Characterization of Monochromate and Hemichromate AFm Phases and Chromate-Containing Ettringite by 1H, 27Al, and 53Cr MAS NMR Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Characterization Methods
3. Results
3.1. 27Al MAS NMR
3.2. 1H MAS NMR
3.3. 53Cr MAS NMR
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Laforest, G.; Duchesne, J. Immobilization of Chromium (VI) Evaluated by Binding Isotherms for Ground Granulated Blast Furnace Slag and Ordinary Portland Cement. Cem. Concr. Res. 2005, 35, 2322–2332. [Google Scholar] [CrossRef]
- Malviya, R.; Chaudhary, R. Factors Affecting Hazardous Waste Solidification/Stabilization: A Review. J. Hazard. Mater. 2006, 137, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Park, C.-K. Hydration and Solidification of Hazardous Wastes Containing Heavy Metals Using Modified Cementitious Materials. Cem. Concr. Res. 2000, 30, 429–435. [Google Scholar] [CrossRef]
- Palomo, A.; Palacios, M. Alkali-Activated Cementitious Materials: Alternative Matrices for the Immobilisation of Hazardous Wastes: Part II. Stabilisation of Chromium and Lead. Cem. Concr. Res. 2003, 33, 289–295. [Google Scholar] [CrossRef]
- Eštoková, A.; Palaščáková, L.; Singovszká, E.; Holub, M. Analysis of the Chromium Concentrations in Cement Materials. Procedia Eng. 2012, 42, 123–130. [Google Scholar] [CrossRef][Green Version]
- Mertz, W. Chromium Occurrence and Function in Biological Systems. Physiol. Rev. 1969, 49, 163–239. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Dong, H.; Liu, D.; Zhao, L.; Marts, A.R.; Farquhar, E.; Tierney, D.L.; Almquist, C.B.; Briggs, B.R. Reduction of Hexavalent Chromium by the Thermophilic Methanogen Methanothermobacter Thermautotrophicus. Geochim. Cosmochim. Acta 2015, 148, 442–456. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wang, S.; Vipulanandan, C. Solidification/Stabilization of Cr(VI) with Cement: Leachability and XRD Analyses. Cem. Concr. Res. 2000, 30, 385–389. [Google Scholar] [CrossRef]
- Sinyoung, S.; Songsiriritthigul, P.; Asavapisit, S.; Kajitvichyanukul, P. Chromium Behavior during Cement-Production Processes: A Clinkerization, Hydration, and Leaching Study. J. Hazard. Mater. 2011, 191, 296–305. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; He, C.; Bai, Y.; Ma, B.; Wang, G.; Tan, H. Stabilization/Solidification on Chromium (III) Wastes by C3A and C3A Hydrated Matrix. J. Hazard. Mater. 2014, 268, 61–67. [Google Scholar] [CrossRef]
- Roy, A.; Eaton, H.C.; Cartledge, F.K.; Tittlebaum, M.E. Solidification/Stabilization of a Heavy Metal Sludge by a Portland Cement/Fly Ash Binding Mixture. Hazard. Waste Hazard. Mater. 1991, 8, 33–41. [Google Scholar] [CrossRef]
- Rha, C.Y.; Kang, S.K.; Kim, C.E. Investigation of the Stability of Hardened Slag Paste for the Stabilization/Solidification of Wastes Containing Heavy Metal Ions. J. Hazard. Mater. 2000, 73, 255–267. [Google Scholar] [CrossRef]
- Qian, G.; Cao, Y.; Chui, P.; Tay, J. Utilization of MSWI Fly Ash for Stabilization/Solidification of Industrial Waste Sludge. J. Hazard. Mater. 2006, 129, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Gatta, G.D.; McIntyre, G.J.; Swanson, J.G.; Jacobsen, S.D. Minerals in Cement Chemistry: A Single-Crystal Neutron Diffraction and Raman Spectroscopic Study of Thaumasite, Ca3Si(OH)6(CO3)(SO4)·12H2O. Am. Mineral. 2012, 97, 1060–1069. [Google Scholar] [CrossRef]
- Gatta, G.D.; Hålenius, U.; Bosi, F.; Cañadillas-Delgado, L.; Fernandez-Diaz, M.T. Minerals in Cement Chemistry: A Single-Crystal Neutron Diffraction Study of Ettringite, Ca6Al2(SO4)3(OH)12·27H2O. Am. Mineral. 2019, 104, 73–78. [Google Scholar] [CrossRef]
- Pöllmann, H.; Auer, S.; Kuzel, H.J.; Wenda, R. Solid-Solution of Ettringites. Part II: Incorporation of B(OH)4- and CrO42- in 3CaO·Al2O3·3CaSO4·32H2O. Cem. Concr. Res. 1993, 23, 422–430. [Google Scholar] [CrossRef]
- Perkins, R.B.; Palmer, C.D. Solubility of Ca6[Al(OH)6]2(CrO4)3·26H2O, the Chromate Analog of Ettringite; 5–75 °C. Appl. Geochem. 2000, 15, 1203–1218. [Google Scholar] [CrossRef]
- Perkins, R.B.; Palmer, C.D. Solubility of Chromate Hydrocalumite (3CaO·Al2O3·CaCrO4·nH2O) 5–75 °C. Cem. Concr. Res. 2001, 31, 983–992. [Google Scholar] [CrossRef]
- Zhang, M.; Reardon, E.J. Removal of B, Cr, Mo, and Se from Wastewater by Incorporation into Hydrocalumite and Ettringite. Environ. Sci. Technol. 2003, 37, 2947–2952. [Google Scholar] [CrossRef]
- You, K.S.; Ahn, J.W.; Cho, H.C.; Han, G.C.; Han, D.Y.; Cho, K.H. Competing Ion Effect of Stabilization by Cr(III) & Cr(VI) in Ettringite Crystal Structure. Solid State Phenom. 2007, 124–126, 1629–1632. [Google Scholar] [CrossRef]
- Pöllmann, H.; Auer, S. Cr6+-Containing Phases in the System CaO-Al2O3-CrO42--H2O at 23 °C. J. Solid State Chem. 2012, 185, 82–88. [Google Scholar] [CrossRef]
- Seryotkin, Y.V.; Sokol, E.V.; Kokh, S.N.; Sharygin, V.V. Natural Bentorite—Cr3+ Derivate of Ettringite: Determination of Crystal Structure. Phys. Chem. Miner. 2019, 46, 553–570. [Google Scholar] [CrossRef]
- Juroszek, R.; Kruger, B.; Galuskina, I.; Kruger, H.; Vapnik, Y.; Galuskin, E. Siwaqaite, Ca6Al2(CrO4)3(OH)12·26H2O, a New Mineral of the Ettringite Group from the Pyrometamorphic Daba-Siwaqa Complex, Jordan. Am. Mineral. 2020, 105, 409–421. [Google Scholar] [CrossRef]
- Leisinger, S.M.; Lothenbach, B.; Le Saout, G.; Johnson, C.A. Thermodynamic Modeling of Solid Solutions between Monosulfate and Monochromate 3CaO·Al2O3·Ca[(CrO4)x(SO4)1-x]·nH2O. Cem. Concr. Res. 2012, 42, 158–165. [Google Scholar] [CrossRef]
- Dai, Y.; Qian, G.; Cao, Y.; Chi, Y.; Xu, Y.; Zhou, J.; Liu, Q.; Xu, Z.P.; Qiao, S. Effective Removal and Fixation of Cr(VI) from Aqueous Solution with Friedel’s Salt. J. Hazard. Mater. 2009, 170, 1086–1092. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.-Z.; Qian, G.-R.; Cao, Y.-L.; Chui, P.-C.; Xu, Y.-F.; Liu, Q. Transition of Friedel Phase to Chromate-AFm Phase. Adv. Cem. Res. 2008, 20, 167–173. [Google Scholar] [CrossRef]
- Lothenbach, B.; Kulik, D.A.; Matschei, T.; Balonis, M.; Baquerizo, L.; Dilnesa, B.; Miron, G.D.; Myers, R.J. Cemdata 18: A Chemical Thermodynamic Database for Hydrated Portland Cements and Alkali-Activated Materials. Cem. Concr. Res. 2019, 115, 472–506. [Google Scholar] [CrossRef][Green Version]
- Segni, R.; Vieille, L.; Leroux, F.; Taviot-Guého, C. Hydrocalumite-Type Materials: 1. Interest in Hazardous Waste Immobilization. J. Phys. Chem. Solids 2006, 67, 1037–1042. [Google Scholar] [CrossRef]
- Nielsen, U.G. Chapter Two—Solid state NMR studies of layered double hydroxides. In Annual Reports on NMR Spectroscopy; Webb, G.A., Ed.; Academic Press: Cambridge, MA, USA, 2021; Volume 104, pp. 75–140. [Google Scholar]
- Andersen, M.D.; Jakobsen, H.J.; Skibsted, J. Characterization of the Alpha-Beta Phase Transition in Friedels Salt (Ca2Al(OH)6Cl·2H2O by Variable-Temperature 27Al MAS NMR Spectroscopy. J. Phys. Chem. A 2002, 106, 6676–6682. [Google Scholar] [CrossRef]
- Skibsted, J.; Pedersen, M.T.; Holzinger, J. Resolution of the Two Aluminum Sites in Ettringite by 27Al MAS and MQMAS NMR at Very High Magnetic Field (22.3 T). J. Phys. Chem. C 2017, 121, 4011–4017. [Google Scholar] [CrossRef]
- Moore, A.E.; Taylor, H.F.W. Crystal Structure of Ettringite. Acta Crystallogr. B 1970, 26, 386–393. [Google Scholar] [CrossRef]
- Scholtzová, E.; Kucková, L.; Kožíšek, J.; Tunega, D. Structural and Spectroscopic Characterization of Ettringite Mineral - Combined DFT and Experimental Study. J. Mol. Struct. 2015, 1100, 215–224. [Google Scholar] [CrossRef]
- Skibsted, J.; Henderson, E.; Jakobsen, H.J. Characterization of Calcium Aluminate Phases in Cements by 27Al MAS NMR Spectroscopy. Inorg. Chem. 1993, 32, 1013–1027. [Google Scholar] [CrossRef]
- Faucon, P.; Charpentier, T.; Bertrandie, D.; Nonat, A.; Virlet, J.; Petit, J.C. Characterization of Calcium Aluminate Hydrates and Related Hydrates of Cement Pastes by 27Al MQ-MAS NMR. Inorg. Chem. 1998, 37, 3726–3733. [Google Scholar] [CrossRef]
- Forgeron, M.A.M.; Wasylishen, R.E. A Solid-State 53Cr NMR Study of Chromate and Dichromate Salts. Magn. Reson. Chem. 2008, 46, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Samoson, A. Satellite Transition High-Resolution NMR of Quadrupolar Nuclei in Powders. Chem. Phys. Lett. 1985, 119, 29–32. [Google Scholar] [CrossRef]
- Skibsted, J.; Nielsen, N.C.; Bildsøe, H.; Jakobsen, H.J. Satellite Transitions in MAS NMR Spectra of Quadrupolar Nuclei. J. Magn. Reson. 1969 1991, 95, 88–117. [Google Scholar] [CrossRef]
- Cadars, S.; Guegan, R.; Garaga, M.N.; Bourrat, X.; Le Forestier, L.; Fayon, F.; Huynh, T.V.; Allier, T.; Nour, Z.; Massiot, D. New Insights into the Molecular Structures, Compositions, and Cation Distributions in Synthetic and Natural Montmorillonite Clays. Chem. Mater. 2012, 24, 4376–4389. [Google Scholar] [CrossRef][Green Version]
- Sideris, P.J.; Nielsen, U.G.; Gan, Z.H.; Grey, C.P. Mg/Al Ordering in Layered Double Hydroxides Revealed by Multinuclear NMR Spectroscopy. Science 2008, 321, 113–117. [Google Scholar] [CrossRef][Green Version]
- Cadars, S.; Layrac, G.; Gerardin, C.; Deschamps, M.; Yates, J.R.; Tichit, D.; Massiot, D. Identification and Quantification of Defects in the Cation Ordering in Mg/Al Layered Double Hydroxides. Chem. Mater. 2011, 23, 2821–2831. [Google Scholar] [CrossRef]
- Méducin, F.; Bresson, B.; Lequeux, N.; de Noirfontaine, M.; Zanni, H. Calcium Silicate Hydrates Investigated by Solid-state High Resolution 1H and 29Si Nuclear Magnetic Resonance. Cem. Concr. Res. 2007, 37, 631–638. [Google Scholar] [CrossRef]
- Renaudin, G.; Russias, J.; Leroux, F.; Cau-dit-Coumes, C.; Frizon, F. Structural Characterization of C–S–H and C–A–S–H Samples—Part II: Local Environment Investigated by Spectroscopic Analyses. J. Solid State Chem. 2009, 182, 3320–3329. [Google Scholar] [CrossRef]
- Zhou, Q.; Lachowski, E.E.; Glasser, F.P. Metaettringite, a Decomposition Product of Ettringite. Cem. Concr. Res. 2004, 34, 703–710. [Google Scholar] [CrossRef]
- Harris, R.K.; Becker, E.D.; de Menezes, S.M.C.; Goodfellow, R.; Granger, P. NMR Nomenclature: Nuclear Spin Properties and Conventions for Chemical Shifts. IUPAC Recommendations 2001. International Union of Pure and Applied Chemistry. Physical Chemistry Division. Commission on Molecular Structure and Spectroscopy. Magn. Reson. Chem. 2002, 40, 489–505. [Google Scholar] [CrossRef]
- Bryce, D.L.; Wasylishen, R.E. The First Chromium-53 Solid-State Nuclear Magnetic Resonance Spectra of Diamagnetic Chromium(0) and Chromium(VI) Compounds. Phys. Chem. Chem. Phys. 2001, 3, 5154–5157. [Google Scholar] [CrossRef]
- Hansen, M.R.; Brorson, M.; Bildsøe, H.; Skibsted, J.; Jakobsen, H.J. Sensitivity Enhancement in Natural-Abundance Solid-State 33S MAS NMR Spectroscopy Employing Adiabatic Inversion Pulses to the Satellite Transitions. J. Magn. Reson. 2008, 190, 316–326. [Google Scholar] [CrossRef] [PubMed]
δiso | CQ(a) | ηQ(a) | ||
---|---|---|---|---|
Cr-AFm | 11.26 ± 0.04 | 1.10 ± 0.02 | 0.16 ± 0.02 | |
hemi-Cr-AFm | 11.26 ± 0.04 | 1.04 ± 0.02 | 0.25 ± 0.02 | |
Cr-AFt | Al(1) | 13.05 ± 0.02 | 0.353 ± 0.005 | 0.293 ± 0.020 |
Al(2) | 13.44 ± 0.02 | 0.359 ± 0.005 | 0.245 ± 0.020 | |
SO4-Aft (b) | Al(1) | 13.08 ± 0.05 | 0.391 ± 0.010 | 0.164 ± 0.020 |
Al(2) | 13.51 ± 0.05 | 0.337 ± 0.006 | 0.174 ± 0.010 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, S.; Skibsted, J. Characterization of Monochromate and Hemichromate AFm Phases and Chromate-Containing Ettringite by 1H, 27Al, and 53Cr MAS NMR Spectroscopy. Minerals 2022, 12, 371. https://doi.org/10.3390/min12030371
Nie S, Skibsted J. Characterization of Monochromate and Hemichromate AFm Phases and Chromate-Containing Ettringite by 1H, 27Al, and 53Cr MAS NMR Spectroscopy. Minerals. 2022; 12(3):371. https://doi.org/10.3390/min12030371
Chicago/Turabian StyleNie, Shuai, and Jørgen Skibsted. 2022. "Characterization of Monochromate and Hemichromate AFm Phases and Chromate-Containing Ettringite by 1H, 27Al, and 53Cr MAS NMR Spectroscopy" Minerals 12, no. 3: 371. https://doi.org/10.3390/min12030371