulative Distribution | |
0.550~0.400 | 1.04 | 0.80 | / | / | / | / | / | / | 0.76 | / | / | 0.76 | / | / | 3.36 | 3.36 |
0.400~0.300 | 1.06 | 1.20 | 3.64 | / | 1.25 | / | 0.62 | / | 1.27 | 0.67 | / | 1.20 | / | / | 10.92 | 14.28 |
0.300~0.200 | 0.87 | 2.82 | 1.27 | / | 2.38 | / | 1.27 | 0.39 | 0.88 | 0.92 | 0.44 | 2.24 | 0.50 | 1.01 | 15.00 | 29.28 |
0.200~0.100 | 3.02 | 5.42 | 6.92 | 1.32 | 4.29 | 1.27 | 2.61 | 1.78 | 0.67 | 0.21 | 1.63 | 3.88 | 3.77 | 1.69 | 38.49 | 67.77 |
0.100~0.074 | 0.67 | 1.34 | 3.07 | 0.16 | 1.43 | 1.01 | 1.22 | 0.34 | 0.32 | 0.16 | 0.34 | 2.95 | 0.53 | 0.88 | 14.45 | 82.22 |
0.074~0.044 | 1.04 | 0.97 | 3.42 | 0.69 | 0.60 | 0.37 | 0.60 | 0.81 | 0.32 | 0.42 | 0.10 | 2.70 | 0.69 | 1.55 | 14.27 | 96.49 |
0.044~0.020 | 0.35 | 0.07 | 0.58 | 0.14 | 0.07 | / | 0.14 | 0.12 | 0.10 | / | 0.14 | 0.74 | 0.28 | 0.62 | 3.32 | 99.81 |
<0.020 | 0.05 | 0.02 | / | / | / | / | / | 0.05 | / | / | / | 0.03 | 0.03 | 0.03 | 0.19 | 100 |
Total | 8.10 | 12.64 | 18.90 | 2.31 | 10.02 | 2.65 | 6.46 | 3.49 | 4.32 | 2.38 | 2.65 | 14.50 | 5.80 | 5.78 | / | / |
Distribution rate of embedded form (%) | 73.92 | 26.08 | 100.00 |
Product | Yield % | Grade % | Recovery % |
---|---|---|---|
Ta-Nb concentrates1 | 0.0240 | Ta2O5 18.33; Nb2O5 48.32 | Ta2O5 30.98; Nb2O5 53.20; |
Ta-Nb concentrates2 | 0.0129 | Ta2O5 18.35; Nb2O5 28.32 | Ta2O5 16.67; Nb2O5 16.76 |
Ta-Nb middlings | 0.1214 | Ta2O5 1.61; Nb2O5 0.39 | Ta2O5 13.76; Nb2O5 2.18 |
Mixed sulfides | 0.0412 | Pb 18.39; Zn 28.07 | |
Cassiterite | 0.0083 | Sn 42.13 | |
Topaz | 1.6128 | Purity>90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, Z.; Cheng, H.; Wei, M.; Zhao, D.; Wu, D.; Liu, C. Mineralogical Characteristic and Beneficiation Evaluation of a Ta-Nb-Li-Rb Deposit. Minerals 2022, 12, 457. https://doi.org/10.3390/min12040457
Lv Z, Cheng H, Wei M, Zhao D, Wu D, Liu C. Mineralogical Characteristic and Beneficiation Evaluation of a Ta-Nb-Li-Rb Deposit. Minerals. 2022; 12(4):457. https://doi.org/10.3390/min12040457
Chicago/Turabian StyleLv, Zihu, Hongwei Cheng, Min Wei, Dengkui Zhao, Dongyin Wu, and Changmiao Liu. 2022. "Mineralogical Characteristic and Beneficiation Evaluation of a Ta-Nb-Li-Rb Deposit" Minerals 12, no. 4: 457. https://doi.org/10.3390/min12040457