Interplay of Multiple Sediment Routing Systems Revealed by Combined Sandstone Petrography and Heavy Mineral Analysis (HMA) in the South Pyrenean Foreland Basin
Abstract
:1. Introduction
2. Geological Setting
2.1. Structural and Stratigraphic Framework
2.2. Source Rock Lithologies
2.3. Heavy Minerals and Source Rock Lithologies
3. Sampling and Analytical Methods
3.1. Sandstone Petrography
3.2. Heavy Minerals
3.3. Statistical Treatment
4. Results
4.1. Sandstone Petrography
4.1.1. Grain Types
Noncarbonate Extrabasinal Grains (NCE)
Noncarbonate Intrabasinal Grains (NCI)
Carbonate Extrabasinal Grains (CE)
Carbonate Intrabasinal Grains (CI)
4.1.2. Modal Sandstone Composition
4.1.3. Petrofacies
Carbonate Extrabasinal Enriched Petrofacies (CEE)
Siliciclastic Dominant Petrofacies (SD)
Hybrid Clast-Dominated Petrofacies (HCD)
Mixed Lithic and Carbonatic Petrofacies (MLC)
4.2. Heavy Minerals
4.2.1. Heavy-Mineral Suites
“Grs (+Ttn +/−Ep) Enriched” Suite
“Ap+ZTR Dominated” Suite
“Ep Dominated” Suite
“Grs Enriched” Suite
“Ep+St+Grs Enriched” Suite
5. Discussion
5.1. Considerations about the Heavy-Mineral Detrital Signatures
5.2. Provenance Implications and Evolution of Source Areas
5.3. Functioning of the Sediment Routing Systems
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dickinson, W.R. Interpreting detrital modes of graywacke and arkose. J. Sediment. Res. 1970, 40, 695–707. [Google Scholar]
- Dickinson, W.R.; Suczek, C.A. Plate tectonics and sandstone compositions. Am. Assoc. Pet. Geol. Bull. 1979, 63, 2164–2182. [Google Scholar]
- Steidtmann, J.R.; Schmitt, J.G. Provenance and dispersal of tectogenic sediments in thin-skinned, thrusted terrains. In New Perspectives in Basin Analysis. Frontiers in Sedimentary Geology, 1st ed.; Kleinspehn, K.L., Paola, C., Eds.; Springer: New York, NY, USA, 1988; pp. 353–366. [Google Scholar]
- Graham, S.A.; Tolson, R.B.; DeCelles, P.G.; Ingersoll, R.V.; Bargar, E.; Caldwell, M.; Cavazza, W.; Edwards, D.P.; Follo, M.F.; Handschy, J.F.; et al. Provenance modelling as a technique for analysing source terrane evolution and controls on foreland sedimentation. Basins 1986, 8, 425–436. [Google Scholar]
- Haughton, P.D.W.; Todd, S.P.; Morton, A.C. Sedimentary provenance studies. Geol. Soc. Lond. Spec. Publ. 1991, 57, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Mange-Rajetzky, M.A. Subdivision and correlation of monotonous sandstone sequences using high-resolution heavy mineral analysis, a case study: The Triassic of the Central Graben. Geol. Soc. Lond. Spec. Publ. 1995, 89, 23–30. [Google Scholar] [CrossRef]
- Von Eynatten, H.; Dunkl, I. Assessing the sediment factory: The role of single grain analysis. Earth Sci. Rev. 2012, 115, 97–120. [Google Scholar] [CrossRef]
- Garzanti, E.; Limonta, M.; Resentini, A.; Bandopadhyay, P.C.; Najman, Y.; Andò, S.; Vezzoli, G. Sediment recycling at convergent plate margins (Indo-Burman ranges and Andaman–Nicobar Ridge). Earth Sci. Rev. 2013, 123, 113–132. [Google Scholar] [CrossRef]
- Kilhams, B.; Morton, A.; Borella, R.; Wilkins, A.; Hurst, A. Understanding the provenance and reservoir quality of the Sele Formation sandstones of the UK Central Graben utilizing detrital garnet suites. Geol. Soc. Lond. Spec. Publ. 2014, 386, 129–142. [Google Scholar] [CrossRef]
- Caracciolo, L.; Garzanti, E.; Von Eynatten, H.; Weltje, G.J. Sediment generation and provenance: Processes and pathways. Sediment. Geol. 2016, 336, 1–2. [Google Scholar] [CrossRef]
- Dickinson, W.R. Provenance and sediment dispersal in relation to paleotectonics and paleogeography of sedimentary basins. In New Perspectives in Basin Analysis. Frontiers in Sedimentary Geology, 1st ed.; Kleinspehn, K.L., Paola, C., Eds.; Springer: New York, NY, USA, 1988; pp. 3–25. [Google Scholar]
- Nie, J.; Horton, B.K.; Saylor, J.E.; Mora, A.; Mange, M.; Garzione, C.N.; Basu, A.; Moreno, C.J.; Caballero, V.; Parra, M. Integrated provenance analysis of a convergent retroarc foreland system: U–Pb ages, heavy minerals, Nd isotopes, and sandstone compositions of the Middle Magdalena Valley basin, northern Andes, Colombia. Earth Sci. Rev. 2012, 110, 111–126. [Google Scholar] [CrossRef]
- Garzanti, E. From static to dynamic provenance analysis—Sedimentary petrology upgraded. Sediment. Geol. 2016, 336, 3–13. [Google Scholar] [CrossRef]
- Caracciolo, L.; Andò, S.; Vermeesch, P.; Garzanti, E.; McCabe, R.; Barbarano, M.; Paleari, C.; Rittner, M.; Pearce, T.T. A multidisciplinary approach for the quantitative provenance analysis of siltstone: Mesozoic Mandawa Basin, southeastern Tanzania. Geol. Soc. Lond. Spec. Publ. 2020, 484, 275–293. [Google Scholar] [CrossRef]
- McKellar, Z.; Hartley, A.J.; Morton, A.C.; Frei, D.A. multidisciplinary approach to sediment provenance analysis of the late Silurian–Devonian Lower Old Red Sandstone succession, northern Midland Valley Basin, Scotland. J. Geol. Soc. Lond. 2020, 177, 297–314. [Google Scholar] [CrossRef]
- Von Eynatten, H.; Gaupp, R. Provenance of Cretaceous synorogenic sandstones in the Eastern Alps: Constraints from framework petrography, heavy mineral analysis and mineral chemistry. Sediment. Geol. 1999, 124, 81–111. [Google Scholar] [CrossRef]
- Morton, A.; Hallsworth, C.; Chalton, B. Garnet compositions in Scottish and Norwegian basement terrains: A framework for interpretation of North Sea sandstone provenance. Mar. Pet. Geol. 2004, 21, 393–410. [Google Scholar] [CrossRef]
- Mange, M.A.; Dewey, J.F.; Wright, D.T. Heavy minerals solve structural and stratigraphic problems in Ordovician strata of the western Irish Caledonides. Geol. Mag. 2003, 140, 25–30. [Google Scholar] [CrossRef]
- Garzanti, E.; Andò, S. Plate tectonics and heavy mineral suites of modern sands. Dev. Sedimentol. 2007, 58, 741–763. [Google Scholar]
- Garzanti, E.; Doglioni, C.; Vezzoli, G.; Ando, S. Orogenic belts and orogenic sediment provenance. J. Geol. 2007, 115, 315–334. [Google Scholar] [CrossRef] [Green Version]
- Garzanti, E.; Vermeesch, P.; Padoan, M.; Resentini, A.; Vezzoli, G.; Andò, S. Provenance of passive-margin sand (Southern Africa). J. Geol. 2014, 122, 17–42. [Google Scholar] [CrossRef]
- Fossum, K.; Morton, A.C.; Dypvik, H.; Hudson, W.E. Integrated heavy mineral study of Jurassic to Paleogene sandstones in the Mandawa Basin, Tanzania: Sediment provenance and source-to-sink relations. J. Afr. Earth. Sci. 2019, 150, 546–565. [Google Scholar] [CrossRef]
- Puigdefábregas, C. La sedimentación molásica en la cuenca de Jaca; Número Extraordinario de Revista Pirineos; Instituto de Estudios Pirenaicos: Jaca, Spain, 1975; Volume 104, pp. 1–188. [Google Scholar]
- Bentham, P.A.; Burbank, D.W.; Puigdefabregas, C. Temporal and spatial controls on the alluvial architecture of an axial drainage system: Late Eocene Escanilla Formation, southern Pyrenean foreland basin, Spain. Basin Res. 1992, 4, 335–352. [Google Scholar] [CrossRef]
- Dreyer, T.; Corregidor, J.; Arbues, P.; Puigdefabregas, C. Architecture of the tectonically influenced Sobrarbe deltaic complex in the Ainsa Basin, northern Spain. Sediment. Geol. 1999, 127, 127–169. [Google Scholar] [CrossRef]
- Vincent, S.J. The Sis palaeovalley: A record of proximal fluvial sedimentation and drainage basin development in response to Pyrenean mountain building. Sedimentology 2001, 48, 1235–1276. [Google Scholar] [CrossRef]
- Caja, M.A.; Marfil, R.; Garcia, D.; Remacha, E.; Morad, S.; Mansurbeg, H.; Amorosi, A.; Martínez-Calvo, C.; Lahoz-Beltrá, R. Provenance of siliciclastic and hybrid turbiditic arenites of the Eocene Hecho Group, Spanish Pyrenees: Implications for the tectonic evolution of a foreland basin. Basin Res. 2010, 22, 157–180. [Google Scholar] [CrossRef]
- Michael, N. Functioning of an Ancient Routing System, the Escanilla Formation, South Central Pyrenees. Ph.D. Thesis, Imperial College London, London, UK, 2013. [Google Scholar]
- Roigé, M.; Gómez-Gras, D.; Remacha, E.; Daza, R.; Boya, S. Tectonic control on sediment sources in the Jaca basin (Middle and Upper Eocene of the South-Central Pyrenees). C. R. Geosci. 2016, 348, 236–245. [Google Scholar] [CrossRef]
- Roigé, M.; Gómez-Gras, D.; Remacha, E.; Boya, S.; Viaplana-Muzas, M.; Teixell, A. Recycling an uplifted early foreland basin fill: An example from the Jaca basin (Southern Pyrenees, Spain). Sediment. Geol. 2017, 360, 1–21. [Google Scholar] [CrossRef]
- Thomson, K.D.; Stockli, D.F.; Clark, J.D.; Puigdefàbregas, C.; Fildani, A. Detrital zircon (U-Th)/(He-Pb) double-dating constraints on provenance and foreland basin evolution of the Ainsa Basin, south-central Pyrenees, Spain. Tectonics 2017, 36, 1352–1375. [Google Scholar] [CrossRef]
- Labaume, P.; Meresse, F.; Jolivet, M.; Teixell, A.; Lahfid, A. Tectonothermal history of an exhumed thrust-sheet-top basin: An example from the south Pyrenean thrust belt. Tectonics 2016, 35, 1280–1313. [Google Scholar] [CrossRef] [Green Version]
- Pocoví, A.; Millán, H.; Navarro, J.J.; Martínez, M.B. Rasgos estructurales de la Sierra de Salinas y zona de los Mallos (Sierras Exteriores, Prepirineo, provincias de Huesca y Zaragoza). Geogaceta 1990, 8, 36–39. [Google Scholar]
- Teixell Cácharo, A.; García-Sansegundo, J. Estructura del sector central de la Cuenca de Jaca (Pirineos meridionales). Rev. Soc. Geol. Esp. 1995, 8, 215–228. [Google Scholar]
- Teixell, A. The Ansó transect of the southern Pyrenees: Basement and cover thrust geometries. J. Geol. Soc. 1996, 153, 301–310. [Google Scholar] [CrossRef] [Green Version]
- Teixell, A.; Labaume, P.; Lagabrielle, Y. The crustal evolution of the west-central Pyrenees revisited: Inferences from a new kinematic scenario. C. R. Geosci. 2016, 348, 257–267. [Google Scholar] [CrossRef] [Green Version]
- Fontana, D.; Zuffa, G.G.; Garzanti, E. The interaction of eustacy and tectonism from provenance studies of the Eocene Hecho Group Turbidite Complex (South-Central Pyrenees, Spain). Basin Res. 1989, 2, 223–237. [Google Scholar] [CrossRef]
- Gupta, K.D.; Pickering, K.T. Petrography and temporal changes in petrofacies of deep-marine Ainsa–Jaca basin sandstone systems, Early and Middle Eocene, Spanish Pyrenees. Sedimentology 2008, 55, 1083–1114. [Google Scholar] [CrossRef]
- Coll, X.; Gómez-Gras, D.; Roigé, M.; Teixell, A.; Boya, S.; Mestres, N. Heavy-mineral provenance signatures during the infill and uplift of a foreland basin: An example from the Jaca basin (southern Pyrenees, Spain). J. Sediment. Res. 2020, 90, 1747–1769. [Google Scholar] [CrossRef]
- Ullastre, J.; Masriera, A. Hipótesis y problemas acerca del origen de las asociaciones de minerales pesados del Senoniense del Pirineo Catalán. J. Iber. Geol. 1982, 8, 949–964. [Google Scholar]
- Whitchurch, A.L.; Carter, A.; Sinclair, H.D.; Duller, R.A.; Whittaker, A.C.; Allen, P.A. Sediment routing system evolution within a diachronously uplifting orogen: Insights from detrital zircon thermochronological analyses from the South-Central Pyrenees. Am. J. Sci. 2011, 311, 442–482. [Google Scholar] [CrossRef]
- Filleaudeau, P.Y.; Mouthereau, F.; Pik, R. Thermo-tectonic evolution of the south-central Pyrenees from rifting to orogeny: Insights from detrital zircon U/Pb and (U-Th)/He thermochronometry. Basin Res. 2012, 24, 401–417. [Google Scholar] [CrossRef]
- Gómez-Gras, D.; Roigé, M.; Fondevilla, V.; Oms, O.; Boya, S.; Remacha, E. Provenance constraints on the Tremp Formation paleogeography (southern Pyrenees): Ebro Massif vs Pyrenees sources. Cretac. Res. 2016, 57, 414–427. [Google Scholar] [CrossRef]
- Cerveny, P.F.; Johnson, N.M. Tectonic and geomorphic implications of Siwalik Group. Geol. Soc. Am. Spec. Pap. 1989, 232, 129–136. [Google Scholar]
- Lihou, J.C.; Mange-Rajetzky, M.A. Provenance of the Sardona Flysch, eastern Swiss Alps: Example of high-resolution heavy mineral analysis applied to an ultrastable assemblage. Sediment. Geol. 1996, 105, 141–157. [Google Scholar] [CrossRef]
- Garzanti, E.; Vezzoli, G.; Lombardo, B.; Ando, S.; Mauri, E.; Monguzzi, S.; Russo, M. Collision-orogen provenance (western Alps): Detrital signatures and unroofing trends. J. Geol. 2004, 112, 145–164. [Google Scholar] [CrossRef]
- Garzanti, E.; Ando, S.; Vezzoli, G. The continental crust as a source of sand (southern Alps cross section, northern Italy). J. Geol. 2006, 114, 533–554. [Google Scholar] [CrossRef]
- Garzanti, E.; Resentini, A.; Vezzoli, G.; Andò, S.; Malusà, M.; Padoan, M. Forward compositional modelling of Alpine orogenic sediments. Sediment. Geol. 2012, 280, 149–164. [Google Scholar] [CrossRef]
- Uddin, A.; Kumar, P.; Sarma, J.N.; Akhter, S.H. Heavy mineral constraints on the provenance of Cenozoic sediments from the foreland basins of Assam and Bangladesh: Erosional history of the eastern Himalayas and the Indo-Burman Ranges. Dev. Sedimentol. 2007, 58, 823–847. [Google Scholar]
- Andò, S.; Morton, A.; Garzanti, E. Metamorphic grade of source rocks revealed by chemical fingerprints of detrital amphibole and garnet. Geol. Soc. Lond. Spec. Publ. 2014, 386, 351–371. [Google Scholar] [CrossRef]
- Andò, S.; Aharonovich, S.; Hahn, A.; George, S.C.; Clift, P.D.; Garzanti, E. Integrating heavy-mineral, geochemical and biomarker analyses of Plio-Pleistocene sandy and silty turbidites: A novel approach for provenance studies (Indus Fan, IODP Expedition 355). Geol. Mag. 2020, 157, 929–938. [Google Scholar] [CrossRef]
- Valloni, R.; Marchi, M.; Mutti, E. Studio conoscitivo della moda detritica delle torbiditi eoceniche del Gruppo di Echo (Spagna). Gior. Geol. 1984, 46, 45–56. [Google Scholar]
- Hirst, J.P.P.; Nichols, G.J. Thrust tectonic controls on Miocene alluvial distribution patterns, southern Pyrenees. Basins 1986, 8, 247–258. [Google Scholar]
- Rubio, V.; Vigil, R.; García, R.; González, J.A. Caracterización mineralógica de sedimentos arenosos en la cuenca del río Ara (Huesca). Cuatern. Geomorfol. 1996, 10, 33–44. [Google Scholar]
- Yuste, A.; Bauluz, B.; Luzón, A. Asociaciones características de minerales pesados en las areniscas del borde septentrional de la cuenca del ebro (zona central). Rev. Soc. Esp. Mineral. 2006, 6, 501–504. [Google Scholar]
- Barsó, D. Análisis de la procedencia de los conglomerados sinorogénicos de la pobla de segur (Lérida) y su relación con la evolución tectónica de los pirineos centro-meridionales durante el eoceno medio-oligoceno. Ph.D. Thesis, Universitat de Barcelona, Barcelona, Spain, 2007. [Google Scholar]
- Coll, X.; Gómez-Gras, D.; Roigé, M.; Mestres, N. Heavy-mineral assemblages as a provenance indicator in the Jaca basin (Middle-Late Eocene, southern Pyrenees). Geogaceta 2017, 61, 159–162. [Google Scholar]
- Gómez-Gras, D.; Collado, R.; Coll, X.; Roigé, M. Caracterización composicional de las areniscas del Cretácico Superior en las Sierras Marginales y Exteriores (cuenca surpirenaica): Análisis mediante minerales pesados y petrografía óptica. Geogaceta 2017, 61, 163–166. [Google Scholar]
- Soler-Sampere, M.; Puigdefàbregas, C. Líneas generales de la geología del Alto Aragón Occidental. Pirineos 1970, 96, 5–20. [Google Scholar]
- Mutti, E.; Luterbacher, H.; Ferrer, J.; Rosell, J. Schema stratigrafico e lineamenti di facies del Paleogeno Marino della zona centrale sudpirenaica tra Tremp (Catalogna) e Pamplona (Navarra). Mem. Soc. Geol. Ital. 1972, 1972 11, 391–416. [Google Scholar]
- Canudo, J.I. Los foraminiferos planctonicos del Paleoceno-Eocene del Prepirineo oscense en el sector de Arguis. Ph.D. Thesis, Universidad de Zaragoza, Zaragoza, Spain, 1990. [Google Scholar]
- Lafont, F. Influences relatives de la subsidence et de l’eustatisme sur la localisation et la géométrie des réservoirs d’un système deltaïque. Exemple de l’Eocène du bassin de Jaca, Pyrénées espagnoles. Ph.D. Thesis, Université Rennes 1, Rennes, France, 1994. [Google Scholar]
- Hogan, P.J. Geochronologic, Tectonic, and Stratigraphic Evolution of the Southwest Pyrenean Foreland basin, Northern Spain. Ph.D. Thesis, University of Southern California, Los Angeles, CA, USA, 1993. [Google Scholar]
- Millán-Garrido, H.; Pocoví, A.; Casas, A.M. La transversal de Gavarnie-Guara. Estructura y edad de los mantos de Gavarnie, Guara-Gèdre y Guarga (Pirineo centro-occidental). Geogaceta 2006, 40, 73–90. [Google Scholar]
- Hogan, P.J.; Burbank, D.W. Evolution of the Jaca piggyback basin and emergence of the External Sierra, southern Pyrenees. In Tertiary Basins of Spain, 1st ed.; Friend, P., Dabrio, C., Eds.; Cambridge University Press: Cambridge, UK, 1996; pp. 153–160. [Google Scholar]
- Barnolas, A.; Gil-Peña, I. Ejemplos de relleno sedimentario multiepisódico en una cuenca de antepaís fragmentada: La Cuenca Surpirenaica. Bol. Inst. Geol. Min. Esp. 2001, 112, 17–38. [Google Scholar]
- Montes, M. Estratigrafia del Eoceno-Oligoceno de la Cuenca de jaca (Sinclinorio de Guarga). Ph.D. Thesis, Universitat de Barcelona, Barcelona, Spain, 2002. [Google Scholar]
- Pueyo, E.L.; Millán, H.; Pocovı, A. Rotation velocity of a thrust: A paleomagnetic study in the External Sierras (Southern Pyrenees). Sediment. Geol. 2002, 146, 191–208. [Google Scholar] [CrossRef]
- Castelltort, S.; Guillocheau, F.; Robin, C.; Rouby, D.; Nalpas, T.; Lafont, F.; Eschard, R. Fold control on the stratigraphic record: A quantified sequence stratigraphic study of the Pico del Aguila anticline in the south-western Pyrenees (Spain). Basin Res. 2003, 15, 527–551. [Google Scholar]
- Castelltort, S.; Pochat, S.; Van den Driessche, J. How reliable are growth strata in interpreting short-term (10 s to 100 s ka) growth structures kinematics? C. R. Geosci. 2004, 336, 151–158. [Google Scholar] [CrossRef]
- Costa, E.; Garces, M.; López-Blanco, M.; Beamud, E.; Gómez-Paccard, M.; Larrasoaña, J.C. Closing and continentalization of the South Pyrenean foreland basin (NE Spain): Magnetochronological constraints. Basin Res. 2010, 22, 904–917. [Google Scholar] [CrossRef]
- Huyghe, D.; Castelltort, S.; Mouthereau, F.; Serra-Kiel, J.; Filleaudeau, P.Y.; Emmanuel, L.; Berthier, B.; Renard, M. Large scale facies change in the middle Eocene South-Pyrenean foreland basin: The role of tectonics and prelude to Cenozoic ice-ages. Sediment. Geol. 2012, 253, 25–46. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Pintó, A.; Pueyo, E.L.; Serra-Kiel, J.; Samsó, J.M.; Barnolas, A.; Pocoví, A. Lutetian magnetostratigraphic calibration of larger foraminifera zonation (SBZ) in the Southern Pyrenees: The Isuela section. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 333, 107–120. [Google Scholar] [CrossRef]
- Oliva-Urcia, B.; Beamud, E.; Garcés, M.; Arenas, C.; Soto, R.; Pueyo, E.L.; Pardo, G. New magnetostratigraphic dating of the Palaeogene syntectonic sediments of the west-central Pyrenees: Tectonostratigraphic implications. Geol. Soc. Lond. Spec. Publ. 2016, 425, 107–128. [Google Scholar] [CrossRef]
- Labaume, P.; Teixell, A. 3D structure of subsurface thrusts in the eastern Jaca Basin, southern Pyrenees. Geol. Acta 2018, 16, 477–498. [Google Scholar]
- Boya Duocastella, S. El Sistema deltaico de la Arenisca de Sabiñánigo y la continentalización de la cuenca de Jaca. Ph.D. Thesis, Universitat Autònoma de Barcelona, Barcelona, Spain, 2018. [Google Scholar]
- Oliva-Urcia, B.; Beamud, E.; Arenas, C.; Pueyo, E.L.; Garcés, M.; Soto, R.; Valero, L.; Pérez-Rivarés, F.J. Dating the northern deposits of the Ebro foreland basin; implications for the kinematics of the SW Pyrenean front. Tectonophysics 2019, 765, 11–34. [Google Scholar] [CrossRef]
- Garces, M.; Lopez-Blanco, M.; Valero, L.; Beamud, E.; Muñoz, J.A.; Oliva-Urcia, B.; Vinyoles, A.; Arbues, P.; Cabello, P.; Cabrera, L. Paleogeographic and sedimentary evolution of the South Pyrenean foreland basin. Mar. Pet. Geol. 2020, 113, 104105:1–104105:20. [Google Scholar] [CrossRef]
- Vinyoles, A.; López-Blanco, M.; Garcés, M.; Arbués, P.; Valero, L.; Beamud, E.; Oliva-Urcia, B.; Cabello, P. 10 Myr evolution of sedimentation rates in a deep marine to non-marine foreland basin system: Tectonic and sedimentary controls (Eocene, Tremp–Jaca Basin, Southern Pyrenees, NE Spain). Basin Res. 2021, 33, 447–477. [Google Scholar] [CrossRef]
- Puigdefàbregas, C.; Muñoz, J.A.; Vergés, J. Thrusting and foreland basin evolution in the southern Pyrenees. In Thrust Tectonics; McClay, K.R., Ed.; Springer: Berlin/Heidelberg, Germany, 1992; pp. 353–366. [Google Scholar]
- Teixell, A.; Labaume, P.; Ayarza, P.; Espurt, N.; de Saint Blanquat, M.; Lagabrielle, Y. Crustal structure and evolution of the Pyrenean-Cantabrian belt: A review and new interpretations from recent concepts and data. Tectonophysics 2018, 724, 146–170. [Google Scholar] [CrossRef] [Green Version]
- Vergés, J.; Fernàndez, M.; Martìnez, A. The Pyrenean orogen: Pre-, syn-, and post-collisional evolution. J. Virtual Explor. 2002, 8, 55–74. [Google Scholar] [CrossRef]
- Mouthereau, F.; Filleaudeau, P.Y.; Vacherat, A.; Pik, R.; Lacombe, O.; Fellin, M.G.; Castelltort, S.; Christophoul, F.; Masini, E. Placing limits to shortening evolution in the Pyrenees: Role of margin architecture and implications for the Iberia/Europe convergence. Tectonics 2014, 33, 2283–2314. [Google Scholar] [CrossRef] [Green Version]
- Lagabrielle, Y.; Labaume, P.; de Saint Blanquat, M. Mantle exhumation, crustal denudation, and gravity tectonics during Cretaceous rifting in the Pyrenean realm (SW Europe): Insights from the geological setting of the lherzolite bodies. Tectonics 2010, 29, TC4012:1–TC4012:26. [Google Scholar] [CrossRef]
- Labaume, P.; Séguret, M.; Seyve, C. Evolution of a turbiditic foreland basin and analogy with an accretionary prism: Example of the Eocene south-Pyrenean basin. Tectonics 1985, 4, 661–685. [Google Scholar] [CrossRef]
- Cámara, P.; Klimowitz, J. Interpretación geodinámica de la vertiente centro-occidental surpirenaica (Cuencas de Jaca-Tremp). Estud. Geol. 1985, 41, 391–404. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, J.A.; Mencos, J.; Roca, E.; Carrera, N.; Gratacós, O.; Ferrer, O.; Fernández, O. The structure of the South-Central-Pyrenean fold and thrust belt as constrained by subsurface data. Geol. Acta 2018, 16, 439–460. [Google Scholar]
- Saura, E.; Ardèvol i Oró, L.; Teixell, A.; Vergés, J. Rising and falling diapirs, shifting depocenters, and flap overturning in the Cretaceous Sopeira and Sant Gervàs subbasins (Ribagorça Basin, southern Pyrenees). Tectonics 2016, 35, 638–662. [Google Scholar] [CrossRef] [Green Version]
- Burrel, L.; Teixell, A.; Gómez-Gras, D.; Coll, X. Basement-involved thrusting, salt migration and intramontane conglomerates: A case from the Southern Pyrenees. Bull. Soc. Géol. Fr. 2021, 192, 24. [Google Scholar] [CrossRef]
- Nijman, W.; Nio, S.-D. The Eocene Montañana Delta (Tremp-Graus Basin, provinces of Lérida and Huesca, Southern Pyrenees, N Spain). In Sedimentary Evolution of the Paleogene South Pyrenean Basin, Proceedings of the IAS 9th International Sedimentological Congress, Nice, France, 1 January–30 November 1974; Rosell., J., Puigdefàbregas, C., Eds.; Vakgroep Sedimentologie, Rijksuniveriteit Leiden-Utrecht: Utrecht, The Netherlands, 1975. [Google Scholar]
- Mutti, E. Turbidite systems and their relations to depositional sequences. In Provenance of Arenites, 1st ed.; Zuffa, G.G., Ed.; Springer: Dordrecht, The Netherlands, 1985; pp. 65–93. [Google Scholar]
- Mochales, T.; Barnolas, A.; Pueyo, E.L.; Serra-Kiel, J.; Casas, A.M.; Samsó, J.M.; Ramajo, J.; Sanjuán, J. Chronostratigraphy of the Boltaña anticline and the Ainsa Basin (southern Pyrenees). Geol. Soc. Am. Bull. 2012, 124, 1229–1250. [Google Scholar] [CrossRef]
- Reynolds, A.D. Tectonically Controlled Fluvial Sedimentation in the South Pyrenean Foreland Basin. Ph.D. Thesis, University of Liverpool, Liverpool, UK, 1987. [Google Scholar]
- Ortí, F.; Salvany, J.M.; Rosell, L.; Pueyo, J.J.; Inglés, M. Evaporitas antiguas (Navarra) y actuales (Los Manegros) de la Cuenca del Ebro. In Guia de las Excursiones, Proceedings of the XI Congreso Español de sedimentologia, Barcelona, Spain, 15–18 September 1986; Anadón., P., Cabrera, L., Eds.; Universitat de Barcelona: Barcelona, Spain, 1986. [Google Scholar]
- Payros, A.; Pujalte, V.; Orue-Etxebarria, X. The South Pyrenean Eocene carbonate megabreccias revisited: New interpretation based on evidence from the Pamplona Basin. Sediment. Geol. 1999, 125, 165–194. [Google Scholar] [CrossRef]
- Millán, H.; Aurell, M.; Meléndez, A. Synchronous detachment folds and coeval sedimentation in the Prepyrenean External Sierras (Spain): A case study for a tectonic origin of sequences and systems tracts. Sedimentology 1994, 41, 1001–1024. [Google Scholar] [CrossRef]
- Roigé, M.; Gómez-Gras, D.; Stockli, D.F.; Teixell, A.; Boya, S.; Remacha, E. Detrital zircon U–Pb insights into the timing and provenance of the South Pyrenean Jaca basin. J. Geol. Soc. 2019, 176, 1182–1190. [Google Scholar] [CrossRef]
- Jolley, E.J. Thrust Tectonics and Alluvial Architecture of the Jaca Basin, Southern Pyrenees. Ph.D. Thesis, University of Wales, Cardiff, Wales, 1988. [Google Scholar]
- Arenas, C. Sedimentología y paleogeografía del Terciario del margen pirenaico y sector central de la Cuenca del Ebro (zona aragonesa occidental). Ph.D. Thesis, Universidad de Zaragoza, Zaragoza, Spain, 1993. [Google Scholar]
- Friend, P.F.; Hirst, J.P.P.; Hogan, P.J.; Jolley, E.J.; McElroy, R.; Nichols, G.J.; Rodríguez, J. Pyrenean tectonic control of Oligo-Miocene river systems, Huesca, Aragón, Spain, In Excursion Guidebook No. 4, Proceedings of the 4th International Conference on Fluvial Sedimentology, Sitges, Spain, 2–4 October 1989; Marzo, M., Puigdefàbregas, C., Eds.; Servei Geològic de Catalunya: Barcelona, Spain, 1989. [Google Scholar]
- Arenas, C.; Millán, H.; Pardo, G.; Pocoví, A. Ebro Basin continental sedimentation associated with late compressional Pyrenean tectonics (north-eastern Iberia): Controls on basin margin fans and fluvial systems. Basin Res. 2001, 13, 65–89. [Google Scholar] [CrossRef]
- Zwart, H.J.; De Sitter, L.U. The geology of the Central Pyrenees. Leidse Geol. Meded. 1979, 50, 1–74. [Google Scholar]
- Zwart, H.J. The Variscan geology of the Pyrenees. Tectonophysics 1986, 129, 9–27. [Google Scholar] [CrossRef]
- Debon, F.; Enrique, P.; Autran, A.; Barnolas, A.; Chiron, J.C. Le plutonisme hercynien des Pyrénées. In Synthèse Géologique et Géophysique des Pyrénées; Barnolas, A., Chiron, J.C., Eds.; Bureau de Recherches Géologiques et Minières-Instituto Tecnologico Geominero de España: Orléans, France; Madrid, Spain, 1996; Volume 1, pp. 361–499. [Google Scholar]
- Guitard, G.; Vielzeuf, D.; Martinez, F. Métamorphisme hercynien. In Synthèse Géologique Et Géophysique Des Pyrénées; Barnolas, A., Chiron, J.C., Eds.; Bureau de Recherches Géologiques et Minières-Instituto Tecnologico Geominero de España: Orléans, France; Madrid, Spain, 1996; Volume 1, pp. 501–584. [Google Scholar]
- Ribeiro, M.L.; Reche, J.; López-Carmona, A.; Quesada, C. Variscan metamorphism. In The Geology of Iberia: A Geodynamic Approach; Quesada, C., Oliveira, J.T., Eds.; Springer Nature: Cham, Switzerland, 2019; Volume 3, pp. 473–498. [Google Scholar]
- Rodríguez-Fernández, L.R.; López-Olmedo, F.; Oliveira, J.T.; Medialdea, T.; Terrinha, P.; Matas, J.; Martín-Serrano, A.; Martín-Parra, L.M.; Rubio, F.; Marín, C.; et al. Mapa Geológico de la Península Ibérica, Baleares y Canarias a escala 1:1.000.000; IGME: Madrid, Spain, 2015. [Google Scholar]
- Souquet, P. Le Crétacé supérieur sudpyrénéen en Catalogne, Aragon et Navarre. Ph.D. Thesis, Université de Toulouse, Toulouse, France, 1967. [Google Scholar]
- Azambre, B. Sur les roches intrusives sous-saturées du Crétacé des Pyrénées. C. R. Hebd. Séances Acad. Sci. 1967, 271, 641–643. [Google Scholar]
- Golberg, J.M.; Leyreloup, A.F. High temperature-low pressure Cretaceous metamorphism related to crustal thinning (Eastern North Pyrenean Zone, France). Contrib. Mineral. Petrol. 1990, 104, 194–207. [Google Scholar] [CrossRef]
- Clerc, C.; Lahfid, A.; Monié, P.; Lagabrielle, Y.; Chopin, C.; Poujol, M.; Boulvais, P.; Ringenbach, J.C.; Masini, E.; de St Blanquat, M. High-temperature metamorphism during extreme thinning of the continental crust: A reappraisal of the North Pyrenean passive paleomargin. Solid Earth 2015, 6, 643–668. [Google Scholar] [CrossRef] [Green Version]
- Mange, M.A.; Maurer, H.F.W. Heavy Minerals in Colour; Chapman and Hall: London, UK, 1992; 147p. [Google Scholar]
- Garzanti, E.; Andò, S. Heavy mineral concentration in modern sands: Implications for provenance interpretation. Dev. Sedimentol. 2007, 58, 517–545. [Google Scholar]
- Bixel, F. Le volcanisme stéphano-permien des Pyrénées. Pétrographie, minéralogie, géochimie. J. Iber. Geol. 1987, 11, 41–55. [Google Scholar]
- Gilbert, J.S.; Rogers, N.W. The significance of garnet in the Permo-Carboniferous volcanic rocks of the Pyrenees. J. Geol. Soc. 1989, 146, 477–490. [Google Scholar] [CrossRef]
- Harris, N.B.W. The petrology and petrogenesis of some muscovite granite sills from the Barousse Massif, Central Pyrenees. Contrib. Mineral. Petrol. 1974, 45, 215–230. [Google Scholar] [CrossRef]
- Azambre, B.; Crouzel, F.; Debroas, E.J.; Soulé, J.C.; Ternet, Y. Notice Explicative. Carte géologique de la France au 1: 50000. Feuille Bagnères-de-Bigorre (1053); BRGM: Orléans, France, 1989; 79p. [Google Scholar]
- Azambre, B.; Rossy, M.; Lago, M. Caracteristiques petrologiques des dolerites tholeiitiques d’age triasique (ophites) du domaine pyreneen. Bull. Soc. Minéral. 1987, 110, 379–396. [Google Scholar] [CrossRef]
- Ternet, Y.; Barrere, P.; Debroas, E.J. Notice Explicative de la Carte géologique de la France (1/50000), feuille Campan (1071); BRGM: Orléans, France, 1995; 117p. [Google Scholar]
- Lago, M.; Galé, C.; Arranz, E.; Vaquer, R.; Gil, A.; Pocovi, A. Triassic tholeiitic dolerites (ophite) of the El Grado diapir. Estud. Geol. 2000, 56, 3–8. [Google Scholar]
- Majesté-Menjoulás, C.; Debon, F.; Barrère, P. Notice Explicative de la Carte Géologique de la France (1/50000), Feuille Gavarnie (1082); BRGM: Orléans, France, 1999; 158p. [Google Scholar]
- Chayes, F. The finer-grained calcalkaline granites of New England. J. Geol. 1952, 60, 207–254. [Google Scholar] [CrossRef]
- Gazzi, P. Le Arenarie del Flysch Sopracretaceo dell’Appennino Modenese: Correlazioni con il Flysch di Monghidoro. Mineral. Petrogr. Acta 1966, 12, 69–97. [Google Scholar]
- Ingersoll, R.V.; Bullard, T.F.; Ford, R.L.; Grimm, J.P.; Pickle, J.D.; Sares, S.W. The Effect of Grain Size on Detrital Modes: A Test of the Gazzi-Dickinson Point-Counting Method. J. Sediment. Res. 1984, 54, 103–116. [Google Scholar]
- Zuffa, G.G. Optical analyses of arenites: Influence of methodology on compositional results. In Provenance of Arenites; Zuffa, G.G., Ed.; NATO-ASI Series; Springer: Dordrecht, The Netherlands, 1985; Volume 148, pp. 21–29. [Google Scholar]
- Dryden, A.L., Jr. Accuracy in percentage representation of heavy mineral frequencies. Proc. Natl. Acad. Sci. USA 1931, 17, 233–238. [Google Scholar] [CrossRef] [Green Version]
- Garzanti, E.; Vezzoli, G. A classification of metamorphic grains in sands based on their composition and grade. J. Sediment. Res. 2003, 73, 830–837. [Google Scholar] [CrossRef]
- Marsaglia, K.M.; Ingersoll, R.V. Compositional trends in arc-related, deep-marine sand and sandstone: A reassessment of magmatic-arc provenance. Geol. Soc. Am. Bull. 1992, 104, 1637–1649. [Google Scholar] [CrossRef]
- Critelli, S.; Ingersoll, R.V. Interpretation of neovolcanic versus palaeovolcanic sand grains: An example from Miocene deep-marine sandstone of the Topanga Group (Southern California). Sedimentology 1995, 42, 783–804. [Google Scholar] [CrossRef]
- Garzanti, E.; Andò, S.; Vezzoli, G. Settling equivalence of detrital minerals and grain-size dependence of sediment composition. Earth Planet. Sci. Lett. 2008, 273, 138–151. [Google Scholar] [CrossRef]
- Garzanti, E.; Andò, S.; Vezzoli, G. Grain-size dependence of sediment composition and environmental bias in provenance studies. Earth Planet. Sci. Lett. 2009, 277, 422–432. [Google Scholar] [CrossRef]
- Garzanti, E.; Andò, S. Heavy minerals for junior woodchucks. Minerals 2019, 9, 148. [Google Scholar] [CrossRef] [Green Version]
- Andò, S. Gravimetric Separation of Heavy Minerals in Sediments and Rocks. Minerals 2020, 10, 273. [Google Scholar] [CrossRef] [Green Version]
- Nasdala, L.; Smith, D.C.; Kaindl, R.; Ziemann, M. Raman spectroscopy: Analytical perspectives in mineralogical research. In Spectroscopic Methods in Mineralogy; Beran, A., Libowitzky, E., Eds.; Eötvös University Press: Budapest, Hungary, 2004; pp. 281–343. [Google Scholar]
- Andò, S.; Garzanti, E. Raman spectroscopy in heavy-mineral studies. Geol. Soc. Lond. Spec. Publ. 2014, 386, 395–412. [Google Scholar] [CrossRef]
- Galehouse, J.S. Point counting. In Procedures in Sedimentary Petrology; Carver, R.E., Ed.; Wiley: New York, NY, USA, 1971; pp. 385–407. [Google Scholar]
- Mange, M.A.; Wright, D.T. Heavy Minerals in Use; Elsevier: Amsterdam, The Netherlands, 2007; 1283p. [Google Scholar]
- Wang, A.; Kuebler, K.E.; Jolliff, B.L.; Haskin, L.A. Raman spectroscopy of Fe-Ti-Cr-oxides, case study: Martian meteorite EETA79001. Am. Mineral. 2004, 89, 665–680. [Google Scholar] [CrossRef]
- Kuebler, K.E.; Jolliff, B.L.; Wang, A.; Haskin, L.A. Extracting olivine (Fo–Fa) compositions from Raman spectral peak positions. Geochim. Cosmochim. Acta 2006, 70, 6201–6222. [Google Scholar] [CrossRef]
- Greenacre, M.J. Theory and Applications of Correspondence Analysis; London Academic Press: London, UK, 1984; 364p. [Google Scholar]
- Vermeesch, P.; Resentini, A.; Garzanti, E. An R package for statistical provenance analysis. Sediment. Geol. 2016, 336, 14–25. [Google Scholar] [CrossRef]
- Vermeesch, P. Statistical models for point-counting data. Earth Planet. Sci. Lett. 2018, 501, 112–118. [Google Scholar] [CrossRef]
- Zuffa, G.G. Hybrid arenites; their composition and classification. J. Sediment. Petrol. 1980, 50, 21–29. [Google Scholar]
- Dickinson, W.R.; Beard, L.S.; Brakenridge, G.R.; Erjavec, J.L.; Ferguson, R.C.; Inman, K.F.; Knepp, R.A.; Lindberg, F.A.; Ryberg, P.T. Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geol. Soc. Am. Bull. 1983, 94, 222–235. [Google Scholar] [CrossRef]
- Morton, A.C.; Hallsworth, C.R. Processes controlling the composition of heavy mineral assemblages in sandstones. Sediment. Geol. 1999, 124, 3–29. [Google Scholar] [CrossRef]
- Walderhaug, O.; Porten, K.W. Stability of detrital heavy minerals on the Norwegian continental shelf as a function of depth and temperature. J. Sediment. Res. 2007, 77, 992–1002. [Google Scholar] [CrossRef]
- Garzanti, E.; Andò, S.; Limonta, M.; Fielding, L.; Najman, Y. Diagenetic control on mineralogical suites in sand, silt, and mud (Cenozoic Nile Delta): Implications for provenance reconstructions. Earth Sci. Rev. 2018, 185, 122–139. [Google Scholar] [CrossRef]
- Crognier, N. Evolution thermique, circulation de fluide et fracturation associées à la structuration du bassin d’avant-pays sud-pyrénéen. Ph.D. Thesis, Université de Pau et des Pays de l’Adour, Pau, France, 2016. [Google Scholar]
- Andò, S.; Garzanti, E.; Padoan, M.; Limonta, M. Corrosion of heavy minerals during weathering and diagenesis: A catalog for optical analysis. Sediment. Geol. 2012, 280, 165–178. [Google Scholar] [CrossRef]
- Simó, A.; Puigdefrábregas, C.; Gili, E. Transition from shelf to basin on an active slope, Upper Cretaceous, Tremp area, southern Pyrenees. In Proceedings of the 6th European Regional Meeting of Sedimentology Excursion Guidebook, Lleida, Spain, 15–17 April 1985; Mila, M.D., Rosell, J., Eds.; Institut d’Estudis Ilerdencs: Lleida, Spain, 1985; pp. 63–108. [Google Scholar]
- Babault, J.; Van Den Driessche, J.; Teixell, A. Longitudinal to transverse drainage network evolution in the High Atlas (Morocco): The role of tectonics. Tectonics 2012, 31, TC4020. [Google Scholar] [CrossRef] [Green Version]
- Viaplana-Muzas, M.; Babault, J.; Dominguez, S.; Van Den Driessche, J.; Legrand, X. Drainage network evolution and patterns of sedimentation in an experimental wedge. Tectonophysics 2015, 664, 109–124. [Google Scholar] [CrossRef]
- Viaplana-Muzas, M.; Babault, J.; Dominguez, S.; Van Den Driessche, J.; Legrand, X. Modelling of drainage dynamics influence on sediment routing system in a fold-and-thrust belt. Basin Res. 2019, 31, 290–310. [Google Scholar] [CrossRef]
- Vacherat, A.; Mouthereau, F.; Pik, R.; Bellahsen, N.; Gautheron, C.; Bernet, M.; Daudet, M.; Balansa, J.; Tibari, B.; Pinna Jamme, R. Rift-to-collision transition recorded by tectonothermal evolution of the northern Pyrenees. Tectonics 2016, 35, 907–933. [Google Scholar] [CrossRef] [Green Version]
- Bosch, G.V.; Teixell, A.; Jolivet, M.; Labaume, P.; Stockli, D.; Domènech, M.; Monié, P. Timing of Eocene–Miocene thrust activity in the Western Axial Zone and Chaînons Béarnais (west-central Pyrenees) revealed by multi-method thermochronology. C. R. Geosci. 2016, 348, 246–256. [Google Scholar] [CrossRef]
- Hart, N.R.; Stockli, D.F.; Lavier, L.L.; Hayman, N.W. Thermal evolution of a hyperextended rift basin, Mauléon Basin, western Pyrenees. Tectonics 2017, 36, 1103–1128. [Google Scholar] [CrossRef]
- Senz, J.G.; Zamorano, M. Evolución tectónica y sedimentaria durante el Priaboniense superior-Mioceno inferior, en el frente de cabalgamiento de las Sierras Marginales occidentales. Acta Geol. Hisp. 1992, 27, 195–209. [Google Scholar]
- Cámara, P.; Flinch, J.F. The southern Pyrenees: A salt-based fold-and-thrust belt. In Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins, 1st ed.; Soto, J.I., Flinch, J.F., Tari, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 395–415. [Google Scholar]
- Burrel, L.; Teixell, A. Contractional salt tectonics and role of pre-existing diapiric structures in the Southern Pyrenean foreland fold–thrust belt (Montsec and Serres Marginals). J. Geol. Soc. 2021, 178, jgs2020-085. [Google Scholar] [CrossRef]
- Hudec, M.R.; Dooley, T.P.; Burrel, L.; Teixell, A.; Fernandez, N. An alternative model for the role of salt depositional configuration and preexisting salt structures in the evolution of the Southern Pyrenees, Spain. J. Struct. Geol. 2021, 146, 104325. [Google Scholar] [CrossRef]
- Friend, P.F.; Hirst, J.P.P.; Nichols, G.J. Sandstone-body structure and river processes in the Ebro Basin of Aragon, Spain. J. Iber. Geol. 1986, 10, 9–30. [Google Scholar]
- Nichols, G.J.; Hirst, J.P. Alluvial fans and fluvial distributary systems, Oligo-Miocene, northern Spain; contrasting processes and products. J. Sediment. Res. 1998, 68, 879–889. [Google Scholar] [CrossRef]
- Jones, S.J. Tectonic controls on drainage evolution and development of terminal alluvial fans, southern Pyrenees, Spain. Terra Nova 2004, 16, 121–127. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coll, X.; Roigé, M.; Gómez-Gras, D.; Teixell, A.; Boya, S.; Mestres, N. Interplay of Multiple Sediment Routing Systems Revealed by Combined Sandstone Petrography and Heavy Mineral Analysis (HMA) in the South Pyrenean Foreland Basin. Minerals 2022, 12, 262. https://doi.org/10.3390/min12020262
Coll X, Roigé M, Gómez-Gras D, Teixell A, Boya S, Mestres N. Interplay of Multiple Sediment Routing Systems Revealed by Combined Sandstone Petrography and Heavy Mineral Analysis (HMA) in the South Pyrenean Foreland Basin. Minerals. 2022; 12(2):262. https://doi.org/10.3390/min12020262
Chicago/Turabian StyleColl, Xavier, Marta Roigé, David Gómez-Gras, Antonio Teixell, Salvador Boya, and Narcís Mestres. 2022. "Interplay of Multiple Sediment Routing Systems Revealed by Combined Sandstone Petrography and Heavy Mineral Analysis (HMA) in the South Pyrenean Foreland Basin" Minerals 12, no. 2: 262. https://doi.org/10.3390/min12020262
APA StyleColl, X., Roigé, M., Gómez-Gras, D., Teixell, A., Boya, S., & Mestres, N. (2022). Interplay of Multiple Sediment Routing Systems Revealed by Combined Sandstone Petrography and Heavy Mineral Analysis (HMA) in the South Pyrenean Foreland Basin. Minerals, 12(2), 262. https://doi.org/10.3390/min12020262