Selective Flotation Behavior of Dolomite from Fluorapatite Using Hydroxy Ethylene Diphosphonic Acid as High-Efficiency Depressant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Microflotation Experiments
2.3. Wettability Analysis
2.4. Zeta Potential Measurement
2.5. X-ray Photoelectron Spectroscopic Analysis
3. Results and Discussion
3.1. Microflotation Experiments
3.2. Wetability Analysis
3.3. Zeta Potential Measurements
3.4. XPS Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zou, H.; Cao, Q.; Liu, D.; Yu, X.; Lai, H. Surface Features of Fluorapatite and Dolomite in the Reverse Flotation Process Using Sulfuric Acid as a Depressor. Minerals 2019, 9, 33. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Tian, M.; Khoso, S.A.; Hu, Y.; Sun, W.; Gao, Z. Improved Flotation Separation of Apatite from Calcite with Benzohydroxamic Acid Collector. Miner. Processing Extr. Metall. Rev. 2019, 40, 427–436. [Google Scholar] [CrossRef]
- Cao, Q.; Cheng, J.; Wen, S.; Li, C.; Bai, S.; Liu, D. A mixed collector system for phosphate flotation. Miner. Eng. 2015, 78, 114–121. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, P.; Mansur, H.; Mansur, A.; da Silva, G.; Peres, A.E.C. Apatite flotation using pataua palm tree oil as collector. J. Mater. Res. Technol. 2019, 8, 4612–4619. [Google Scholar] [CrossRef]
- De Carvalho, J.A.E.; Brandão, P.R.G.; Henriques, A.B.; de Oliveira, P.S.; Cançado, R.Z.L.; da Silva, G.R. Selective flotation of apatite from micaceous minerals using pataua palm tree oil collector. Miner. Eng. 2020, 156, 106474. [Google Scholar] [CrossRef]
- Cao, Q.; Cheng, J.; Wen, S.; Li, C.; Liu, J. Synergistic effect of dodecyl sulfonate on apatite flotation with fatty acid collector. Sep. Sci. Technol. 2016, 51, 1389–1396. [Google Scholar] [CrossRef]
- Liu, X.; Li, C.; Luo, H.; Cheng, R.; Liu, F. Selective reverse flotation of apatite from dolomite in collophanite ore using saponified gutter oil fatty acid as a collector. Int. J. Miner. Processing 2017, 165, 20–27. [Google Scholar] [CrossRef]
- Jong, K.; Han, Y.; Ryom, S. Flotation mechanism of oleic acid amide on apatite. Colloids Surf. A Physicochem. Eng. Asp. 2017, 523, 127–131. [Google Scholar] [CrossRef]
- Wei, K.; Liu, W.; Peng, X.; Liu, W.; Naixu, Z.; Li, Z. Investigating flotation behavior and mechanism of modified mineral oil in the separation of apatite ore. Physicochem. Probl. Miner. Process. 2020, 56, 471–482. [Google Scholar] [CrossRef]
- Santos, E.P.; Dutra, A.J.B.; Oliveira, J.F. The effect of jojoba oil on the surface properties of calcite and apatite aiming at their selective flotation. Int. J. Miner. Process. 2015, 143, 34–38. [Google Scholar] [CrossRef]
- Ding, Z.; Li, J.; Bi, Y.; Yu, P.; Dai, H.; Wen, S.; Bai, S. The adsorption mechanism of synergic reagents and its effect on apatite flotation in oleamide-sodium dodecyl benzene sulfonate (SDBS) system. Miner. Eng. 2021, 170, 107070. [Google Scholar] [CrossRef]
- Ruan, Y.; Zhang, Z.; Luo, H.; Xiao, C.; Zhou, F.; Chi, R. Ambient Temperature Flotation of Sedimentary Phosphate Ore Using Cottonseed Oil as a Collector. Minerals 2017, 7, 65. [Google Scholar] [CrossRef] [Green Version]
- Cao, Q.; Zou, H.; Chen, X.; Yu, X. Interaction of sulfuric acid with dolomite (104) surface and its impact on the adsorption of oleate anion: A DFT study. Physicochem. Probl. Miner. Process. 2020, 56, 34–42. [Google Scholar]
- Liu, X.; Ruan, Y.; Li, C.; Cheng, R. Effect and mechanism of phosphoric acid in the apatite/dolomite flotation system. Int. J. Miner. Process. 2017, 167, 95–102. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, Q.; Hart, B.R.; Ye, J. Study on the effect of collector and inhibitor acid on the floatability of collophane and dolomite in acidic media by TOF-SIMS and XPS. Surf. Interface Anal. 2020, 52, 355–363. [Google Scholar] [CrossRef]
- Pan, Z.; Wang, Y.; Wei, Q.; Chen, X.; Jiao, F.; Qin, W. Effect of sodium pyrophosphate on the flotation separation of calcite from apatite. Sep. Purif. Technol. 2020, 242, 116408. [Google Scholar] [CrossRef]
- Pan, Z.; Wang, Y.; Wang, Y.; Jiao, F.; Qin, W. Understanding the depression mechanism of sodium citrate on apatite flotation. Colloids Surf. A Physicochem. Eng. Asp. 2020, 588, 124312. [Google Scholar] [CrossRef]
- Liu, X.; Luo, H.; Cheng, R.; Li, C.; Zhang, J. Effect of citric acid and flotation performance of combined depressant on collophanite ore. Miner. Eng. 2017, 109, 162–168. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, F.; Liu, M.; Jin, Y.; Xiao, L.; Yu, H. Employing sulfur–phosphorus mixed acid as a depressant: A novel investigation in flotation of collophanite. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 1–14. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, J.; Liu, R.; Liu, C.; Liu, L.; Li, R.; Zhang, H.; Pang, J.; Liu, D. Application of waste acid from phosphogysum dam as an eco-friendly depressant in collophane flotation. J. Clean. Prod. 2020, 267, 122184. [Google Scholar] [CrossRef]
- Kornev, V.I.; Kropacheva, T.N.; Sorokina, U.V. Coordination compounds of oxovanadium (IV) with organophosphonic complexones in aqueous solutions. Russ. J. Inorg. Chem. 2015, 60, 403–408. [Google Scholar] [CrossRef]
- Moudgil, H.K.; Yadav, S.; Chaudhary, R.S.; Kumar, D. Synergistic effect of some antiscalants as corrosion inhibitor for industrial cooling water system. J. Appl. Electrochem. 2009, 39, 1339–1347. [Google Scholar] [CrossRef]
- Scarazzato, T.; Buzzi, D.C.; Bernardes, A.M.; Espinosa, D.C.R. Treatment of wastewaters from cyanide-free plating process by electrodialysis. J. Clean. Prod. 2015, 91, 241–250. [Google Scholar] [CrossRef]
- Kumar, H.; Chaudhary, R.S. Inhibitive action of 1-hydroxyethylenedine-1,1-diphosphonic acid antiscalant towards corrosion of carbon steel in cooling water system. J. Indian Chem. Soc. 2011, 88, 1589–1598. [Google Scholar]
- Wang, D.; Yang, J.; Xue, F.; Wang, J.; Hu, W. Experimental and computational study of zinc coordinated 1-hydroxyethylidene-1,1-diphosphonic acid self-assembled film on steel surface. Colloids Surf. A Physicochem. Eng. Asp. 2020, 612, 126009. [Google Scholar] [CrossRef]
- Zeng, B.; Li, M.-D.; Zhu, Z.-P.; Zhao, J.-M.; Zhang, H. Application of 1-hydroxyethylidene-1, 1-diphosphonic acid in boiler water for industrial boilers. Water Sci. Technol. 2013, 67, 1544–1550. [Google Scholar] [CrossRef] [PubMed]
- Boulahlib-Bendaoud, Y.; Ghizellaoui, S. Use of The HEDP For the Inhibition of The Tartar of Ground Waters. Energy Procedia 2012, 18, 1501–1510. [Google Scholar] [CrossRef] [Green Version]
- Khormali, A.; Petrakov, D.G.; Moghaddam, R.N. Study of adsorption/desorption properties of a new scale inhibitor package to prevent calcium carbonate formation during water injection in oil reservoirs. J. Pet. Sci. Eng. 2017, 153, 257–267. [Google Scholar] [CrossRef]
- Huang, N.; Wang, W.-L.; Xu, Z.-B.; Wu, Q.-Y.; Hu, H.-Y. UV/chlorine oxidation of the phosphonate antiscalant 1-Hydroxyethane-1, 1-diphosphonic acid (HEDP) used for reverse osmosis processes: Organic phosphorus removal and scale inhibition properties changes. J. Environ. Manag. 2019, 237, 180–186. [Google Scholar] [CrossRef]
- Abd-El-Khalek, D.E.; Abd-El-Nabey, B.A.; Abdel-kawi, M.A.; Ebrahim, S.; Ramadan, S.R. The inhibition of crystal growth of gypsum and barite scales in industrial systems using green antiscalant. Water Supply 2019, 19, 2140–2146. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, J.; Sun, W.; Hu, Y.; Cao, J.; Gao, Z. Selective flotation of chalcopyrite from pyrite using diphosphonic acid as collector. Miner. Eng. 2019, 140, 105890. [Google Scholar] [CrossRef]
- Wang, J.; Li, W.; Zhou, Z.; Gao, Z.; Hu, Y.; Sun, W. 1-Hydroxyethylidene-1,1-diphosphonic acid used as pH-dependent switch to depress and activate fluorite flotation I: Depressing behavior and mechanism. Chem. Eng. Sci. 2020, 214, 115369. [Google Scholar] [CrossRef]
- Dong, L.; Jiao, F.; Qin, W.; Zhu, H.; Jia, W. New insights into the carboxymethyl cellulose adsorption on scheelite and calcite: Adsorption mechanism, AFM imaging and adsorption model. Appl. Surf. Sci. 2019, 463, 105–114. [Google Scholar] [CrossRef]
- Dong, L.; Wei, Q.; Jiao, F.; Qin, W. Utilization of polyepoxysuccinic acid as the green selective depressant for the clean flotation of phosphate ores—ScienceDirect. J. Clean. Prod. 2020, 282, 124532. [Google Scholar] [CrossRef]
- Yang, B.; Wang, D.; Cao, S.; Yin, W.; Xue, J.; Zhu, Z.; Fu, Y.; Yao, J. Selective adsorption of a high-performance depressant onto dolomite causing effective flotation separation of magnesite from dolomite. J. Colloid Interface Sci. 2020, 578, 290–303. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Gao, Z.; Sun, W.; Yin, Z.; Wang, J.; Hu, Y. Adsorption of a novel reagent scheme on scheelite and calcite causing an effective flotation separation. J. Colloid Interface Sci. 2018, 512, 39–46. [Google Scholar] [CrossRef]
- Filippova, I.V.; Filippov, L.O.; Lafhaj, Z.; Barres, O.; Fornasiero, D. Effect of calcium minerals reactivity on fatty acids adsorption and flotation. Colloids Surf. A Physicochem. Eng. Asp. 2018, 545, 157–166. [Google Scholar] [CrossRef]
- Sanderson, R.T. Electronegativity and bond energy. J. Am. Chem. Soc. 1983, 105, 2259–2261. [Google Scholar] [CrossRef]
- Wolsey, W.C. Chemistry of the Elements (Greenwood, N.N.; Earshaw, A.). J. Chem. Educ. 1985, 62, A133. [Google Scholar] [CrossRef]
Samples | Atomic Concentration (%) | ||||
C1s | O1s | Ca2p | P2p | F1s | |
Fluorapatite | 26.47 | 44.80 | 15.98 | 10.06 | 2.69 |
Fluorapatite + HEDP | 24.45 | 47.18 | 13.93 | 10.81 | 3.63 |
Samples | Atomic Concentration (%) | ||||
C1s | O1s | Ca2p | Mg1s | --- | |
Dolomite | 38.32 | 48.91 | 9.16 | 3.61 | --- |
Dolomite + HEDP | 38.30 | 47.56 | 9.66 | 4.48 | --- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Xiao, Z.; Zhang, H. Selective Flotation Behavior of Dolomite from Fluorapatite Using Hydroxy Ethylene Diphosphonic Acid as High-Efficiency Depressant. Minerals 2022, 12, 1633. https://doi.org/10.3390/min12121633
Zhang J, Xiao Z, Zhang H. Selective Flotation Behavior of Dolomite from Fluorapatite Using Hydroxy Ethylene Diphosphonic Acid as High-Efficiency Depressant. Minerals. 2022; 12(12):1633. https://doi.org/10.3390/min12121633
Chicago/Turabian StyleZhang, Jingkun, Zhiyun Xiao, and Hongbo Zhang. 2022. "Selective Flotation Behavior of Dolomite from Fluorapatite Using Hydroxy Ethylene Diphosphonic Acid as High-Efficiency Depressant" Minerals 12, no. 12: 1633. https://doi.org/10.3390/min12121633
APA StyleZhang, J., Xiao, Z., & Zhang, H. (2022). Selective Flotation Behavior of Dolomite from Fluorapatite Using Hydroxy Ethylene Diphosphonic Acid as High-Efficiency Depressant. Minerals, 12(12), 1633. https://doi.org/10.3390/min12121633