Shear Strength and Re-Failure Characteristics of Intact Red Sandstone and Grouting-Reinforced Body of Fractured Red Sandstone under Different Shear Angles
Abstract
:1. Introduction
2. Test Materials and Test Schemes
2.1. Test System
2.2. Sample Preparation
2.3. Test Scheme
3. Results and Discussion
3.1. Shear Deformation and Strength Behavior of IRS and GRBFRS
3.1.1. Shear Deformation Characteristics of IRS and GRBFRS
3.1.2. Shear Strength of IRS and GRBFRS
3.1.3. Shear Strength Parameters Based on the Mohr–Coulomb Criterion
3.1.4. Strengthening Evaluation and Prediction of Shear Strength Parameters
3.2. Shear Failure and Re-failure Characteristics of IRS and GRBFRS
3.2.1. Microscopic Characteristics of Shear Fracture Based on AE Signals
3.2.2. Macroscopic Characteristics of Shear Fracture Based on VIC-3D
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Nomenclature | Description | Nomenclature | Description |
AE | Acoustic emission | cp | Peak cohesion of IRS (MPa) |
VIC-3D | Non-contact full field strain measurement system based on Digital Image Correlation (DIC) | σr | Residual normal stress of IRS (MPa) |
IRS | Intact red sandstone | τr | Residual shear stress of IRS (MPa) |
GRBFRS | Grouting-reinforced body of fractured red sandstone | τra | Residual shear strength of IRS (MPa) |
Re-failure | Reinforced body formed by the fractured rock after grouting fails again under loading | φr | Residual internal friction angle of IRS (°) |
CCD | Charge Coupled Device | cr | Residual cohesion of IRS (MPa) |
OA, AB, BC, CD | Stage of shear deformation | σpg | Peak normal stress of GRBFRS (MPa) |
P | Axial load force (N) | τpg | Peak shear stress of GRBFRS (MPa) |
A | Shear Area (mm2) | τpag | Peak shear strength of GRBFRS (MPa) |
L | Length of the rock sample (mm) | φpg | Peak internal friction angle of GRBFRS (°) |
S | Axial displacement (mm) | cpg | Peak cohesion of GRBFRS (MPa) |
c | Cohesion of rock (MPa) | ξco | Cohesive growth rate of GRBFRS |
α | Shear angle (°) | ξf | Internal friction angle growth rate of GRBFRS |
σ | Normal stress (MPa) | cag | Peak cohesion of grouting-reinforced body of fractured rock (MPa) |
τ | Shear stress (MPa) | cbg | Residual cohesion of fractured rock (MPa) |
ετ | Shear strain of rock sample | φag | Peak internal friction angle of grouting-reinforced body of fractured rock (°) |
φ | Internal friction angle of rock (°) | φbg | Residual internal friction angle of fractured rock (°) |
σp | Peak normal stress of IRS (MPa) | ξc | Compressive strength growth rate of GRBFRS |
τp | Peak shear stress of IRS (MPa) | ∆Sc | Increment of uniaxial compressive strength of fractured rock before and after grouting (MPa) |
τpa | Peak shear strength of IRS (MPa) | Scg | Peak uniaxial compressive strength of grouting-reinforced body of fractured rock (MPa) |
φp | Peak internal friction angle of IRS (°) | Scr | Residual uniaxial compressive strength of intact rock (MPa) |
References
- Liu, R.; Zheng, Z.; Li, S.; Yang, H. Mechanical properties of fractured rock mass with consideration of grouting reinforcement. China J. Highw. Transp. 2018, 31, 284–291. [Google Scholar] [CrossRef]
- Germiquet, J.P.; Minnitt, R.C.A. Rock strength and geometallurgical modelling mogalakwena mine. J. S. Afr. Inst. Min. Metall. 2016, 116, 247–250. [Google Scholar] [CrossRef] [Green Version]
- Qi, Y.; Li, S.; Li, Z.; Zhang, Q.; Yang, L.; Zhang, J.; Lin, R.; Wang, K. Study and application of grouting governing of completely weathered granite in water-rich stratum. J. Cent. South Univ. 2019, 50, 694–703. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, C.; Wei, S.; Zhang, X.; Guo, S. Whole section anchor–grouting reinforcement technology and its application in underground roadways with loose and fractured surrounding rock. Tunn. Undergr. Space Technol. 2016, 51, 133–143. [Google Scholar] [CrossRef]
- Mortazavi, A.; Maadikhah, A. An investigation of the effects of important grouting and rock parameters on the grouting process. Geomech. Geoengin. 2016, 11, 219–235. [Google Scholar] [CrossRef]
- Zhang, H.; Tu, M.; Cheng, H.; Tang, Y. Breaking mechanism of overlying strata under thick unconsolidated layers and integrated grouting reinforcement technology for wind oxidation zone. J. China Coal Soc. 2018, 43, 2126–2132. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, L.; Zhang, B.; Li, Y. Optimization of bolt-grouting time for soft rock roadway. Rock Soil Mech. 2012, 33, 1395–1401. [Google Scholar] [CrossRef]
- Zong, Y.; Han, L.; Han, G. Mechanical characteristics of confined grouting reinforcement for cracked rock mass. J. Min. Saf. Eng. 2013, 30, 483–488. [Google Scholar]
- Evdokimov, P.D.; Adamovich, A.N.; Fradkin, L.P.; Denisov, V.N. Shear strengths of fissures in ledge rock before and after grouting. Hydrotech. Constr. 1970, 4, 229–233. [Google Scholar] [CrossRef]
- Li, Z.; Li, S.; Liu, R.; Jiang, Y.; Sha, F. Grouting reinforcement experiment for water-rich broken rock mass. Chin. J. Rock Mech. Eng. 2017, 36, 198–207. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, L.; Liu, R.; Li, S.; Zhang, Q. Grouting mechanism of quick setting slurry in rock fissure with consideration of viscosity variation with space. Tunn. Undergr. Space Technol. 2017, 70, 262–273. [Google Scholar] [CrossRef]
- Han, L.; Zong, Y.; Han, G.; Zhang, H. Study of shear properties of rock structural plane by grouting reinforcement. Rock Soil Mech. 2011, 32, 2570–2576. [Google Scholar] [CrossRef]
- Salimian, M.H.; Baghbanan, A.; Hashemolhosseini, H.; Dehghanipoodeh, M.; Norouzi, S. Effect of grouting on shear behavior of rock joint. Int. J. Rock Mech. Min. 2017, 98, 159–166. [Google Scholar] [CrossRef]
- Liu, Q.; Lei, G.; Peng, X.; Lu, C.; Wei, L. Rheological characteristics of cement grout and its effect on mechanical properties of a rock fracture. Rock Mech. Rock Eng. 2018, 51, 613–625. [Google Scholar] [CrossRef]
- Liu, Q.; Zhou, Y.; Lu, C.; Zhang, J. Experimental study on mechanical properties of mudstone fracture before and after grouting. J. Min. Saf. Eng. 2016, 33, 509–514. [Google Scholar] [CrossRef]
- Liu, Q.; Lei, G.; Lu, C.; Peng, X.; Zhang, J.; Wang, J. Experimental study of grouting reinforcement influence on mechanical properties of rock fracture. Chin. J. Rock Mech. Eng. 2017, 36, 3140–3147. [Google Scholar] [CrossRef]
- Wang, C.; Wang, H.; Xiong, Z.; Wang, C.; Cheng, L.; Li, X.; Zhan, S. Coupling mechanism of rock-pulp shear strength in process of confined grouting reinforcement for weak-faced rock mass. Chin. J. Nonferr. Met. 2020, 30, 2758–2772. [Google Scholar]
- Stavropoulou, E.; Dano, C.; Boulon, M. Shear response of wet weak carbonate rock/grout interfaces under cyclic loading. Rock Mech. Rock Eng. 2021, 54, 2791–2813. [Google Scholar] [CrossRef]
- Lan, X.; Zhang, X.; Li, X.; Zhang, J.; Zhou, Z. Experimental study on grouting reinforcement mechanism of heterogeneous fractured rock and soil mass. Geotech. Geol. Eng. 2020, 38, 4949–4967. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, S.; Liu, R.; Zhang, S.; Li, X.; Wang, X. Shearing strength of single structural surface of grouted rock mass. Chin. J. Rock Mech. Eng. 2016, 35, 3915–3922. [Google Scholar] [CrossRef]
- Wang, X.; Li, S.; Liu, R.; Zheng, Z.; Li, X. Study on shear properties of grouting in sowtooth structure plane. Chin. J. Undergr. Space Eng. 2016, 12, 438–444 + 469. [Google Scholar]
- Lu, Y.; Wang, L.; Li, Z.; Sun, H. Experimental study on the shear behavior of regular sandstone joints filled with cement grout. Rock Mech. Rock Eng. 2017, 50, 1321–1336. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, Q. Investigations on shear properties of soft rock joints under grouting. Rock Mech. Rock Eng. 2021, 54, 1875–1883. [Google Scholar] [CrossRef]
- Li, W.; Jiang, B.; Gu, S.; Yang, X.; Shaikh, F. Experimental study on the shear behavior of grout-infilled specimens and micromechanical properties of grout-rock interface. J. Cent. South Univ. 2022, 29, 1686–1700. [Google Scholar] [CrossRef]
- Xu, J.; Liu, Y.; Liu, J.; Cheng, L.; Feng, D. Study of characteristics of rock acoustic emission fracture process of double shear loading effect. Chin. J. Rock Mech. Eng. 2015, 34, 2659–2664. [Google Scholar] [CrossRef]
- Fan, J.; Zhu, X.; Hu, J.; Tang, Y.; He, C. Experimental study on crack propagation and damage monitoring of sandstone using three-dimensional digital image correlation technology. Rock Soil Mech. 2022, 43, 1009–1019. [Google Scholar] [CrossRef]
- Pan, H.; Ge, D.; Zhang, T.; Dong, X. Influence of strain rate on the rock fracture propagation law. J. China Coal Soc. 2018, 43, 675–683. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, L.; Li, S.; Liu, J.; Pan, H.; Song, S. Stress inversion of coal with a gas drilling borehole and the law of crack propagation. Energies 2017, 10, 1743. [Google Scholar] [CrossRef] [Green Version]
- Xiao, F.; Hou, Z.; He, J.; Liu, G. Mechanical characteristics and acoustic emission characteristics of coal samples under variable angle shear. J. China Univ. Min. Technol. 2018, 47, 822–829. [Google Scholar] [CrossRef]
- Zhao, W.; Chen, W.; Zhao, K. Laboratory test on foamed concrete-rock joints in direct shear. Constr. Build. Mater. 2018, 173, 69–80. [Google Scholar] [CrossRef]
- Chen, J.; Hagan, P.; Saydam, S. Shear behaviour of a cement grout tested in the direct shear test. Constr. Build. Mater. 2018, 166, 271–279. [Google Scholar] [CrossRef]
- Xu, H.; Geng, H.; Li, C.; Chen, W.; Wang, C. Estimating strength of grouting reinforced bodies in broken rock mass. Chin. J. Geotech. Eng. 2013, 35, 2018–2022. [Google Scholar]
- Le, H.; Sun, S.; Kulatilake, P.H.S.W.; Wei, J. Effect of grout on mechanical properties and cracking behavior of rock-like specimens containing a single flaw under uniaxial compression. Int. J. Geomech. 2018, 18, 04018129. [Google Scholar] [CrossRef]
- Xu, H.; Geng, H.; Li, W.; Wang, C. Theory of strength increment of grouting-reinforced bodies for broken rockmass based on BQ. Chin. J. Geotech. Eng. 2014, 36, 1147–1151. [Google Scholar]
- Xu, H.; Geng, H.; Chen, F.; Chen, X.; Qi, L. Strength assessment of broken rock postgrouting reinforcement based on initial broken rock quality and grouting quality. Math. Probl. Eng. 2017, 2017, 1–14. [Google Scholar] [CrossRef]
- Wang, H.; Gao, Y.; Li, S. Uniaxial experiment study on mechanical properties of reinforced broken rocks pre- and post-grouting. Chin. J. Undergr. Space Eng. 2017, 3, 27–31. [Google Scholar]
- Zhou, H.; Meng, F.; Zhang, C.; Lu, J.; Xu, R. Experimental study of acoustic emission characteristic of discontinuity under shearing condition. Chin. J. Rock Mech. Eng. 2015, 34, 2827–2836. [Google Scholar] [CrossRef]
α /° | Sample Number | IRS | GRBFRS | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
σp /MPa | τp /MPa | τpa /MPa | φp /° | cp /MPa | σr /MPa | τr /MPa | τra /MPa | φr /° | cr /MPa | σpg /MPa | τpg /MPa | τpag /MPa | φpg /° | cpg /MPa | ||
45° | 4-1 | 23.56 | 23.56 | 20.82 | 35.2 | 6.84 | 15.5 | 15.5 | 13.93 | 37.6 | 3.88 | 18.38 | 18.38 | 17.21 | 37.9 | 4.59 |
4-2 | 20.39 | 20.39 | 12.8 | 12.8 | 17.76 | 17.76 | ||||||||||
4-3 | 18.50 | 18.50 | 13.6 | 13.6 | 15.50 | 15.50 | ||||||||||
60° | 6-1 | 6.48 | 11.22 | 14.21 | 3.50 | 6.10 | 9.79 | 4.56 | 7.90 | 11.72 | ||||||
6-2 | 8.27 | 14.32 | 6.06 | 10.50 | 7.57 | 13.12 | ||||||||||
6-3 | 10.00 | 17.10 | 6.93 | 12.01 | 8.17 | 14.16 | ||||||||||
75° | 7-1 | 1.92 | 7.15 | 7.39 | 1.09 | 4.10 | 3.93 | 1.23 | 4.60 | 4.50 | ||||||
7-2 | 2.43 | 9.06 | 1.15 | 4.30 | 1.37 | 5.10 | ||||||||||
7-3 | 1.60 | 5.97 | 0.91 | 3.40 | 1.01 | 3.80 |
Growth Rate of Shear Strength Parameters | Test Value/% | Theoretical Value/% | Relative Error/% | ||
---|---|---|---|---|---|
Wang et al. [36] | Present Study | Wang et al. [36] | Present Study | ||
Growth rate of cohesion | 18.30 | 19.86 | 18.38 | 7.85 | 0.44 |
Growth rate of internal friction angle | 0.96 | 1.05 | 0.97 | 8.57 | 1.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Yang, W.; Zhao, A.; Guo, W. Shear Strength and Re-Failure Characteristics of Intact Red Sandstone and Grouting-Reinforced Body of Fractured Red Sandstone under Different Shear Angles. Minerals 2022, 12, 1580. https://doi.org/10.3390/min12121580
Huang Y, Yang W, Zhao A, Guo W. Shear Strength and Re-Failure Characteristics of Intact Red Sandstone and Grouting-Reinforced Body of Fractured Red Sandstone under Different Shear Angles. Minerals. 2022; 12(12):1580. https://doi.org/10.3390/min12121580
Chicago/Turabian StyleHuang, Yaoguang, Wanxia Yang, Aining Zhao, and Weibin Guo. 2022. "Shear Strength and Re-Failure Characteristics of Intact Red Sandstone and Grouting-Reinforced Body of Fractured Red Sandstone under Different Shear Angles" Minerals 12, no. 12: 1580. https://doi.org/10.3390/min12121580
APA StyleHuang, Y., Yang, W., Zhao, A., & Guo, W. (2022). Shear Strength and Re-Failure Characteristics of Intact Red Sandstone and Grouting-Reinforced Body of Fractured Red Sandstone under Different Shear Angles. Minerals, 12(12), 1580. https://doi.org/10.3390/min12121580