The Role of Jiningian Pluton in Yanshanian Metallogenic Events in the Dahutang Tungsten Deposit: Evidence from Whole Rock and Zircon Geochemistry
Abstract
:1. Introduction
2. Regional and Deposit Geology
3. Sampling and Analytical Techniques
3.1. Major and Trace Elements
3.2. Zircon U–Pb Dating and Trace Elements Analyses
4. Results
4.1. Major and Trace Elements
4.2. Zircon Chronology and Trace Elements
5. Discussion
5.1. Zircon Geochemistry
5.2. Whole Rock Geochemistry
5.3. Ore Formation Mechanisms and Models
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, J.; Lu, J.J.; Chen, W.F.; Wang, R.C.; Ma, D.S.; Zhu, J.C.; Zhang, W.L.; Ji, J.F. W-Sn-Nb-Ta-Bearing granites in the nanling range and their relationship to metallogengesis. Geol. J. China Univ. 2008, 14, 459–473, (In Chinese with English Abstract). [Google Scholar]
- Ma, D.S. Progress in Research on geochemistry of Tungsten. Geol. J. China Univ. 2009, 15, 19–34, (In Chinese with English Abstract). [Google Scholar]
- Mao, Z.H.; Cheng, Y.B.; Liu, J.J.; Yuan, S.D.; Wu, S.H.; Xiang, X.K.; Luo, X.H. Geology and molybdenite Re-Os age of the Dahutang granite-related veinlets-disseminated tungsten ore field in the Jiangxin Province, China. Ore Geol. Rev. 2013, 53, 422–433. [Google Scholar] [CrossRef]
- Mao, J.W.; Wu, S.H.; Song, S.W.; Dai, P.; Xie, G.Q.; Su, Q.W.; Liu, P.; Wang, X.G.; Xu, Z.Z.; Chen, X.Y.; et al. The world-class Jiangnan tungsten belt: Geological characteristics, metallogeny, and ore deposit model. Chin. Sci. Bull. 2020, 65, 3746–3762, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Mao, Z.H.; Liu, J.J.; Mao, J.W.; Deng, J.; Zhang, F.; Meng, X.Y.; Xiong, B.K.; Xiang, X.K.; Luo, X.H. Geochronology and geochemistry of granitoids related to the giant Dahutang tungsten deposit, middle Yangtze River region, China: Implications for petrogenesis, geodynamic setting, and mineralization. Gondwana Res. 2015, 28, 816–836. [Google Scholar] [CrossRef]
- Xiang, X.K.; Wang, P.; Zhan, G.N.; Sun, D.M.; Zhong, B.; Qian, Z.Y.; Tan, R. Geological characteristics of Shimensi tungsten polymetallic deposit in northern Jiangxi Province. Miner. Depos. 2013, 32, 1171–1187, (In Chinese with English Abstract). [Google Scholar]
- Fan, X.K. Study on Metallogenic Mechanism of the Giant Dahutang Tungsten Polymetallic Orefield in Jiangxi Province; Chinese Academy of Geological Sciences: Beijing, China, 2019; 206p, (In Chinese with English Abstract). [Google Scholar]
- Huang, L.C.; Jiang, S.Y. Geochronology, geochemistry and petrogenesis of the tungsten-bearing porphyritic granite in the Dahutang tungsten deposit, Jiangxi Province. Acta Petrol. Sin. 2013, 29, 4323–4335, (In Chinese with English Abstract). [Google Scholar]
- Li, H.W.; Zhao, Z.; Chen, Z.Y.; Guo, N.X.; Gan, J.W.; Li, X.W.; Yin, Z. Genetic relationship between the two-period magmatism and W mineralization in the Dahutang ore-field, Jiangxi Province: Evidence from zircon geochemistry. Acta Petrol. Sin. 2021, 37, 1508–1530, (In Chinese with English Abstract). [Google Scholar]
- Lin, L.; Zhan, G.L.; Yu, X.P. Geological characteristics and ore-search prospect of Dahutang tungsten(tin) orefield in Jiangxi. Resour. Surv. Environ. 2006, 27, 25–32, (In Chinese with English Abstract). [Google Scholar]
- Pan, D.P.; Wang, D.; Wang, X.L. Petrogenesis of granites in Shimensi in northwestern Jiangxi Province and its implications for tungsten deposits. Geol. China 2017, 44, 118–135, (In Chinese with English Abstract). [Google Scholar]
- Xiang, X.K.; Wang, P.; Sun, D.M.; Zhong, B. Re-Os isotopic age of molybdeinte from the Shimensi tungsten polymetallic deposit in northern Jiangxi province and its geological implications. Geol. Bull. China 2013, 32, 1824–1831, (In Chinese with English Abstract). [Google Scholar]
- Xiang, X.K.; Yin, Q.Q.; Sun, K.K.; Chen, B. Origin of the Dahutang syn-collisional granite-porphyry in the middle segment of the Jiangnan orogen: Zircon U-Pb geochronologic, geochemical and Nd-Hf isotopic constraints. Acta Petrol. Mineral. 2015, 34, 581–600, (In Chinese with English Abstract). [Google Scholar]
- Ye, H.M.; Zhang, X.; Zhu, Y.H. In-situ Monazite U-Pb Geochronology of Granites in Shimensi Tungsten Polymetallic Deposit, Jiangxi Province and its Geological Significance. Geotecton. Metallog. 2016, 40, 58–70, (In Chinese with English Abstract). [Google Scholar]
- Liu, Y.J. Discussion on the geospheroidization of tungsten ore formation. Geol. Explor. 1982, 1, 17–25, (In Chinese with English Abstract). [Google Scholar]
- Zuo, Q.S. Analysis on the geologic conditions and the assessment of the further ore-finding foreground from Dahutang to Liyangdou metallogenic region in the western part of Jiulingshan, Jiangxi province. Resour. Environ. Eng. 2006, 20, 348–353, (In Chinese with English Abstract). [Google Scholar]
- Rudnick, R.; Gao, S. Composition of the Continental Crust. Treatise Geochem. 2003, 3, 1–64. [Google Scholar]
- Wu, X.Y.; Zhang, Z.Y.; Zheng, Y.C.; Dai, J.L.; Fan, X.K.; Sheng, Y.C. Magmatism, genesis and significance of multi-stage porphyry-like granite in the giant Dahutang tungsten deposit, northern Jiangxi Province. Acta Petrol. Mineral. 2019, 38, 318–338, (In Chinese with English Abstract). [Google Scholar]
- Jiang, S.Y.; Peng, N.J.; Huang, L.C.; Xu, Y.M.; Zhan, G.L.; Dan, X.H. Geological characteristic and ore genesis of the giant tungsten deposits from the Dahutang ore-concentrated district in northern Jiangxi Province. Acta Petrol. Sin. 2015, 31, 639–655, (In Chinese with English Abstract). [Google Scholar]
- Sun, K.K.; Chen, B.; Chen, J.S.; Xiang, X.K. The petrogenesis of the Jiuling granodiorite from the Dahutang deposit, Jiangxi Province and its tectonic implications. Acta Petrol. Sin. 2017, 33, 907–924, (In Chinese with English Abstract). [Google Scholar]
- Li, X.H.; Li, Z.X.; Ge, W.C.; Zhou, H.W.; Li, W.X.; Liu, Y.; Wingate, M.T.D. Neoproterozoic granitoids in South China: Crustal melting above a mantle plume at ca. 825 Ma? Precambrian Res. 2003, 122, 45–83. [Google Scholar] [CrossRef]
- Song, W.L.; Yao, J.M.; Chen, H.Y.; Sun, W.D.; Lai, C.K.; Xiang, X.K.; Luo, X.H.; Jourdan, F. A 20 m.y. long-lived successive mineralization in the giant Dahutang W-Cu-Mo deposit, South China. Ore Geol. Rev. 2018, 95, 401–407. [Google Scholar] [CrossRef]
- Chang, Y.F.; Liu, X.P.; Wu, C.Y. The Copper-Iron Belt of the Lower and Middle Reaches of the Changjiang River; Geological Publishing House Press: Beijing, China, 1991; pp. 1–234, (In Chinese with English Abstract). [Google Scholar]
- Mao, J.W.; Xiong, B.K.; Liu, J.; Pirajno, F.; Cheng, Y.B.; Ye, H.S.; Song, S.W.; Dai, P. Molybdenite Re/Os dating, zircon U-Pb age and geochemistry of granitoids in the Yangchuling porphyry W-Mo deposit (Jiangnan tungsten ore belt), China: Implications for petrogenesis, mineralization and geodynamic setting. Lithos 2017, 286, 35–52. [Google Scholar] [CrossRef]
- Wang, X.L.; Zhou, J.C.; Griffin, W.L.; Zhao, G.C.; Yu, J.H.; Qiu, J.S.; Zhang, Y.J.; Xing, G.F. Geochemical zonation across a Neoproterozoic orogenic belt: Isotopic evidence from granitoids and metasedimentary rocks of the Jiangnan orogen, China. Precambrian Res. 2014, 242, 154–171. [Google Scholar] [CrossRef]
- Gao, L.Z.; Liu, Y.X.; Wang, M.; Wang, X.H.; Chen, J.S.; Ding, X.Z.; Zhang, C.H.; Cao, Q. Zircon SHRIMP U-Pb dating of tuff bed of the Sibao Group in southeastern Guizhou-northern Guangxi area, China and its stratigraphic implication. Geol. Bull. China 2010, 29, 1259–1267, (In Chinese with English Abstract). [Google Scholar]
- Zhao, J.H.; Zhou, M.F.; Yan, D.P.; Zheng, J.P.; Li, J.W. Reappraisal of the ages of Neoproterozoic strata in South China: No connection with the Grenvillian orogeny. Geology 2011, 39, 299–302. [Google Scholar] [CrossRef]
- Gao, L.Z.; Yang, M.G.; Ding, X.Z.; Liu, Y.X.; Liu, X.; Ling, L.H.; Zhang, C.H. SHRIMP U-Pb zircon dating of tuff in the Shuangqiaoshan and Heshangzhen groups in South China—constraints on the evolution of the Jiangnan Neoproterozoic orogenic belt. Geol. Bull. China 2008, 27, 1744–1751, (In Chinese with English Abstract). [Google Scholar]
- Gilder, S.A.; Keller, G.R.; Luo, M.; Goodell, P.C. Eastern Asia and the Western Pacific timing and spatial distribution of rifting in China. Tectonophysics 1991, 197, 225–243. [Google Scholar] [CrossRef]
- Zhou, X.M.; Li, W.X. Origin of Late Mesozoic igneous rocks in Southeastern China: Implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics 2000, 326, 269–287. [Google Scholar] [CrossRef]
- Han, L.; Huang, X.L.; Li, J.; He, P.L.; Yao, J.M. Oxygen fugacity variation recorded in apatite of the granite in the Dahutang tungsten deposit, Jiangxi Province, South China. Acta Petrol. Sin. 2016, 32, 746–758, (In Chinese with English Abstract). [Google Scholar]
- Feng, C.Y.; Wang, H.; Xiang, X.K.; Zhang, M.Y. Late Mesozoic granite-related W-Sn mineralization in the northern Jiangxi region, SE China: A review. J. Geochem. Explor. 2018, 195, 31–48. [Google Scholar] [CrossRef]
- Feng, C.Y.; Zhang, D.Q.; Xiang, X.K.; Li, D.X.; Qu, H.Y.; Liu, J.N.; Xiao, Y. Re-Os isotopic dating of molybdenite from the Dahutang tungsten deposit in northwestern Jiangxi Province and its geological implication. Acta Petrol. Sin. 2012, 28, 3858–3868, (In Chinese with English Abstract). [Google Scholar]
- Achterberg, V.E.; Ryan, C.G.; Jackson, S.E.; Griffin, W.L. Data reduction software for LA-ICP-MS. In Laser-Ablation-ICPMS in the Earth Sciences. Principles and Applications; Sylvester, P.J., Ed.; Mineralogical Society of Canada Short Course Series 29; Mineralogical Society of Canada: Quebec City, QC, Canada, 2001. [Google Scholar]
- Li, Y.G.; Wang, S.S.; Liu, M.W.; Meng, E.; Wei, X.Y.; Zhao, H.B.; Qi, M.Q. U-Pb Dating Study of Baddeleyite by LA-ICP-MS: Technique and Application. Acta Geol. Sin. 2015, 89, 2400–2418, (In Chinese with English Abstract). [Google Scholar]
- Ludwig, K.R. User’s Manual for Isoplot 3.00. A Geochronological Toolkit for Microsoft Excel; No. 4a; Special Publication; Berkeley Geochronology Center: Berkeley, CA, USA, 2003. [Google Scholar]
- Middlemost, E. Naming materials in the magma/igneous rock system. Earth-Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Rong, W.; Zhang, S.B.; Zheng, Y.F. Back-reaction of Peritectic Garnet as an Explanation for the Origin of Mafic Enclaves in S-type Granite from the Jiuling Batholith in South China. J. Petrol. 2017, 58, 569–598. [Google Scholar] [CrossRef]
- Zhang, F.S.; Xu, J.; Zhang, J.; Guo, J.S. Geochemical characteristics, zircon U-Pb age and geological significance of New Proterozoic granites in Jiuling area, Jiangxi Province. J. East China Univ. Technol. (Nat. Sci.) 2020, 43, 12–20, (In Chinese with English Abstract). [Google Scholar]
- Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granodiorite. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Wu, Y.B.; Zheng, Y.F. Zircon genetic mineralogy and its constraints on the interpretation of U-Pb age. Chin. Sci. Bull. 2004, 49, 1589–1604, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Wilde, S.A.; Valley, J.W.; Peck, W.H.; Graham, C.M. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 2001, 409, 175–178. [Google Scholar] [CrossRef]
- Bell, E.A.; Boehnke, P.; Harrison, T.M. Recovering the primary geochemistry of Jack Hills zircons through quantitative estimates of chemical alteration. Geochim. Cosmochim. Acta 2016, 191, 187–202. [Google Scholar] [CrossRef] [Green Version]
- Mueller, A.G.; McNaughton, N.J. Mineral equilibria and zircon, garnet and titanite U-Pb ages constraining the PTt path of granite-related hydrothermal systems at the Big Bell gold deposit, Western Australia. Miner. Depos. 2018, 53, 105–126. [Google Scholar] [CrossRef]
- Zhu, Y.F.; Song, B. Petrology and SHRIMP chronology of mylonitized Tianger granite, Xinjiang: Also about the dating on hydrothermal zircon rim in granite. Acta Petrol. Sin. 2006, 22, 135–144, (In Chinese with English Abstract). [Google Scholar]
- Yang, W.B.; Niu, H.S.; Qiang, S.; Weidong, Z.; Hong, L.; Ning-Bo, J.; Yuhang, Y. Geochemistry of magmatic and hydrothermal zircon from the highly evolved Baerzhe alkaline granite: Implications for Zr-REE-Nb mineralisation. Miner. Depos. 2013, 49, 451–470. [Google Scholar] [CrossRef]
- Wei, T.C.; Mei-Fu, Z. Hydrothermal alteration of magmatic zircon related to NaCl-rich brines: Diffusion-reaction and dissolution-reprecipitation processes. Am. J. Sci. 2017, 317, 177–215. [Google Scholar]
- Li, C.M. Review on the Minerageny and Situ Microanalytical Dating Techniques of Zircons. Geol. Surv. Res. 2009, 32, 161–174, (In Chinese with English Abstract). [Google Scholar]
- Kaulina, T.; Lyalina, L.; Kamenetsky, V.; Il’chenko, V.; Bocharov, V.; Gannibal, M. Composition and Structure of Zircon from Hydrothermal Uranium Occurrences of the Litsa Ore Area (Kola Region, Russia). Geoscience 2020, 10, 278. [Google Scholar] [CrossRef]
- Hoskin, P.W.O. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim. Cosmochim. Acta 2005, 69, 637–648. [Google Scholar] [CrossRef]
- Zhao, Z.H. Trace element geochemistry of accessory minerals and its applications in petrogenesis and metallogenesis. Earth Sci. Front. 2010, 17, 267–286, (In Chinese with English Abstract). [Google Scholar]
- Toscano, M.; Pascual, E.; Nesbitt, R.W.; Almodóvar, G.R.; Sáez, R.; Donaire, T. Geochemical discrimination of hydrothermal and igneous zircon in the Iberian Pyrite Belt, Spain. Ore Geol. Rev. 2014, 56, 301–311. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Magmatism in the Ocean Basalts. Geol. Soc. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, J.F.; Ma, D.S.; Pan, J.Y. The role of hydrothermal alteration in tungsten mineralization at the Dahutang tungsten deposit, South China. Ore Geol. Rev. 2018, 95, 1008–1027. [Google Scholar] [CrossRef]
- Li, X.H.; Li, W.X.; Li, Z.X. A further discussion of the genetic type and tectonic significance of the early Yanshanian granites of the Nanling Ridge. Chin. Sci. Bull. 2007, 52, 981–991, (In Chinese with English Abstract). [Google Scholar]
- Chen, C.F.; Gao, J.F.; Zhang, Q.Q.; Min, K. Evolution of ore-forming fluids in Shimensi tungsten polymetallic deposit of northern Jiangxi: Constraints from in situ trace element analysis of scheelite. Miner. Depos. 2021, 40, 293–310, (In Chinese with English Abstract). [Google Scholar]
- Wang, H.; Feng, C.Y.; Li, D.X.; Xiang, X.K.; Zhou, J.H. Sources of granitoids and ore-forming materials of Dahutang tungsten deposit in northern Jiangxi Province: Constraints from mineralogy and isotopic tracing. Acta Petrol. Sin. 2015, 31, 725–739. [Google Scholar]
- Zhao, H.B.; Zhang, Y.; Liu, L. Hydrothermal alteration processes in the giant Dahutang tungsten deposit, South China: Implications from litho-geochemistry and mass balance calculation. China Geol. 2021, 4, 230–244. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, G.; Li, Z.; Yang, X.; Liu, L. The Role of Jiningian Pluton in Yanshanian Metallogenic Events in the Dahutang Tungsten Deposit: Evidence from Whole Rock and Zircon Geochemistry. Minerals 2022, 12, 428. https://doi.org/10.3390/min12040428
Xu G, Li Z, Yang X, Liu L. The Role of Jiningian Pluton in Yanshanian Metallogenic Events in the Dahutang Tungsten Deposit: Evidence from Whole Rock and Zircon Geochemistry. Minerals. 2022; 12(4):428. https://doi.org/10.3390/min12040428
Chicago/Turabian StyleXu, Guofeng, Zhenyu Li, Xiaoyong Yang, and Lei Liu. 2022. "The Role of Jiningian Pluton in Yanshanian Metallogenic Events in the Dahutang Tungsten Deposit: Evidence from Whole Rock and Zircon Geochemistry" Minerals 12, no. 4: 428. https://doi.org/10.3390/min12040428