Passive Structural Control on Skarn Mineralization Localization: A Case Study from the Variscan Rosas Shear Zone (SW Sardinia, Italy)
Abstract
:1. Introduction
2. Geological Background
2.1. Stratigraphic Setting
2.2. Structural Setting
3. Ore Deposits of the Sulcis Area
4. Material and Methods
5. The Rosas Shear Zone and Related Skarn Ores
5.1. Structure of the Rosas Shear Zone
5.2. Field Relationships of the Orebodies
5.2.1. Barisonis
5.2.2. Mitza Sermentus
5.2.3. S’Ega Su Forru
6. Ore Microscopy and SEM-EDS Analyses
6.1. Barisonis
6.2. Mitza Sermentus
6.3. S’Ega Su Forru
7. Discussion
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cox, S.F.; Knackstedt, M.A.; Braun, J. Principles of structural control on permeability and fluid flow in hydrothermal systems. In Structural Controls on Ore Genesis; Richards, J.P., Tosdal, R.M., Eds.; Reviews in Economic Geology; Society of Economic Geologists: Littleton, CO, USA, 2001; Volume 14, pp. 1–24. [Google Scholar]
- Cathles, L.M. Fluid flow and genesis of hydrothermal ore deposits. In Economic Geology 75th Anniversary Volume, 1905–1980; Society of Economic Geologists: Littleton, CO, USA, 1981; pp. 424–457. [Google Scholar] [CrossRef]
- Caine, J.S.; Evans, J.P.; Forster, C.B. Fault zone architecture and permeability structure. Geology 1996, 24, 1025–1028. [Google Scholar] [CrossRef]
- Ingebritsen, S.E.; Appold, M.S. The physical hydrogeology of ore deposits. Econ. Geol. 2012, 107, 559–584. [Google Scholar] [CrossRef]
- Ord, A.; Lester, D.R.; Hobbs, B.E. The mechanics of hydrothermal systems: I. Ore systems as chemical reactors. Ore Geol. Rev. 2012, 49, 1–44. [Google Scholar] [CrossRef]
- Lester, D.R.; Ord, A.; Hobbs, B.E. The mechanics of hydrothermal systems: II. Fluid mixing and chemical reactions. Ore Geol. Rev. 2012, 49, 45–71. [Google Scholar] [CrossRef]
- Chauvet, A. Structural Control of Ore Deposits: The Role of Pre-Existing Structures on the Formation of Mineralised Vein Systems. Minerals 2019, 9, 56. [Google Scholar] [CrossRef] [Green Version]
- Funedda, A.; Naitza, S.; Buttau, C.; Cocco, F.; Dini, A. Structural Controls of Ore Mineralization in a Polydeformed Basement: Field Examples from the Variscan Baccu Locci Shear Zone (SE Sardinia, Italy). Minerals 2018, 8, 456. [Google Scholar] [CrossRef] [Green Version]
- Sibson, R.H. Earthquake rupturing as a mineralizing agent in hydrothermal systems. Geology 1987, 15, 701–704. [Google Scholar] [CrossRef]
- Sibson, R.H. Fault-valve behavior and the hydrostatic lithostatic fluid pressure interface. Earth Sci. Rev. 1992, 32, 141–144. [Google Scholar] [CrossRef]
- Hodgson, C.J. The structure of shear-related, vein-type gold deposits: A review. Ore Geol. Rev. 1989, 4, 231–273. [Google Scholar] [CrossRef]
- Stephens, J.R.; Mair, J.R.; Oliver, N.H.L.; Hart, C.J.R.; Baker, T. Structural and mechanical controls on intrusion-related deposits of the Tombstone Gold Belt, Yukon, Canada, with comparisons to other vein-hosted ore-deposit types. J. Struct. Geol. 2004, 26, 1025–1041. [Google Scholar] [CrossRef]
- Cox, S.F. Coupling between Deformation, Fluid Pressures, and Fluid Flow in Ore-Producing Hydrothermal Systems at Depth in the Crust. In Economic Geology 100th Anniversary Volume, 1905–2005; Society of Economic Geologists: Littleton, CO, USA, 2005; pp. 39–75. [Google Scholar] [CrossRef]
- Cox, S.F. Injection-Driven Swarm Seismicity and Permeability Enhancement: Implications for the Dynamics of Hydrothermal Ore Systems in High Fluid-Flux, Overpressured Faulting Regimes—An Invited Paper. Econ. Geol. 2016, 111, 559–587. [Google Scholar] [CrossRef]
- Meinert, L.D.; Dipple, G.M.; Nicolescu, S. World Skarn Deposits. In Economic Geology 100th Anniversary Volume, 1905–2005; Society of Economic Geologists: Littleton, CO, USA, 2005; pp. 299–336. [Google Scholar] [CrossRef]
- Casini, L.; Funedda, A.; Oggiano, G. A balanced foreland–hinterland deformation model for the Southern Variscan belt of Sardinia, Italy. Geol. J. 2010, 45, 634–649. [Google Scholar] [CrossRef]
- Conte, A.M.; Cuccuru, S.; D’Antonio, M.; Naitza, S.; Oggiano, G.; Secchi, F.; Casini, L.; Cifelli, F. The post-collisional late Variscan ferroan granites of southern Sardinia (Italy): Inferences for inhomogeneity of lower crust. Lithos 2017, 294–295, 263–282. [Google Scholar] [CrossRef]
- Carmignani, L.; Carosi, R.; Di Pisa, A.; Gattiglio, M.; Musumeci, G.; Oggiano, G.; Pertusati, P.C. The Hercynian chain in Sardinia (Italy). Geodin. Acta 1994, 7, 31–47. [Google Scholar] [CrossRef]
- Franceschelli, M.; Puxeddu, M.; Cruciani, G. Variscan metamorphism in Sardinia, Italy: Review and discussion. J. Virtual Explor. 2005, 19, 1–36. [Google Scholar] [CrossRef]
- Conti, P.; Patta, E.D. Large-scale Hercynian West-directed tectonics in southeastern Sardinia (Italy). Geodin. Acta 1998, 11, 217–231. [Google Scholar] [CrossRef]
- Conti, P.; Carmignani, L.; Funedda, A. Change of nappe transport during the Variscan collisional evolution of central-southern Sardinia (Italy). Tectonophysics 2001, 332, 255–273. [Google Scholar] [CrossRef]
- Conti, P.; Carmignani, L.; Oggiano, G.; Funedda, A.; Eltrudis, A. From thickening to extension in the Variscan belt-kinematic evidence from Sardinia (Italy). Terra Nova 1999, 11, 93–99. [Google Scholar] [CrossRef]
- Rossi, P.; Cocherie, A. Genesis of a Variscan batholith: Field, petrological and mineralogical evidence from the Corsica-Sardinia batholith. Tectonophysics 1991, 195, 319–346. [Google Scholar] [CrossRef]
- Casini, L.; Cuccuru, S.; Puccini, A.; Oggiano, G.; Rossi, P. Evolution of the Corsica–Sardinia Batholith and late-orogenic shearing of the Variscides. Tectonophysics 2015, 646, 65–78. [Google Scholar] [CrossRef]
- Funedda, A. Foreland- and hinterland-verging structures in fold-and-thrust belt: An example from the Variscan foreland of Sardinia. Int. J. Earth Sci. 2009, 98, 1625–1642. [Google Scholar] [CrossRef]
- Carmignani, L.; Oggiano, G.; Funedda, A.; Conti, P.; Pasci, S. The geological map of Sardinia (Italy) at 1:250,000 scale. J. Maps 2016, 12, 826–835. [Google Scholar] [CrossRef]
- Teichmüller, R. Zur Geologie der Thyrrenisgebietes. Teil 1: Alte und junge Krunstenbewegungen im südlichen Sardinien. Ges. Der Wiss. Zu Göttingen 1931, 3, 857–950. [Google Scholar]
- Stille, H. Bemerkungen betreffend die “sardische Faltung” und den Ausdruck “ophiolitisch”. Z. Geol. Ges. 1939, 91, 771–773. [Google Scholar]
- Von Raumer, J.F.; Stampfli, G.M.; Arenas, R.; Sánchez Martìnez, S. Ediacaran to Cambrian oceanic rocks of the Gondwana margin and their tectonic interpretation. Int. J. Earth Sci. 2015, 104, 1107–1121. [Google Scholar] [CrossRef]
- Cocco, F.; Oggiano, G.; Funedda, A.; Loi, A.; Casini, L. Stratigraphic, magmatic and structural features of Ordovician tectonics in Sardinia (Italy): A review. J. Iber. Geol. 2018, 44, 619–639. [Google Scholar] [CrossRef]
- Cocco, F.; Funedda, A. The Sardic Phase: Field evidence of Ordovician tectonics in SE Sardinia, Italy. Geol. Mag. 2019, 156, 25–38. [Google Scholar] [CrossRef]
- Oriolo, S.; Schulz, B.; Geuna, S.; González, P.D.; Otamendi, J.E.; Sláma, J.; Druguet, E.; Siegesmund, S. Early Paleozoic accretionary orogens along the Western Gondwana margin. Geosci. Front. 2021, 12, 109–130. [Google Scholar] [CrossRef]
- Pillola, G.L.; Leone, F.; Loi, A. The Cambrian and Early Ordovician of SW Sardinia. G. Di Geol. 1998, 60, 25–38. [Google Scholar]
- Bechstädt, T.; Boni, M. Sedimentological, Stratigraphical and ore Deposits Field Guide of the Autochthonous Cambro-Ordovician of Southwestern Sardinia; (Technical Periodicals) Descriptive Memories of the Geological Map of Italy; Istituto Superiore per la Protezione e la Ricerca Ambientale: Rome, Italy, 1994; Volume 48, 434p. [Google Scholar]
- Elicki, O.; Pillola, G.L. Cambrian microfauna and palaeoecology of the Campo Pisano Formation at Gutturu Pala (Iglesiente, SW Sardinia, Italy). Bollettino della Società Paleontologica Italiana 2004, 43, 383–401. [Google Scholar]
- Gandin, A. Depositional and paleogeographic evolution of the Cambrian in south-westem Sardinia. In Correlation of Prevariscan and Variscan Events of the Alpine-Mediterranean Mountain Belt; IGCP Project No. 5—Newsletter; Sassi, F.P., Bourrouilh, R., Eds.; Institute of Mineralogy Petrology, University of Padua: Padua, Italy, 1989; Volume 7, pp. 151–166. [Google Scholar]
- Laske, R.; Bechstädt, T.; Boni, M. The post-Sardic Ordovician series. In Sedimentological, Stratigraphical and Ore Deposits Field Guide of the Autochtonous Cambro-Ordovician of Southwestern Sardinia; Memorie Descrittive della Carta Geologica, d’Italia; Bechstadt, T., Boni, M., Eds.; Servizio Geologico d’Italia: Rome, Italy, 1944; pp. 115–146. [Google Scholar]
- Leone, F.; Ferretti, A.; Hammann, W.; Loi, A.; Pillola, G.L.; Serpagli, E. A general view on the post-Sardic Ordovician sequence from SW Sardinia. Rend. Soc. Paleontol. Ital. 2002, 1, 51–68. [Google Scholar]
- Gnoli, M.; Kříž, J.; Leone, F.; Olivieri, R.; Serpagli, E.; Storch, P. Lithostratigraphic units and biostratigraphy of the Silurian and early Devonian of Southwest Sardinia. Boll. Della Soc. Paleontol. Ital. 1990, 29, 11–23. [Google Scholar]
- Barca, S.; Farci, A.; Forci, A. I depositi sinorogenici ercinici del Sulcis (Sardegna sud-occidentale). Boll. Della Soc. Geol. Ital. 1998, 117, 407–419. [Google Scholar]
- Secchi, F.; Naitza, S.; Oggiano, G.; Cuccuru, S.; Puccini, A.; Conte, A.M.; Giovanardi, T.; Mazzucchelli, M. Geology of late-Variscan Sàrrabus pluton (south-eastern Sardinia, Italy). J. Maps 2021, 17, 591–606. [Google Scholar] [CrossRef]
- Boni, M.; Stein, H.J.; Zimmerman, A.; Villa, I.M. Re-Os age for molybdenite from SW Sardinia (Italy): A comparison with 40Ar/39Ar dating of Variscan granitoids. In Mineral Exploration and Sustainable Development; Eliopoulos, D.G., Ed.; Millpress: Rotterdam, The Netherlands, 2003; pp. 247–250. [Google Scholar]
- Naitza, S.; Oggiano, G.; Cuccuru, S.; Casini, L.; Puccini, A.; Secchi, F.; Funedda, A.; Tocco, S. Structural and magmatic controls on Late Variscan Metallogenesis: Evidences from Southern Sardinia (Italy). In Proceedings of the 13th Biennial SGA Meeting, Nancy, France, 24–27 August 2015; Volume 1, pp. 161–164. [Google Scholar]
- Naitza, S.; Conte, A.M.; Cuccuru, S.; Oggiano, G.; Secchi, F.; Tecce, F. A Late Variscan tin province associated to the ilmenite-series granites of the Sardinian Batholith (Italy): The Sn and Mo mineralisation around the Monte Linas ferroan granite. Ore Geol. Rev. 2017, 80, 1259–1278. [Google Scholar] [CrossRef]
- Carmignani, L.; Cocozza, T.; Ghezzo, P.C.; Pertusati, P.C.; Ricci, C.A. Outlines of the Hercynian Basement of Sardinia. In Guide-book to the Excursion on the Paleozoic basement of Sardinia; IGCP Project No. 5—Newsletter; Università di Siena: Siena, Italy, 1986; pp. 11–21. [Google Scholar]
- Carosi, R.; Musumeci, G.; Pertusati, P.C.; Carmignani, L. The Hercynian backthrusts of eastern Iglesiente (SW Sardinia): An example of inversion tectonics. In Contributions to the Geology of Italy with Special Regard to the Paleozoic Basement; IGCP No., 276—Newsletter; Carmignani, L., Sassi, F.P., Eds.; Università di Siena: Siena, Italy, 1992; pp. 97–105. [Google Scholar]
- Cocco, F.; Funedda, A. Mechanical influence of inherited folds in thrust development: A case study from the Variscan fold-and-thrust belt in SW Sardinia (Italy). Geosciences 2021, 11, 276. [Google Scholar] [CrossRef]
- Pasci, S.; Pertusati, P.C.; Salvadori, I.; Murtas, M. I rilevamenti CARG del foglio geologico 555 “Iglesias” e le nuove implicazioni strutturali sulla tettonica della “Fase Sarda”. Rend. Online Della Soc. Geol. Ital. 2008, 3, 614–615. [Google Scholar]
- ISPRA. Carta Geologica d’Italia Alla Scala 1:50,000. Foglio 555 IGLESIAS. Available online: https://www.isprambiente.gov.it/Media/carg/555_IGLESIAS/Foglio.html (accessed on 16 January 2022).
- Boni, M.; Balassone, G.; Iannace, A. Base metal ores in the lower Paleozoic of southwestern Sardinia. Soc. Econ. Geol. Spec. Publ. 1996, 4, 18–28. [Google Scholar] [CrossRef]
- Valera, R.; Zuffardi, P. Segnalazione di Scheelite in taluni adunamenti metamorfici della Sardegna (Nota preliminare). Res. Ass. Min. Sarda 1968, 73, 62–64. [Google Scholar]
- Valera, R.; Zuffardi, P. La geochimica del tungsteno nel Paleozoico della Sardegna. Rend. Soc. Ital. Mineral. Petrol. 1970, 26, 815–830. [Google Scholar]
- Pirri, I.V. Il giacimento a blenda, galena, calcopirite di Sa Marchesa nel Sulcis (Sardegna). Boll. Soc. Ital. Sci. Nat. 1971, 62, 505–549. [Google Scholar]
- Funedda, A.; Carmignani, L.; Pasci, S.; Patta, E.D.; Uras, V.; Conti, P.; Sale, V. Foglio 556 ASSEMINI. In Note Illustrative della Carta Geologica d’Italia alla Scala 1:50,000, Servizio Geologico d’ Italia; Istituto Poligrafico e Zecca dello Stato: Roma, Italy, 2009; p. 192. [Google Scholar]
- Valera, R. Appunti sulla morfologia, termometria e composizione delle inclusioni fluide di fluoriti sarde. Rend. Soc. Ital. Mineral. Petrol. 1974, 30, 459–480. [Google Scholar]
- Borghesan, E.C. Giacimenti misti di galene e blende del tipo di metasomatismo di contatto fra intrusione basica e calcare. Res. Ass. Min. Sarda 1935, 40, 9–13. [Google Scholar]
- Cavinato, A. Cenno su un’area metamorfica e sulla genesi e significato di una metallizzazione. Res. Ass. Min. Sarda 1937, 41, 5–29. [Google Scholar]
- ISPRA. Carta Geologica d’Italia Alla Scala 1:50,000. Foglio 556 ASSEMINI. Available online: https://www.isprambiente.gov.it/Media/carg/556_ASSEMINI/Foglio.html (accessed on 16 January 2022).
- Poll, J.J.K. The Geology of the Rosas-Terraseo area (Sulcis, South Sardinia). Leidse Geol. Meded. 1966, 35, 117–208. [Google Scholar]
- Tearpock, D.J.; Bischke, R.E. Applied Subsurface Geological Mapping with Structural Methods, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002; p. 822. [Google Scholar]
- Fancello, D.; Deidda, M.L.; Attardi, A.; Cocco, F.; Funedda, A.; Naitza, S. Armenite: A really rare mineral? In Proceedings of the 3rd European Mineralogical Conference EMC, Cracow, Poland, 29 August–2 September 2021; Volume 127. [Google Scholar]
- Barton, P.B.; Bethke, P.M. Chalcopyrite disease in sphalerite: Pathology and epidemiology. Am. Mineral. 1987, 72, 451–467. [Google Scholar]
- Poblet, J.; Lisle, R.J. Kinematic evolution and structural styles of fold-and-thrust belts. Geol. Soc. Lond. Spec. Publ. 2011, 349, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Butler, R.; Bond, C. Chapter 9–Thrust systems and contractional tectonics. In Regional Geology and Tectonics, 2nd ed.; Scarselli, N., Adam, J., Chiarella, D., Roberts, D.G., Bally, A.W., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 149–167. [Google Scholar] [CrossRef]
- Labaume, P.; Sheppard, S.; Moretti, I. Fluid flow in cataclastic thrust fault zones in sandstones, Sub-Andean Zone, Southern Bolivia. Tectonophysics 2001, 340, 141–172. [Google Scholar] [CrossRef]
- Muñoz-López, D.; Cruset, D.; Cantarero, I.; Benedicto, A.; John, C.M.; Travé, A. Fluid Dynamics in a Thrust Fault Inferred from Petrology and Geochemistry of Calcite Veins: An Example from the Southern Pyrenees. Geofluids 2020, 2020, 815729. [Google Scholar] [CrossRef]
- Yardley, B.; Warren, C. (Eds.) An Introduction to Metamorphic Petrology, 2nd ed.; Cambridge University Press: Cambridge, UK, 2021; Volume 334. [Google Scholar] [CrossRef]
- Del Moro, A.; Di Pisa, A.; Oggiano, G.; Villa, I.M. Isotopic ages of two contrasting tectono-metamorphic episodes in the Variscan chain in northern Sardinia. In Proceedings of the Geologia del Basamento Italiano, Convegno in Memoria di Tommaso Cocozza, Siena, Italy, 21–22 March 1991; Volume 33–35. [Google Scholar]
- Dack, A. Internal Structure and Geochronology of the Gerrei Unit in the Flumendosa Area, Variscan External Nappe Zone, Sardinia, Italy. Ph.D. Thesis, Boise State University, Boise, Idaho, 2009; p. 116. [Google Scholar]
- Brotzu, P.; Callegari, E.; Secchi, F.A. The search for the parental magma of the high-K calc-alkaline igneous rock series in the southernmost Sardinia Batholith. Per. Mineral. 1994, 62, 253–280. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cocco, F.; Attardi, A.; Deidda, M.L.; Fancello, D.; Funedda, A.; Naitza, S. Passive Structural Control on Skarn Mineralization Localization: A Case Study from the Variscan Rosas Shear Zone (SW Sardinia, Italy). Minerals 2022, 12, 272. https://doi.org/10.3390/min12020272
Cocco F, Attardi A, Deidda ML, Fancello D, Funedda A, Naitza S. Passive Structural Control on Skarn Mineralization Localization: A Case Study from the Variscan Rosas Shear Zone (SW Sardinia, Italy). Minerals. 2022; 12(2):272. https://doi.org/10.3390/min12020272
Chicago/Turabian StyleCocco, Fabrizio, Antonio Attardi, Matteo Luca Deidda, Dario Fancello, Antonio Funedda, and Stefano Naitza. 2022. "Passive Structural Control on Skarn Mineralization Localization: A Case Study from the Variscan Rosas Shear Zone (SW Sardinia, Italy)" Minerals 12, no. 2: 272. https://doi.org/10.3390/min12020272
APA StyleCocco, F., Attardi, A., Deidda, M. L., Fancello, D., Funedda, A., & Naitza, S. (2022). Passive Structural Control on Skarn Mineralization Localization: A Case Study from the Variscan Rosas Shear Zone (SW Sardinia, Italy). Minerals, 12(2), 272. https://doi.org/10.3390/min12020272