Deconstructing the Iron Boomerang—Quantitative Predictions of Hematite, Ochreous, and Vitreous Goethite Mixtures
Abstract
:1. Introduction
2. Datasets and Preparation
2.1. Hematite, Vitreous & Ochreous Goethite Endmembers
2.2. Additional Ochreous and Vitreous Preparation
2.3. Spectral Averaging
2.4. Drillcore Data
3. Methods
3.1. Spectral Metrics
3.2. Linear Mixing
3.3. Random Forest Regression
3.4. Workflow
- Define hematite, ochreous, and vitreous endmembers;
- Use Equations (1)–(3) with the endmembers of step 1 to generate spectral mixtures of known mixing ratios for the hematite, ochreous and vitreous endmembers;
- Calculate the spectral metrics in Table 2 for each spectrum in step 2; and
- Train the random forest regression model with a maximum tree depth of 16 with 100 estimators with the Fe Oxide Wavelength, FWHM, Asymmetry, and SWIR Drop calculated from step 3 as the input features and the known mixing ratios of hematite, ochreous, and vitreous goethite as the target values.
4. Results
4.1. Boomerang Shape and Linear Mixtures
4.1.1. Hematite and Vitreous Linear Mixtures
4.1.2. Hematite and Ochreous Linear Mixtures
4.2. Known Endmembers
4.3. Unknown Endmembers
Hematite Endmembers
4.4. Application to HyLogged Drillcores
4.4.1. Drillcore 1
4.4.2. Drillcore 2
4.4.3. Drillcore 3
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cudahy, T.J.; Ramanaidou, E.R. Measurement of the hematite: Goethite ratio using field visible and near-infrared reflectance spectrometry in channel iron deposits, Western Australia. Aust. J. Earth Sci. 1997, 44, 411–420. [Google Scholar] [CrossRef]
- Haest, M.; Cudahy, T.; Laukamp, C.; Gregory, S. Quantitative mineralogy from infrared spectroscopic data. I. Validation of mineral abundance and composition scripts at the Rocklea Channel iron deposit in Western Australia. Econ. Geol. 2012, 107, 209–228. [Google Scholar] [CrossRef]
- Haest, M.; Cudahy, T.; Laukamp, C.; Gregory, S. Quantitative mineralogy from infrared spectroscopic data. II. Three-dimensional mineralogical characterization of the Rocklea Channel iron deposit, Western Australia. Econ. Geol. 2012, 107, 229–249. [Google Scholar] [CrossRef]
- Ramanaidou, E.R.; Wells, M.A. hyperspectral imaging of iron ores. In Proceedings of the 10th International Congress for Applied Mineralogy (ICAM), Trondheim, Norway, 1–5 August 2011; Springer: Berlin/Heidelberg, Germany, 2012; pp. 575–580. [Google Scholar]
- Cudahy, T.; Jones, M.; Thomas, M.; Laukamp, C.; Caccetta, M.; Hewson, R.; Verrall, M.; Hacket, A.; Rodger, A. Mineral Mapping Queensland: Iron Oxide Copper Gold (IOCG) Mineral System Case History, Starra, Mount Isa Inlier; Australasian Institute of Mining and Metallurgy: Gold Coast, QLD, Australia, 2008; pp. 153–160. [Google Scholar]
- Ramanaidou, E.; Morris, R.C. A synopsis of the channel iron deposits of the Hamersley Province, Western Australia. Appl. Earth Sci. 2010, 119, 56–59. [Google Scholar] [CrossRef]
- Ramanaidou, E.R.; Schodlok, M. Hyperspectral mapping of bif and iron ores. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 3–7 December 2012; Volume 2012, p. NS23A-1630. [Google Scholar]
- Duuring, P.; Laukamp, C. Mapping Iron Ore Alteration Patterns in Banded Iron-Formation Using Hyperspectral Data: Beebyn Deposit, Pilbara Craton, Western Australia; Geological Survey of Western Australia: East Perth, Australia, 2016. [Google Scholar]
- Murphy, R.J.; Monteiro, S. Mapping the distribution of ferric iron minerals on a vertical mine face using derivative analysis of hyperspectral imagery (430–970 nm). ISPRS J. Photogramm. Remote Sens. 2013, 75, 29–39. [Google Scholar] [CrossRef]
- Magendran, T.; Sanjeevi, S. Hyperion image analysis and linear spectral unmixing to evaluate the grades of iron ores in parts of Noamundi, Eastern India. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 413–426. [Google Scholar] [CrossRef]
- Rodger, A.; Laukamp, C.; Haest, M.; Cudahy, T. A simple quadratic method of absorption feature wavelength estimation in continuum removed spectra. Remote Sens. Environ. 2012, 118, 273–283. [Google Scholar] [CrossRef]
- Laukamp, C.; Termin, K.A.; Pejcic, B.; Haest, M.; Cudahy, T. Vibrational spectroscopy of calcic amphiboles—Applications for exploration and mining. Eur. J. Miner. 2012, 24, 863–878. [Google Scholar] [CrossRef]
- Rodger, A.; Fabris, A.; Laukamp, C. Feature extraction and clustering of hyperspectral drill core measurements to assess potential lithological and alteration boundaries. Minerals 2021, 11, 136. [Google Scholar] [CrossRef]
- Laukamp, C.; Rodger, A.; LeGras, M.; Lampinen, H.; Lau, I.; Pejcic, B.; Stromberg, J.; Francis, N.; Ramanaidou, E. Mineral physicochemistry underlying feature-based extraction of mineral abundance and composition from shortwave, mid and thermal infrared reflectance spectra. Minerals 2021, 11, 347. [Google Scholar] [CrossRef]
- Kämpf, N.; Schwertmann, U. Goethite and hematite in a climosequence in southern Brazil and their application in classification of kaolinitic soils. Geoderma 1983, 29, 27–39. [Google Scholar] [CrossRef]
- Madeira, J.; Bedidi, A.; Cervelle, B.; Pouget, M.; Flay, N. Visible spectrometric indices of hematite (Hm) and goethite (Gt) content in lateritic soils: The application of a Thematic Mapper (TM) image for soil-mapping in Brasilia, Brazil. Int. J. Remote Sens. 1997, 18, 2835–2852. [Google Scholar] [CrossRef]
- Ramanaidou, E.; Wells, M.; Lau, I.; Laukamp, C. Characterization of iron ore by visible and infrared reflectance and, Raman spectroscopies. In Iron Ore; Elsevier: Amsterdam, The Netherlands, 2015; pp. 191–228. [Google Scholar] [CrossRef]
- Ramanaidou, E.R.; Wells, M.; Belton, D.X.; Verrall, M.; Ryan, C. Mineralogical and microchemical methods for the characterization of high-grade banded iron formation-derived iron ore. In Banded Iron Formation-Related High-Grade Iron Ore; Society of Economic Geologists: Littleton, CO, USA, 2008. [Google Scholar]
- Ramanaidou, E.; Wells, M.; Lau, I.; Laukamp, C. Chapter 6—Characterization of iron ore by visible and infrared reflectance and raman spectroscopies. In Iron Ore, 2nd ed.; Lu, L., Ed.; Woodhead Publishing Series in Metals and Surface Engineering; Woodhead Publishing: Cambridge, UK, 2022; pp. 209–246. ISBN 978-0-12-820226-5. [Google Scholar]
- Fonteneau, L.C.; Martini, B.; Elsenheimer, D. Hyperspectral imaging of sedimentary iron ores–beyond borders. ASEG Ext. Abstr. 2019, 2019, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Clout, J.; Manuel, J. Mineralogical, chemical, and physical characteristics of iron ore. In Iron Ore; Elsevier: Amsterdam, The Netherlands, 2015; pp. 45–84. [Google Scholar] [CrossRef]
- Manuel, J.R.; Clout, J.M.F. Goethite classification, distribution and properties with reference to Australian iron deposits. Proc. Iron Ore 2017, 567–574. [Google Scholar]
- Rodger, A.; Ramanaidou, E.; Laukamp, C.; Lau, I. A qualitative examination of the iron boomerang and trends in spectral metrics across iron ore deposits in Western Australia. Appl. Sci. 2022, 12, 1547. [Google Scholar] [CrossRef]
- Huntington, J.; Whitbourn, L.; Mason, P.; Berman, M.; Schodlok, M.C. HyLogging—Voluminous industrial-scale reflectance spectroscopy of the earth’s subsurface. In Proceedings of the ASD and IEEE GRS Art, Science and Applications of Reflectance Spectroscopy Symposium, Boulder, CO, USA, 23–25 February 2010; Volume 2, p. 14. [Google Scholar]
- Smith, B.R.; Huntington, J.F. National Virtual Core Library NTGS Node: HyLogger 2–7; Northern Territory Geological Survey: Darwin, Australia, 2010. [Google Scholar]
- Cracknell, M.J.; Jansen, N.H. National virtual core library HyLogging data and Ni–Co laterites: A mineralogical model for resource exploration, extraction and remediation. Aust. J. Earth Sci. 2016, 63, 1053–1067. [Google Scholar] [CrossRef]
- Schodlok, M.C.; Whitbourn, L.; Huntington, J.; Mason, P.; Green, A.; Berman, M.; Coward, D.; Connor, P.; Wright, W.; Jolivet, M. HyLogger-3, a visible to shortwave and thermal infrared reflectance spectrometer system for drill core logging: Functional description. Aust. J. Earth Sci. 2016, 63, 929–940. [Google Scholar]
- Du, B.; Wang, S.; Wang, N.; Zhang, L.; Tao, D.; Zhang, L. Hyperspectral signal unmixing based on constrained non-negative matrix factorization approach. Neurocomputing 2016, 204, 153–161. [Google Scholar] [CrossRef]
- Bao, W.; Li, Q.; Xin, L.; Qu, K. Hyperspectral unmixing algorithm based on nonnegative matrix factorization. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 6982–6985. [Google Scholar]
- Gao, H.; Chen, L.; Li, C.; Zhou, H.; Zhang, S. A hyper-spectral unmixing method based on improved non-negative matrix factorization. J. Comput. Theor. Nanosci. 2016, 13, 8689–8694. [Google Scholar] [CrossRef]
- Rinnan, Å.; van den Berg, F.; Engelsen, S.B. Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- Ducasse, E.; Adeline, K.; Briottet, X.; Hohmann, A.; Bourguignon, A.; Grandjean, G. Montmorillonite estimation in clay–quartz–calcite samples from laboratory SWIR imaging spectroscopy: A comparative study of spectral preprocessings and unmixing methods. Remote Sens. 2020, 12, 1723. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- McKay, G.; Harris, J.R. Comparison of the data-driven random forests model and a knowledge-driven method for mineral prospectivity mapping: A case study for gold deposits around the Huritz Group and Nueltin Suite, Nunavut, Canada. Nat. Resour. Res. 2016, 25, 125–143. [Google Scholar] [CrossRef]
- Kuhn, S.; Cracknell, M.J.; Reading, A.M. Lithologic mapping using Random Forests applied to geophysical and remote-sensing data: A demonstration study from the Eastern Goldfields of Australia. Geophysics 2018, 83, B183–B193. [Google Scholar] [CrossRef]
- Keshava, N. A survey of spectral unmixing algorithms. Linc. Lab. J. 2003, 14, 55–78. [Google Scholar]
- Keshava, N.; Mustard, J.F. Spectral unmixing. IEEE Signal Process. Mag. 2002, 19, 44–57. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
%Fe | %Fe2O3 | %SiO2 | %Al2O3 | %TiO2 | %MnO | %CaO | %P | %SO2 | %MgO | %LOI 371 | %LOI 371–650 | %LOI 650–1000 | %Total Ox | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OG1 | 57.6 | 82.4 | 2.97 | 2.09 | 0.07 | 0.24 | 0.17 | 0.215 | 0.16 | 0.30 | 9.63 | 0.89 | 0.30 | 99.8 |
OG2 | 56.1 | 80.2 | 3.91 | 2.38 | 0.07 | 0.39 | 0.06 | 0.267 | 0.15 | 0.45 | 10.20 | 0.95 | 0.33 | 99.7 |
VG1 | 53.0 | 75.8 | 6.60 | 2.92 | 1.21 | <0.001 | 0.09 | 0.081 | 0.33 | 0.01 | 11.20 | 1.16 | 0.58 | 100.0 |
VG2 | 56.3 | 80.5 | 1.81 | 2.40 | 0.82 | 0.00 | 0.05 | 0.115 | 0.37 | 0.01 | 11.70 | 1.07 | 0.61 | 99.6 |
VG3 | 55.0 | 78.7 | 4.87 | 2.40 | 0.34 | 0.00 | 0.20 | 0.066 | 0.15 | 0.06 | 11.40 | 1.07 | 0.32 | 99.7 |
Product | Wavelength Region | Metric | Notes |
---|---|---|---|
Fe Oxide Depth | 740–1360 nm | The maximum depth of the hull corrected 6A1→4T1 CFA | |
Fe Oxide Wavelength | 740–1360 nm | Location of the deepest wavelength | Can either use the actual spectral band corresponding to the maximum depth or can interpolate between points centred around this point to produce a refined value. |
Fe Oxide FWHM | 740–1360 nm | The full width half maximum value at the location of the deepest wavelength. | Requires the depth of the Fe Oxide feature at the Fe Oxide Wavelength and the λFWHML and λFWHMR values. FWHM = λFWHMR−λFWHML |
λFWHML | N/A | The wavelength of the 6A1→4T1 CFA to the left of the Fe Oxide Wavelength at the corresponding Fe Oxide FWHM depth | Used to define 6A1→4T1 CFA asymmetry |
λFWHMR | N/A | The wavelength of the 6A1→4T1 CFA to the right of the Fe Oxide Wavelength at the corresponding Fe Oxide FWHM depth | Used to define 6A1→4T1 CFA asymmetry |
Fe Oxide Asymmetry | 740–1360 nm | The asymmetry of the absorption feature at the FWHM depth. | Ranges from −1 to 1 with −1 being left symmetrical and 0 being symmetrical and 1 being right symmetrical. Asymmetry = 2 × (λFWHM_R−Fe Oxide Wavelength)/(λFWHM_R−λFWHM_L)−1 |
SWIR Drop-Off | 1550–1850 nm | The hull corrected maximum depth | Increasing depth is indicative of vitreous goethite |
Hematite | Ochreous | Vitreous | |
---|---|---|---|
Average | 0.043 | 0.040 | 0.048 |
Standard Deviation | 0.001 | 0.000 | 0.001 |
Model Training Hematite/s | Hematite | Ochreous | Vitreous | Test Hematite |
---|---|---|---|---|
Martite | 0.18/0.13 | 0.28/0.16 | 0.12/0.12 | Hematite (Bayer 160) |
Martite | 0.08/0.09 | 0.15/0.09 | 0.11/0.15 | Microplaty–Hematite |
Hematite (Bayer 160) | 0.09/0.16 | 0.11/0.25 | 0.08/0.14 | Martite |
Hematite (Bayer 160) | 0.06/0.18 | 0.08/0.09 | 0.05/0.15 | Microplaty–Hematite |
Microplaty–Hematite | 0.07/0.07 | 0.08/0.13 | 0.08/0.17 | Martite |
Microplaty–Hematite | 0.06/0.19 | 0.08/0.11 | 0.04/0.15 | Hematite (Bayer 160) |
Martite | 0.12/0.11 | 0.19/0.13 | 0.11/0.14 | Hematite (Bayer 160), Microplaty–Hematite |
Hematite (Bayer 160) | 0.06/0.17 | 0.08/0.19 | 0.05/0.15 | Martite, Microplaty–Hematite |
Microplaty–Hematite | 0.06/0.14 | 0.07/0.12 | 0.05/0.16 | Martite, Hematite (Bayer 160) |
Martite, Hematite (Bayer 160) | 0.07/0.17 | 0.12/0.08 | 0.09/0.15 | Microplaty–Hematite |
Martite, Microplaty–Hematite | 0.14/0.19 | 0.20/0.12 | 0.10/0.14 | Hematite (Bayer 160) |
Hematite (Bayer 160), Microplaty–Hematite | 0.08/0.12 | 0.10/0.18 | 0.08/0.14 | Martite |
Average RMSE | 0.09/0.14 | 0.13/0.14 | 0.08/0.15 | |
Standard Deviation | 0.04/0.04 | 0.06/0.05 | 0.03/0.01 |
Hematite | Ochreous | Vitreous | ||
---|---|---|---|---|
Core 1 | RMSE | 0.04 | 0.04 | 0.04 |
R2 | 0.97 | 0.97 | 0.98 | |
Core 2 | RMSE | 0.03 | 0.03 | 0.03 |
R2 | 0.98 | 0.98 | 0.98 | |
Core 3 | RMSE | 0.05 | 0.04 | 0.05 |
R2 | 0.96 | 0.98 | 0.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodger, A.; Ramanaidou, E. Deconstructing the Iron Boomerang—Quantitative Predictions of Hematite, Ochreous, and Vitreous Goethite Mixtures. Minerals 2022, 12, 381. https://doi.org/10.3390/min12030381
Rodger A, Ramanaidou E. Deconstructing the Iron Boomerang—Quantitative Predictions of Hematite, Ochreous, and Vitreous Goethite Mixtures. Minerals. 2022; 12(3):381. https://doi.org/10.3390/min12030381
Chicago/Turabian StyleRodger, Andrew, and Erick Ramanaidou. 2022. "Deconstructing the Iron Boomerang—Quantitative Predictions of Hematite, Ochreous, and Vitreous Goethite Mixtures" Minerals 12, no. 3: 381. https://doi.org/10.3390/min12030381
APA StyleRodger, A., & Ramanaidou, E. (2022). Deconstructing the Iron Boomerang—Quantitative Predictions of Hematite, Ochreous, and Vitreous Goethite Mixtures. Minerals, 12(3), 381. https://doi.org/10.3390/min12030381