Effects of Magmatic Fluids in Coals of São Pedro da Cova Coalfield, Douro Carboniferous Basin, Portugal: Insights from Inorganic Geochemistry
Abstract
:1. Introduction
2. Geological Setting
3. Sampling and Analytical Methodologies
4. Results and Discussion
4.1. Organic Petrography and Ultimate and Proximate Analyses
4.2. Major Elements and Mineralogy
4.3. Trace Elements and Concentration Coefficients
4.4. Geochemical Affinities of the Trace Elements
4.5. The REE as Proxies of Geochemical Processes
4.6. Mineralogical Evidence of Magmatic Fluids
5. Conclusions
- The coals from the São Pedro da Cova Coalfield have vitrinite as the main organic component while inertinite also occurs. These coals are classified as anthracite A (Rr = 4.51% and 5.76%). Ash yield ranges between 4.86% and 39.72% (dry basis). Volatile matter, C and H contents agree with the rank of these coals, while S tot contents are low.
- In all units, most of the elements as well as REE have inorganic affinities and are associated with the aluminosilicates, with the other elements having affinities with the sulfides. Illite and muscovite are the main phyllosilicates identified by SEM-EDX, and within the sulfides pyrite is the most common, having a syngenetic and epigenetic origin; however, galena, sphalerite, chalcopyrite and cinnabar were also identified.
- The trace element concentration coefficients indicate that TSU 1 has more elements that demonstrate enrichment, especially As, Cs and Hg, the last one being extremely enriched. The EO shows a depletion in almost all elements. Regarding the geochemical affinities, Hg presents an intermediate affinity with the ash yield and a positive affinity with S tot, indicating that it occurs as a sulfide. Cinnabar was identified filling devolatilization vacuoles in the coal.
- The different REE distribution patterns observed in the TSU B1, D1, B2 and D2 samples, and a general enrichment of most of the quantified elements, namely LREE, are considered to be associated with magmatic fluid contribution, while for the EO a subparallel trend of the REE distribution patterns, a depletion of REE and of the other elements in general, are considered to be related to the sedimentary contribution.
- The samples are geographically close together evidencing the local influence of the granodioritic porphyry identified and described only in this sector of the DCB. Despite the low content of P in the studied samples, gorceixite (Ba alumino-phosphate) was identified as having an epigenetic origin, occurring filling devolatilization pores in the organic matter. Other REE-phosphates such as monazite and xenotime were also identified.
- The cinnabar and gorceixite mineralization are of epigenetic origin and may result from the action of a porphyry intrusion identified in this area of the DCB between the TSU B1 and TSU D1.
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Domingos, L.C.F.G.; Freire, J.L.S.; Silva, F.G.; Gonçalves, F.; Pereira, E.; Ribeiro, A. The structure of the intramontane Upper Carboniferous basins in Portugal. In The Carboniferous of Portugal; Lemos de Sousa, M.J., Oliveira, J.T., Eds.; Memórias dos Serviços Geológicos de Portugal: Lisboa, Portugal, 1983; Volume 29, pp. 187–194. [Google Scholar]
- Ribeiro, A.; Rodrigues, J.F.; Pinto de Jesus, A.; Pereira, E.; Lemos de Sousa, M.J.; Brandão Silva, J. Novos Dados sobre a Estratigrafia e Estrutura da Zona de Cisalhamento do Sulco Carbonífero Dúrico-Beirão. In Evolução Geológica do Maciço Ibérico e seu Enquadramento Continental; Reunião Anual do PICG-376-Laurentia-Gondwana-Báltica Connections; Comunicações XIV Reunião de Geologia do Oeste Peninsular; Pires, C.C., Gomes, M.E.P., Coke, C., Eds.; UTAD: Vila Real, Portugal, 1983; pp. 195–201. [Google Scholar]
- Pinto de Jesus, A. Génese e Evolução da Bacia Carbonífera do Douro (Estefaniano C inferior, NW de Portugal); Um Modelo. Ph.D. Thesis, University of Porto, Porto, Portugal, 2001. [Google Scholar]
- Pinto de Jesus, A. Evolução sedimentar e tectónica da Bacia Carbonífera do Douro (Estefaniano C inferior, NW de Portugal). Cad. Geol. Laxe 2003, 28, 107–125. [Google Scholar]
- Pinto de Jesus, A. Carboniferous Intermontane Basins of Portugal. In The Geology of Iberia: A Geodynamic Approach, 1st ed.; Oliveira, J., Quesada, C., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2019; Synorogenic Basins; Volume 2, pp. 402–408. [Google Scholar]
- Teixeira, C. O Antracolítico Continental Português (Estratigrafia e Tectónica). Ph.D. Thesis, University of Porto, Porto, Portugal, 1944. [Google Scholar]
- Teixeira, C. O Sistema Permo-Carbónico. In Notas sobre Geologia de Portugal; Lisboa, Portugal, 1954. [Google Scholar]
- Wagner, R.H.; Lemos de Sousa, M.J. The Carboniferous Megafloras of Portugal—A revision of identifications and discussion of stratigraphic ages. In The Carboniferous of Portugal; Lemos de Sousa, M.J., Oliveira, J.T., Eds.; Memórias dos Serviços Geológicos de Portugal: Lisboa, Portugal, 1983; Volume 29, pp. 127–152. [Google Scholar]
- Correia, P.; Šimůnek, Z.; Pšenička, J.; Sá, A.A.; Domingos, R.; Carneiro, A.; Flores, D. New paleobotanical data on the Portuguese Pennsylvanian (Douro Carboniferous Basin, NW Portugal). Comun. Geol. 2014, 101, 409–414. [Google Scholar]
- Correia, P.; Sá, A.A.; Murphy, J.B.; Šimůnek, Z.; Flores, D. Lesleya Lesquereux from the Pennsylvanian of the Iberian Massif: Part of a dryland megaflora from the Variscan orogen, northwestern Portugal. Can. J. Earth Sci. 2016, 53, 883–895. [Google Scholar] [CrossRef] [Green Version]
- Correia, P.; Šimůnek, Z.; Artur, S.A.; Flores, D. A new Late Pennsylvanian floral assemblage from the Douro Basin, Portugal. Geol. J. 2018, 53, 2507–2531. [Google Scholar] [CrossRef]
- Correia, P.; Šimůnek, Z.; Cleal, C.; Sá, A. Douropteris alvarezii gen. nov., sp. nov., a new medullosalean pteridosperm from the Late Pennsylvanian of Portugal. Geol. J. 2019, 54, 1567–1577. [Google Scholar] [CrossRef]
- Eagar, R.M.C. The non-marine bivalve fauna of the Stephanian C of North Portugal. In The Carboniferous of Portugal; Lemos de Sousa, M.J., Oliveira, J.T., Eds.; Memórias dos Serviços Geológicos de Portugal: Lisboa, Portugal, 1983; Volume 29, pp. 179–185. [Google Scholar]
- Loureiro, J.P.; Correia, P.; Nel, A.; Pinto de Jesus, A. Lusitaneura covensis n. gen., n. sp., first Caloneurodea from the Carboniferous of Portugal (Insecta: Pterygota: Panorthoptera). An. Soc. Entomol. Fr. 2010, 46, 242–246. [Google Scholar] [CrossRef] [Green Version]
- Correia, P.; Murphy, J.B.; Sá, A.A.; Domingos, R.; Flores, D. First Palaeozoic arachnid from Portugal and implications for Carboniferous palaeobiogeography. Geol. J. 2013, 48, 101–107. [Google Scholar] [CrossRef]
- Correia, P.; Nel, A.; Sá, A.A.; Domingos, R.; Carneiro, A.; Flores, D. A new Palaeodictyoptera from the Late Carboniferous of Portugal. Ann. Soc. Entomol. Fr. 2013, 49, 398–401. [Google Scholar] [CrossRef]
- Lemos de Sousa, M.J. Contribuição para o Conhecimento da Bacia Carbonífera do Douro. Ph.D. Thesis, University of Porto, Porto, Portugal, 1973. [Google Scholar]
- Lemos de Sousa, M.J. Novos elementos para o conhecimento da relação “Microdureza Vickers-Rang” em carvões. (A propósito das primeiras determinações de microdureza em carvões portugueses). Publ. Mus. Labor. Miner. Geol. Fac. Ciênc. Porto 1976, 86, 69. [Google Scholar]
- Lemos de Sousa, M.J. Nota sobre a densidade das perantracites da bacia carbonífera do Douro (NW) de Portugal. Bol. Min. 1977, 14, 1–7. [Google Scholar]
- Lemos de Sousa, M.J. Sobre alguns problemas do Permo-carbónico continental português. Ciênc. Terra 1977, 3, 9–22. [Google Scholar]
- Lemos de Sousa, M.J. Contribution à L’étude du Bassin Houiller du Douro (NW du Portugal). Atlas de Micropétrographie des Peranthracites; Direcção-Geral de Geologia e Minas, Serviços Geológicos de Portugal: Lisboa, Portugal, 1978; Volume 26, 92p. [Google Scholar]
- Lemos de Sousa, M.J. O grau de incarbonização (rang) dos carvões durienses e as consequências genéticas, geológicas e estruturais que resultam do seu conhecimento. Comun. Serv. Geol. Portg. 1978, 63, 179–365. [Google Scholar]
- Lemos de Sousa, M.J. Subsídios para o conhecimento da matéria mineral associada às perantracites da bacia carbonífera do Douro (NO Portugal). I—Um plano de pesquisa. Comun. Serv. geol. Portg. 1979, 64, 81–98. [Google Scholar]
- Lemos de Sousa, M.J. Subsídios para o conhecimento da matéria mineral associada às perantracites da bacia carbonífera do Douro (NO Portugal). II—Elementos para o estudo geoquímico das perantracites durienses. Comun. Serv. geol. Portg. 1979, 64, 99–102. [Google Scholar]
- Marques, M.; Suárez-Ruiz, I.; Flores, D.; Guedes, A.; Rodrigues, S. Correlation between optical, chemical and micro-structural parameters of high-rank coals and graphite. Int. J. Coal Geol. 2009, 77, 377–382. [Google Scholar] [CrossRef]
- Ribeiro, J.; Ferreira da Silva, E.; Flores, D. Burning of coal waste piles from Douro Coalfield (Portugal): Petrological, geochemical and mineralogical characterization. Int. J. Coal Geol. 2010, 81, 359–372. [Google Scholar] [CrossRef]
- Ribeiro, J.; Ferreira da Silva, E.; Pinto de Jesus, A.; Flores, D. Petrographic and geochemical characterization of coal waste piles from Douro Coalfield (NW Portugal). Int. J. Coal Geol. 2011, 87, 226–236. [Google Scholar] [CrossRef]
- Ribeiro, J.; Moura, R.; Flores, D.; Lopes, D.B.; Gouveia, C.; Mendonça, S.; Frazão, O. The Douro Coalfield Fires of Portugal. In Coal and Peat Fires: A Global Perspective; Stracher, G.B., Prakash, A., Sokol, E.V., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; Volume II, pp. 314–337. [Google Scholar]
- Ribeiro, J.; Viveiros, D.; Ferreira, J.; Santos, J.L.; Baptista, J.M.; Flores, D. Monitorização ambiental de escombreira de S. Pedro da Cova: Temperatura de combustão. Comun. Geol. 2014, 101, 1063–1065. [Google Scholar]
- Ribeiro, J.; Sant’Ovaia, H.; Gomes, C.; Ward, C.; Flores, D. Mineralogy and Magnetic Parameters of Materials from the Douro Coalfield, Northwest of Portugal. In Coal and Peat Fires: A Global Perspective; Stracher, G.B., Prakash, A., Sokol, E.V., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; Volume III, pp. 494–508. [Google Scholar]
- Ribeiro, J.; Viveiros, D.; Ferreira, J.; Lopez-Gil, A.; Dominguez-Lopez, A.; Martins, H.F.; Perez-Herrera, R.; Lopez-Aldaba, A.; Duarte, L.; Pinto, A.; et al. ECOAL project-Delivering Solutions for Integrated monitoring of coal-related fires supported on optical fiber sensing technology. Appl. Sci. 2017, 7, 956. [Google Scholar] [CrossRef]
- Rocha, J.; Santos, P.; Ribeiro, J.; Espinha Marques, J.; Mansilha, C.; Flores, D. Caracterização hidrogeoquímica de efluentes da mina de carvão de São Pedro da Cova (Gondomar). Comun. Geol. 2020, 107, 129–132. [Google Scholar]
- Santos, P.; Espinha Marques, J.; Ribeiro, J.; Rocha, J.; Flores, D. Caracterização da Contaminação dos Solos da Envolvente da Escombreira da Antiga Mina de Carvão de São Pedro da Cova. Comun. Geol. 2020, 107, 151–154. [Google Scholar]
- Teodoro, A.; Santos, P.; Espinha Marques, J.; Ribeiro, J.; Mansilha, C.; Melo, A.; Duarte, L.; Rodrigues de Almeida, C.; Flores, D. An Integrated Multi-Approach to Environmental Monitoring of a Self-Burning Coal Waste Pile: The São Pedro da Cova Mine (Porto, Portugal) Study Case. Environments 2021, 8, 48. [Google Scholar] [CrossRef]
- Espinha Marques, J.; Martins, V.; Santos, P.; Ribeiro, J.; Mansilha, C.; Melo, A.; Rocha, F.; Flores, D. Changes Induced by Self-Burning in Technosols from a Coal Mine Waste Pile: A Hydropedological Approach. Geosciences 2021, 11, 195. [Google Scholar] [CrossRef]
- Mansilha, C.; Melo, A.; Flores, D.; Ribeiro, J.; Rocha, J.R.; Martins, V.; Santos, P.; Espinha Marques, J. Irrigation with Coal Mining Effluents: Sustainability and Water Quality Considerations (São Pedro da Cova, North Portugal). Water 2021, 13, 2157. [Google Scholar] [CrossRef]
- Moura, H.; Pinto de Jesus, A.D.; Ribeiro, J.; Suárez-Ruiz, I.; Flores, D.; Cunha, P.P. Occurrence of Mercury and enrichment source in coals from the Douro Carboniferous Basin, São Pedro da Cova area (NW Portugal). In Proceedings of the 70th Annual Meeting of the International Committee for Coal and Organic Petrology, Brisbane, Australia, 23–29 September 2018; pp. 71–72. [Google Scholar]
- Costa, M.; Moura, H.; Pinto de Jesus, A.D.; Flores, D. Assinatura geoquímica de fluídos ígneos nos carvões da Bacia Carbonífera do Douro: Sector de São Pedro da Cova. In Jornadas ICT 2021, Porto; Livro de Resumos; Instituto de Ciências da Terra: Porto, Portugal, 2021; pp. 43–44. [Google Scholar]
- Goodarzi, F.; Gentzis, T.; Bustin, R.M. Reflectance and petrology profile of a partially combusted and coked bituminous coal seam from British Columbia. Fuel 1988, 67, 1218–1222. [Google Scholar] [CrossRef]
- Goodarzi, F.; Cameron, A.R. Organic Petrology and Elemental Distribution in Thermally Altered Coals from Telkwa, British Columbia. Energy Sources 1990, 12, 315–343. [Google Scholar] [CrossRef]
- Finkelman, R.B.; Bostick, N.H.; Dulong, F.T.; Senftle, F.E.; Thorpe, A.N. Influence of an igneous intrusion on the inorganic geochemistry of a bituminous coal from Pitkin County. Colorado. Int. J. Coal Geol. 1998, 36, 223–241. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D. Effects of magmatic intrusion on mineralogy and geochemistry of coals from the Fengfeng−Handan Coalfield, Hebei, China. Energy Fuel 2007, 21, 1663–1673. [Google Scholar] [CrossRef]
- Golab, A.N.; Hutton, A.C.; French, D. Petrography, carbonate mineralogy and geochemistry of thermally altered coal in Permian coal measures, Hunter Valley, Australia. Int. J. Coal Geol. 2007, 70, 150–165. [Google Scholar] [CrossRef]
- Colmenero, J.R.; Suárez-Ruiz, I.; Fernández-Suárez, J.; Barba, P.; Llorens, T. Genesis and rank distribution of Upper Carboniferous coal basins in the Cantabrian Mountains, Northern Spain. Int. J. Coal Geol. 2008, 76, 187–204. [Google Scholar] [CrossRef]
- Goodarzi, F.; Gentzis, T.; Dewing, K. Influence of igneous intrusions on the thermal maturity of organic matter in the Sverdrup Basin, Arctic Canada. Int. J. Coal Geol. 2019, 213, 103280. [Google Scholar] [CrossRef]
- Rodrigues, S.; Esterle, J.; Ward, V.; Glasser, L.; Maquissene, T.; Etchart, E. Flow structures and mineralisation in thermally altered coal from the Moatize Basin, Mozambique. Int. J. Coal Geol. 2020, 228, 103551. [Google Scholar] [CrossRef]
- Moura, H.; Suárez-Ruiz, I.; Marques, M.M.; Ribeiro, J.; Cunha, P.P.; Flores, D. Influence of magmatic fluids on the organic and inorganic fractions of coals from the Peñarroya-Belmez-Espiel Basin (Spain). Int. J. Coal Geol. 2021, 235, 103679. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Chou, C.-L.; Finkelman, R.B.; Seredin, V.V.; Zhou, Y. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. Int. J. Coal Geol. 2012, 94, 3–21. [Google Scholar] [CrossRef]
- Yan, Z.; Liu, G.; Sun, R.; Wu, D.; Wu, B.; Zhou, C. Mercury distribution in coals influenced by magmatic intrusions, and surface waters from the Huaibei Coal Mining District, Anhui, China. Appl. Geochem. 2013, 33, 298–305. [Google Scholar] [CrossRef]
- Chen, J.; Liu, G.; Li, H.; Wu, B. Mineralogical and geochemical responses of coal to igneous intrusion in the Pansan Coal Mine of the Huainan coalfield, Anhui, China. Int. J. Coal Geol. 2014, 124, 11–35. [Google Scholar] [CrossRef]
- An, Y.; Liu, L.; Wang, M.; Zheng, S.; Guo, Y.; Zhang, S.; Lai, C. Source and Enrichment of toxic elements in Coal Seams around Mafic Intrusions: Constraints from Pyrites in the Yuandian Coal Mine in Anhui, Eastern China. Minerals 2018, 8, 164. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.; Liu, G.; Chou, C.L. Abundance and modes of occurrence of mercury in some low-sulfur coals from China. Int. J. Coal Geol. 2008, 73, 19–26. [Google Scholar] [CrossRef]
- Dai, S.; Zhang, W.; Ward, C.R.; Seredin, V.V.; Hower, J.C.; Li, X.; Song, W.; Wang, X.; Kang, H.; Zheng, L.; et al. Mineralogical and geochemical anomalies of late Permian coals from the Fusui Coalfield, Guangxi Province, southern China: Influences of terrigenous materials and hydrothermal fluids. Int. J. Coal Geol. 2013, 105, 60–84. [Google Scholar] [CrossRef]
- Dai, S.; Li, T.; Jiang, Y.; Ward, C.R.; Hower, J.C.; Sun, J.; Liu, J.; Song, H.; Wei, J.; Li, Q.; et al. Mineralogical and geochemical compositions of the Pennsylvanian coal in the Hailiushu Mine, Daqingshan Coalfield, Inner Mongolia, China: Implications of sediment-source region and acid hydrothermal solutions. Int. J. Coal Geol. 2015, 137, 92–110. [Google Scholar] [CrossRef]
- Yudovich, Y.E.; Ketris, M.P. Mercury in coal: A review: Part 1. Geochemistry. Int. J. Coal Geol. 2005, 62, 107–134. [Google Scholar] [CrossRef]
- Finkelman, R.B.; Shifeng, D.; French, D. The importance of minerals in coal as the hosts of chemical elements: A review. Int. J. Coal Geol. 2019, 212, 103251. [Google Scholar] [CrossRef]
- Ward, C.R.; Corcoran, J.F.; Saxby, J.D.; Read, H.W. Occurrence of phosphorus minerals in Australian coal seams. Int. J. Coal Geol. 1996, 30, 185–210. [Google Scholar] [CrossRef]
- Dai, S.; Zou, J.; Jiang, Y.; Ward, C.R.; Wang, X.; Li, T.; Xue, W.; Liu, S.; Tian, H.; Sun, X.; et al. Mineralogical and geochemical compositions of the Pennsylvanian coal in the Adaohai Mine, Daqingshan Coalfield, Inner Mongolia, China: Modes of occurrence and origin of diaspore, gorceixite and ammonian illite. Int. J. Coal Geol. 2012, 194, 250–2740. [Google Scholar] [CrossRef]
- Dai, S.; Hower, J.C.; Ward, C.R.; Guo, W.; Song, H.; O’Keefe, J.M.K.; Xie, P.; Hood, M.M.; Yan, X. Elements and phosphorous minerals in the middle Jurassic inertinite-rich coals of the Muli Coalfield on the Tibetan Plateau. Int. J. Coal Geol. 2015, 144–145, 23–47. [Google Scholar] [CrossRef]
- Goodarzi, F.; Grieves, D.A.; Labonté, M. Mineralogical and elemental composition of Tonsteins from the East Kootenay Coalfields, Southeastern British Columbia. Energy Sources 1990, 12, 265–295. [Google Scholar] [CrossRef]
- Goodarzi, F.; Van der Flier-Keller, E. Organic petrology and geochemistry of intermontane coals from British Columbia, III. The Blakeburn opencast mine near Tulameen, British Columbia, Canada. Chem. Geol. 1989, 75, 227–247. [Google Scholar] [CrossRef]
- Teixeira, C.; Fonseca, N. Formações eruptivas relacionadas com o Estefaniano de São Pedro da Cova. In Anais da Faculdade de Ciências da Universidade do Porto, Tomo XXX; Imprensa Portuguesa: Porto, Portugal, 1945; pp. 100–109. [Google Scholar]
- Pereira, J. Estudo petrográfico de rochas porfiríticas de São Pedro da Cova. In Anais da Faculdade de Ciências da Universidade do Porto, Tomo XXX; Imprensa Portuguesa: Porto, Portugal, 1945; pp. 116–136. [Google Scholar]
- Pinto de Jesus, A.; Lemos de Sousa, M.J. Modelo deposicional da Bacia Carbonífera do Douro na região de Sete Casais (Sector NW do Sulco Carbonífero Dúrico-Beirão). In Actas do V Congresso Nacional de Geologia (Resumos Alargados); Comunicações do Instituto Geológico Mineiro, Volume 84; Instituto Geológico Mineiro: Lisboa, Portugal, 1998; Volume 1, pp. A22–A25. [Google Scholar]
- Megias, A.G. Introducción al análisis tectosedimentario: Applicación al estudio dinámico de cuencas. In Actas Congresso Latino-americano de Geología, Argentina; Serviço Geológico Nacional: Buenos Aires, Argentina, 1982; Volume I, pp. 385–401. [Google Scholar]
- ISO 7404–3; Methods for the Petrographic Analysis of Coals—Part 3: Method of Determining Maceral Group Composition. International Organization for Standardization: Geneva, Switzerland, 2009; 7p.
- ISO 7404–5; Methods for the Petrographic Analysis of Coals—Part 5: Method of Determining Microscopically the Reflectance of Vitrinite. International Organization for Standardization: Geneva, Switzerland, 2009; 14p.
- ISO 7404–2; Methods for the Petrographic Analysis of Coals—Part 2: Methods of Preparing Coal Samples. International Organization for Standardization: Geneva, Switzerland, 2009; 12p.
- International Committee for Coal and Organic Petrology (ICCP). The new vitrinite classification (ICCP System 1994). Fuel 1998, 77, 349–358. [Google Scholar] [CrossRef]
- International Committee for Coal and Organic Petrology (ICCP). The new inertinite classification (ICCP System 1994). Fuel 2001, 80, 459–471. [Google Scholar] [CrossRef]
- ISO 562; Hard Coal and Coke—Determination of Volatile Matter. International Organization for Standardization: Geneva, Switzerland, 2010; 7p.
- ISO 589; Hard Coal—Determination of Total Moisture. International Organization for Standardization: Geneva, Switzerland, 2008; 9p.
- ISO 1171; Solid Mineral Fuels—Determination of Ash. International Organization for Standardization: Geneva, Switzerland, 2010; 4p.
- ISO 1170; Coal and Coke—Calculation of Analyses to Different Bases. International Organization for Standardization: Geneva, Switzerland, 2013; 7p.
- ISO 11760; Classification of Coals. 1st ed. International Organization for Standardization: Geneva, Switzerland, 2005; 9p.
- Taylor, G.H.; Teichmüller, M.; Davis, A.; Diessel, C.F.K.; Littke, R.; Robert, P. Organic Petrology; Gerbrüder Borntraeger: Berlin/Stuttgart, Germany, 1998; 704p. [Google Scholar]
- Ketris, M.P.; Yudovich, Y.E. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. Int. J. Coal Geol. 2009, 78, 135–148. [Google Scholar] [CrossRef]
- Dai, S.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Xing, Y.; Zhang, W.; Song, W.; Wang, P. Enrichment of U-Se-Mo-Re-V in coals preserved within marine carbonate successions: Geochemical and mineralogical data from the late Permian Guiding Coalfield, Guizhou, China. Miner. Depos. 2015, 50, 159–186. [Google Scholar] [CrossRef]
- Dai, S.; Chekryzhov, I.Y.; Seredin, V.V.; Nechaev, V.P.; Graham, I.T.; Hower, J.C.; Ward, C.R.; Ren, D.; Wang, X. Metalliferous coal deposits in East Asia (Primorye of Russia and South China): A review of geodynamic controls and styles of mineralization. Gondwana Res. 2016, 29, 60–82. [Google Scholar] [CrossRef]
- Finkelman, R.B.; Palmer, C.A.; Wang, P. Quantification of the modes of occurrence of 42 elements in coal. Int. J. Coal Geol. 2018, 185, 138–160. [Google Scholar] [CrossRef]
- Couto, H. As Mineralizações de Sb-Au da Região Dúrico-Beirã. Ph.D. Thesis, University of Porto, Porto, Portugal, 1993. [Google Scholar]
- Dai, S.; Graham, I.T.; Ward, C.R. A review of anomalous rare earth elements and yttrium in coal. Int. J. Coal Geol. 2016, 159, 82–95. [Google Scholar] [CrossRef]
- Zhao, L.; Dai, S.; Nechaev, V.P.; Nechaeva, E.V.; Graham, I.T.; French, D.; Sun, J. Enrichment of critical elements (Nb-Ta-Zr-Hf-REE) within coal and host rocks from the Datanhao mine, Daqingshan Coalfield, northern China. Ore Geol. Rev. 2019, 111, 102951. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust; Its Composition and Evolution; An Examination of the Geochemical Record Preserved in Sedimentary Rocks; Blackwell: Oxford, UK, 1985; 312p. [Google Scholar]
- Seredin, V.V.; Dai, S. Coal deposits as potential alternative sources for lanthanides and yttrium. Int. J. Coal Geol. 2012, 94, 67–93. [Google Scholar] [CrossRef]
- Brownfield, M.E.; Affolter, R.H.; Cathcart, J.D.; Johnson, S.Y.; Brownfield, I.K.; Rice, C.A. Geologic setting and characterization of coals and the modes of occurrence of selected elements from the Franklin coal zone, Puget Group, John Henry No. 1 mine, King County, Washington, USA. Int. J. Coal Geol. 2005, 63, 247–275. [Google Scholar] [CrossRef]
- Dai, S.; Finkelman, R.B.; French, D.; Hower, J.C.; Graham, I.T.; Zhao, F. Modes of occurrence of elements in coal: A critical evaluation. Earth Sci. Rev. 2021, 222, 103815. [Google Scholar] [CrossRef]
- Kwiecińska, B.; Pusz, S. Pyrolytic carbon—Definition, classification and occurrence. Int. J. Coal Geol. 2016, 163, 1–7. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, M.; Moura, H.; Pinto de Jesus, A.; Suárez-Ruiz, I.; Flores, D. Effects of Magmatic Fluids in Coals of São Pedro da Cova Coalfield, Douro Carboniferous Basin, Portugal: Insights from Inorganic Geochemistry. Minerals 2022, 12, 275. https://doi.org/10.3390/min12020275
Costa M, Moura H, Pinto de Jesus A, Suárez-Ruiz I, Flores D. Effects of Magmatic Fluids in Coals of São Pedro da Cova Coalfield, Douro Carboniferous Basin, Portugal: Insights from Inorganic Geochemistry. Minerals. 2022; 12(2):275. https://doi.org/10.3390/min12020275
Chicago/Turabian StyleCosta, Mariana, Helena Moura, Ary Pinto de Jesus, Isabel Suárez-Ruiz, and Deolinda Flores. 2022. "Effects of Magmatic Fluids in Coals of São Pedro da Cova Coalfield, Douro Carboniferous Basin, Portugal: Insights from Inorganic Geochemistry" Minerals 12, no. 2: 275. https://doi.org/10.3390/min12020275
APA StyleCosta, M., Moura, H., Pinto de Jesus, A., Suárez-Ruiz, I., & Flores, D. (2022). Effects of Magmatic Fluids in Coals of São Pedro da Cova Coalfield, Douro Carboniferous Basin, Portugal: Insights from Inorganic Geochemistry. Minerals, 12(2), 275. https://doi.org/10.3390/min12020275