Geochemical Characteristics of Soils to the Impact of Diamond Mining in Siberia (Russia)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area and Sampling Points
2.2. Sample Analyses
2.3. Data Processing
2.4. Contamination Indices
3. Results
3.1. The Soil Characteristic
- Turbic Gleyic Crysols (Reductaquic): AO–Acr–CR g–Cg┴;
- Turbic Crysols (Reductaquic): AO–CR–C↓;
- Turbic Gleyic Natric Crysols (Reductaquic): A–ELB–Cg┴.
3.2. Physicochemical Properties
- In Turbic Gleyic Crysols, a sharp decrease by up to 70% in the content of physical clay is observed down the soil profile due to an increase in the content of fractions with a diameter of 0.25–0.05 mm.
- In Turbic Crysols, the content of physical clay increases down the profile due to an increase in the number of particles with a diameter of <0.01.
- Turbic Gleyic Natric Crysols is distinguished by the lowest amount of physical clay. At the same time, there is an increase in its content down the soil profile as a result of a decrease in the content of granulometric fractions, with a size of 0.25–0.05 mm, to 56%.
3.3. Descriptive Statistics
3.4. Correlation Analysis
3.5. Cluster Analysis
3.6. Principal Component Analysis (PCA)
3.7. Contamination Indices
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Slavikovsky, O.V.; Slavikovsky, Y.V.; Valiev, N.N. The geotechnologies subsurface free space as a fundamental factor of the mining complex impact on the environment. News of the Higher Institutions. Mining J. 2011, 2, 70–75. [Google Scholar]
- Zenkov, I.V. Review of foreign researches in the field of mining ecology. Mining J. 2016, 10, 96–99. [Google Scholar] [CrossRef]
- Aklambetova, K.M. Environmental consequences of mining operations and their impact on the environment. In Proceedings of the International Conference Proceedings. Current Problems of Human Health and the Formation of the Environment, Karaganda, Russia, 22 May 2002; pp. 23–27. [Google Scholar]
- Shafigulina, G.T.; Udachin, V.N.; Filippova, K.A.; Aminov, P.G. Geochemical characteristics of technogenic soils of the Southern Ural mining landscapes. Her. ASRB 20 2015, 4, 93–101. [Google Scholar]
- Sarapulova, G.I. Environmental Geochemical Assessment of Technogenic Soils. J. Mining Inst. 2018, 234, 658–662. [Google Scholar] [CrossRef] [Green Version]
- Loska, K.; Wiechula, D.; Korus, I. Metal contamination of farming soils affected by industry. Environ. Int. 2004, 30, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Freytag, K.; Pulz, K. The New Federal Nature Conservation Act from the perspective of mining projects. World Min. Surf. Undergr. 2010, 62, 214–221. [Google Scholar]
- Kulik, L.; Stemann, H. Ecology and biodiversity protection in the Rhenish lignite mining area. World Min. Surf. Undergr. 2014, 66, 143–152. [Google Scholar]
- Basova, I.A.; Ioina, M.A.; Glukhova, E.N. Geoecological state of soil cover in mining regions. Izv. TulGU Earth Sci. 2010, 1, 16–20. [Google Scholar]
- Naeth, M.A.; Wilkinson, S.R. Establishment of Restoration Trajectories for Upland Tundra Communities on Diamond Mine Wastes in the Canadian Arctic. Restor. Ecol. 2014, 22, 534–543. [Google Scholar] [CrossRef]
- Sena, K.; Barton, C.; Hall, S.; Angel, P.; Agouridis, C.; Warner, R. Influence of spoil type on afforestation success and natural vegetative recolonization on a surface coal mine in Appalachia, United States. Restor. Ecol. 2015, 23, 131–138. [Google Scholar] [CrossRef]
- Niu, F.; Gao, Z.; Lin, Z.; Luo, J.; Fan, X. Vegetation influence on the soil hydrological regime in permafrost regions of the Qinghai–Tibet Plaeau, China. Geoderma 2019, 354, 113892. [Google Scholar] [CrossRef]
- Lark, R.M.; Bellamy, P.H.; Rawlins, B.G. Spatio-temporal variability of some metal concentrations in the soil of eastern England, and implications for soil monitoring. Geoderma 2006, 133, 363–379. [Google Scholar] [CrossRef]
- Gowd, S.S.; Reddy, M.R.; Govil, P.K. Assessment of heavy metal contamination in soils at Jajmau (Kanpur) and Unnao industrial areas of the Ganga Plain, Uttar Pradesh, India. J. Hazard. Mater. 2010, 174, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, B.; Figueiredo, H.; Rodrigues, J.; Queiroz, A.; Tavares, T. Mobility of Cr, Pb, Cd, Cu and Zn in a loamy sand soil: A comparative study. Geoderma 2011, 164, 232–237. [Google Scholar] [CrossRef] [Green Version]
- Ribas, C.R.; Schoereder, J.H.; Schmidt, F.A.; Solar, R.R.C.; Valentim, C.L.; Campos, R.B.F. Ants as indicators of the success of rehabilitation efforts in deposits of gold mining ailings. Restor. Ecol. 2012, 20, 712–720. [Google Scholar] [CrossRef]
- Myga-Pigte, K.U. Landscape Management on post-Exploitation Land using the Example of the Silesian Region, Poland. Environ. Socio-Econ. Stud. 2014, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Prach, K.; Karesova, P.; Jírova, A.; Dvo Kova, H.; Konvalinkova, P.; Ehounková, K. Do not neglect surroundings in restoration of disturbed sites. Restor. Ecol. 2015, 23, 310–314. [Google Scholar] [CrossRef]
- Mikhalchuk, N.V. Mobile forms of heavy metals and trace elements in soils of the carbonate range of the south-west Belarus. In Proceedings of the National Academy of Sciences of Belarus: Chemical Series; National Academy of Sciences of Belarus: Minsk, Belarus, 2017; 3, pp. 90–97. [Google Scholar]
- Targulian, V.O.; Goryachkina, S.V. Soil Memory: Soil as the Memory of Biosphere–Geosphere–Anthropogenic Interactions; Russian Academy of Sciences: Moscow, Russia, 2008; p. 692. [Google Scholar]
- Kloet, S.P.V.; Avery, T.S.; Kloe, P.J.V.; Milton, R. Restoration ecology: Aiding and abetting secondary succession on abandoned peat mines in Nova Scotia and New Bruns-wick Canada. Mires Peat 2012, 10, 1–20. [Google Scholar]
- Yanin, E.P. Chemical composition and ecological and geochemical features of urban soils. Analytical review. Probl. Environ. Nat. Resour. 2020, 2, 40–73. [Google Scholar]
- Mitrofanov, A.; Zayats, D. The largest industry of the largest federal subject in the largest economic region. Geography 2008, 11, 1–9. [Google Scholar]
- Gorev, N.I.; Gerasimchuk, A.V.; Protsenko, E.V.; Tolstov, A.V. Tectonic aspects of the Vilyui-Markha structure and their use in kimberlite fieldsforecasting. Educ. Sci. J. 2011, 3, 5–10. [Google Scholar]
- WRB. World Reference Base for Soil Resources 2014 (Updated in 2015). In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Ostrikova, K.T. Field Guide to Soils; Soil Institute in Name of V.V. Dokuchaev: Moscow, Russia, 2008; p. 182. [Google Scholar]
- ISO 11464-2015; Soil Quality. Pretreatment of Samples for Physico-Chemical Analysis. Inter-Governmental Council on Standardization, Metrology and Certification 77-Π: Moscow, Russia, 2015.
- GOST-26483-85; Soils. Preparation of Salt Extract and Determination of Its pH by CINAO Method. State Standard of the Union of SSR. GOST: Moscow, Russia, 1985.
- NF X-31-103; Determination du pH dans l’eau—Methode Electrometrique; Qualite des Sols. Association Française de Normalization: Paris, France, 1998.
- GOST-26213-91; Soils. Methods for Determination of Organic Matter. State Standard of the Union of SSR. GOST: Moscow, Russia, 1991.
- NF X-31-109; Determination du Carbone Organique par Oxidation Sulfochromique; Qualite des Sols. Association Française de Normalization: Paris, France, 1993.
- GOST R 58596-2019; Soils. Methods for Determining Total Nitrogen. National standard of the Russian Federation. GOST: Moscow, Russia, 2019.
- NF ISO 11261; Dosage de L’azote Total—Methode de Kjeldahl Modifiee; Qualite des Sols. Association Française de Normalization: Paris, France, 1995.
- Avery, B.W.; Bascomb, C.L. Soil Survey Laboratory Methods. Technical Monograph (Soil Survey of England and Wales), 6; Rothamsted Experimental Station: Harpenden, UK, 1974; p. 83. [Google Scholar]
- Method M 03-07-2014; Measurement of the Mass Fraction of Elements (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, V, Zn) in Samples of Soil, Subsoil, Bottom Sediments and Sewage Sludge, FER 16.1:2:2.2:2.3.63-09. 2014. FGU “Federal Center for Analysis and Evaluation Technogenic Impact”: Moscow, Russia, 2009; p. 22.
- Ilyin, V.B. Heavy Metals in the Soil-Plant System; Nauka: Novosibirsk, Russia, 1991; p. 150. [Google Scholar]
- Ladonin, D.V. Compounds of heavy metals in soils—Problems and methods of study. Soil Sci. 2002, 6, 682–692. [Google Scholar]
- Syso, A.I. Mechanisms of Distribution of Chemical Elements in Soil-Forming Rocks and Soils of the Western Siberia; SB RAS: Novosibirsk, Russia, 2007; p. 227. [Google Scholar]
- Šmejkalová, M.; Mikanová, O.; Borůvka, L. Effects of heavy metal concentrations on biological activity of soil micro-organisms. Plant Soil Environ. 2003, 49, 321–326. [Google Scholar] [CrossRef] [Green Version]
- Aitchison, J. The Statistical Analysis of Compositional Data; Chapman and Hall: London, UK, 1986; p. 416. [Google Scholar]
- Aitchison, J. The Statistical Analysis of Compositional Data; Blackburn Press: Caldwell, NJ, USA, 2003; p. 460. [Google Scholar]
- Pawlowsky-Glahn, V.; Buccianti, A. Compositional Data Analysis: Theory and Applications; Wiley: Chichester, UK; West Sussex, UK, 2011. [Google Scholar]
- Motyka, O.; Pavlíková, I.; Bitta, J.; Frontasyeva, M.; Jančík, P. Moss Biomonitoring and Air Pollution Modelling on a Regional Scale: Delayed Reflection of Industrial Pollution in Moss in a Heavily Polluted Region? Environ. Sci. Pollut. Res. 2020, 27, 32569–32578. [Google Scholar] [CrossRef]
- Hristozova, G.; Marinova, S.; Motyka, O.; Svozilík, V.; Zinicovscaia, I. Multivariate Assessment of Atmospheric Deposition Studies in Bulgaria Based on Moss Biomonitors: Trends between the 2005/2006 and 2015/2016 Surveys. Environ. Sci. Pollut. Res. 2020, 27, 39330–39342. [Google Scholar] [CrossRef]
- Mullineaux, S.T.; McKinley, J.M.; Marks, N.J.; Scantlebury, D.M.; Doherty, R. Heavy Metal (PTE) Ecotoxicology, Data Review: Traditional vs. a Compositional Approach. Sci. Total Environ. 2021, 769, 145246. [Google Scholar] [CrossRef] [PubMed]
- Reimann, C.; Filzmoser, P.; Fabian, K.; Hron, K.; Birke, M.; Demetriades, A.; Dinelli, E.; Ladenberger, A.; Gemas Project Team. The concept of compositional data analysis in practice—Total major element concentrations in agricultural and grazing land soils of Europe. Sci. Total Environ. 2012, 426, 196–210. [Google Scholar] [CrossRef]
- Aitchison, J. The statistical analysis of compositional data. J. R. Stat. Soc. Ser. B 1982, 44, 139–160. [Google Scholar] [CrossRef]
- Lawley, C. Compositional symmetry between Earth’s crustal building blocks. Geochem. Perspect. Lett. 2016, 2, 117–126. [Google Scholar] [CrossRef] [Green Version]
- RD 52.18.718-2008; Organization and Procedure for Monitoring Soil Pollution by Toxicants of Industrial Origin. Roshydromet: Obniinsk, Russia, 2008; p. 77.
- Saet, Y.E.; Revich, B.A.; Yanin, E.P. Geochemistry of the Environment; Nedra: Moscow, Russia, 1990; p. 335. [Google Scholar]
- Legostaeva, Y.B.; Ksenofontova, M.I.; Dyagileva, A.G. Ecological and geochemical monitoring of soil cover in the impact zone of the Nyurbinsky MPD. Mining J. 2014, 4, 117–121. [Google Scholar]
- Gololobova, A.G.; Legostaeva, Y.B. Heavy metals in cryozems of Western Yakutia. In Proceedings of the 9th International Multidisciplinary Scientific GeoConference on Water Resources—Forest, Marine and Ocean Ecosystems, Sofia, Bulgaria, 30 June–6 July 2019; pp. 239–246. [Google Scholar] [CrossRef]
- Goryachkin, S.V. Soil Cover of the North (Structure, Genesis, Ecology, Evolution); GEOS: Moscow, Russia, 2010; p. 414. [Google Scholar]
- Lessovaia, S.N.; Goryachkin, S.V.; Desyatkin, R.V.; Okoneshnikova, M.V. Pedoweathering and Mineralogical Change in Cryosols in an Ultracontinental Climate (Central Yakutia, Russia). Acta Geodyn. Geomater. 2013, 10, 465–473. [Google Scholar] [CrossRef] [Green Version]
- Karimi, N.; Mohammad, T.; Tabatabaii, S.M.; Gholami, A. Geochemical assessment of steel smelter-impacted urban soils, Ahvaz, Iran. J. Geochem. Explor. 2015, 152, 91–109. [Google Scholar] [CrossRef]
- Pan, H.; Lu, X.; Lei, K. A comprehensive analysis of heavy metals in urban road dust of Xi’an, China: Contamination, source apportionment and spatial distribution. Sci. Total Environ. 2017, 609, 1361–1369. [Google Scholar] [CrossRef]
- Kaiser, H.F. The application of electronic computers to factor analysis. Edu. Psychol. Meas. 1960, 20, 141–151. [Google Scholar] [CrossRef]
- Gopal, V.; Krishnakumar, S.; Simon Peter, T.; Nethaji, S.; Suresh Kumar, K.; Jayaprakash, M.; Magesh, N.S. Assessment of trace element accumulation in surface sediments off Chennai coast after a major flood event. Mar. Pollut. Bull. 2017, 114, 1063–1071. [Google Scholar] [CrossRef] [PubMed]
- Robertson, D.J.; Taylor, K.G.; Hoon, S.R. Geochemical and mineral magnetic characterisation of urban sediment particulates, Manchester, UK. Appl. Geochem. 2003, 18, 269–282. [Google Scholar] [CrossRef]
- Bhuiyan, M.A.H.; Parvez, L.; Islam, M.A.; Dampare, S.B.; Suzuki, S. Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. J. Hazard. Mater. 2010, 173, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Harter, R.D. Effect of Soil pH on Adsorption of Lead, Copper, Zinc, and Nickel. Soil Sci. Soc. Am. J. 1983, 47, 47–51. [Google Scholar] [CrossRef]
- Levi, M.R.; Shaw, J.N.; Wood, C.W.; Hermann, S.M.; Carter, E.A.; Feng, Y. Land Management Effects on Near-Surface Soil Properties of Southeastern U.S. Coastal Plain Kandiudults. Soil Sci. Soc. Am. J. 2010, 74, 258–271. [Google Scholar] [CrossRef] [Green Version]
- Schipper, L.A.; Sparling, G.P. Performance of soil condition indicators across taxonomic groups and land uses. Soil Sci. Soc. Am. J. 2000, 64, 300–311. [Google Scholar] [CrossRef]
- Korkanc, S.Y.; Ozyuvac, N.; Hizal, A. Impacts of land use conversion on soil properties and soil erodibility. J. Environ. Biol. 2008, 29, 363–370. [Google Scholar] [PubMed]
- Fijałkowski, K.; Kacprzak, M.; Grobelak, A.; Placek, A. The influence of selected soil parameters on the mobility of heavy metals in soils. Inżynieria Ochr. Sr. 2012, 5, 81–92. [Google Scholar]
- Rodriguez, J.A.; Nanos, N.; Grau, J.M.; Gil, L.; Lopez-Arias, M. Multiscale analysis of heavy metal contents in Spanish agricultural topsoils. Chemosphere 2008, 70, 1085–1096. [Google Scholar] [CrossRef] [Green Version]
- Amos-Tautua, B.M.; Onigbinde, A.O.; Ere, D. Assessment of some heavy metals and physicochemical properties in surface soils of municipal open waste dumpsite in Yenagoa, Nigeria. Afr. J. Environ. Sci. Technol. 2014, 8, 41–47. [Google Scholar] [CrossRef]
- Xiao, R.; Zhang, M.; Yao, X.; Ma, Z.; Yu, F.; Bai, J. Heavy metal distribution in different soil aggregate size classes from restored brackish marsh, oil exploitation zone, and tidal mud flat of the Yellow River Delta. J. Soils Sediments 2015, 16, 821–830. [Google Scholar] [CrossRef]
- Qishlaqi, A.; Moore, F. Statistical Analysis of Accumulation and Sources of Heavy Metals Occurrence in Agricultural Soils of Khoshk River Banks, Shiraz, Iran. Am.-Eurasian J. Agric. Environ. Sci. 2007, 2, 565–573. [Google Scholar]
- Khan, S.; Cao, Q.; Zheng, Y.M.; Huang, Y.Z.; Zhu, Y.G. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ. Pollut. 2008, 152, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Pontoni, L.; van Hullebusch, E.; Pechaud, Y.; Fabbricino, M.; Esposito, G.; Pirozzi, F. Colloidal Mobilization and Fate of Trace Heavy Metals in Semi-Saturated Artificial Soil (OECD) Irrigated with Treated Wastewater. Sustainability 2016, 8, 1257. [Google Scholar] [CrossRef] [Green Version]
- Martin, H.W.; Kaplan, D.I. Temporal changes in cadmium, thallium, and vanadium mobility in soil and phytoavailability under field conditions. Water Air Soil Pollut. 1998, 101, 399–410. [Google Scholar] [CrossRef]
- Issa, H.M.; Alshatteri, A.H. Heavy Metals Contamination in Agricultural Soils of Middle Basin of Sirwan (Diyala) River, East Iraq: Multivariate Analysis, Risk Assessment, Source Apportionment, and Spatial Distribution. J. Mater. Environ. Sci. 2021, 12, 391–405. [Google Scholar]
- Zamani, A.; Yaftian, M.R.; Parizanganeh, A. Statistical evaluation of topsoil heavy metal pollution around a lead and zinc production plant in Zanjan province, Iran. Caspian J. Environ. Sci. 2015, 13, 349–361. [Google Scholar]
- Li, D.; Wu, D.; Xu, F.; Lai, J.; Li, S. Assessment of soil and maize contamination by TE near a coal gangue–fired thermal power plant. Environ. Monit. Assess. 2020, 192, 541. [Google Scholar] [CrossRef]
- Sohrabizadeh, Z.; Sodaeizadeh, H.; Hakimzadeh, M.A.; Taghizadeh-Mehrjardi, R.; Ghanei Bafghi, M.J. A statistical approach to study the spatial heavy metal distribution in soils in the Kushk Mine, Iran. Geosci. Data J. 2022, 1–13. [Google Scholar] [CrossRef]
- Huang, S.; Tu, J.; Liu, H.; Hua, M.; Liao, Q.; Feng, J.; Weng, Z.; Huang, G. Multivariate analysis of trace element concentrations in atmospheric deposition in the Yangtze River Delta, East China. Atmos. Environ. 2009, 43, 5781–5790. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRS Press: Boca Raton, FL, USA, 2011; p. 548. [Google Scholar]
- Li, S.; Yang, L.; Chen, L.; Zhao, F.; Sun, L. Spatial distribution of heavy metal concentrations in peri-urban soils in eastern China. Environ. Sci. Pollut. Res. 2019, 26, 1615–1627. [Google Scholar] [CrossRef] [PubMed]
- Šajn, R.; Aliu, M.; Stafilov, T.; Alijagić, J. Heavy metal contamination of topsoil around a lead and zinc smelter in Kosovska Mitrovica/Mitrovicë, Kosovo/Kosovë. J. Geochem. Explor. 2013, 134, 1–16. [Google Scholar] [CrossRef]
- Rodríguez Martín, J.A.; Arias, M.L.; Grau Corbí, J.M. Heavy metals contents in agricultural topsoils in the Ebro basin (Spain). Application of the multivariate geoestatistical methods to study spatial variations. Environ. Pollut. 2007, 144, 1001–1012. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, C.; Zeng, G.; Liang, J.; Guo, S.; Huang, L.; Wu, H.; Hua, S. Quantitative assessment of the contribution of climate variability and human activity to streamflow alteration in Dongting Lake, China. Hydrol. Process. 2016, 30, 1929–1939. [Google Scholar] [CrossRef]
- Zeng, G.; Liang, J.; Guo, S.; Shi, L.; Xiang, L.; Li, X.; Du, C. Spatial analysis of human health risk associated with ingesting manganese in Huangxing Town, Middle China. Chemosphere 2009, 77, 368–375. [Google Scholar] [CrossRef]
- Yagnyshev, B.S.; Yagnysheva, T.A.; Zinchuk, M.N.; Legostaeva, Y.B. Ecology of Western Yakutia (Geochemistry of Geosystems: State and Problems); YSC SB RAS: Yakutsk, Russia, 2005; p. 432. [Google Scholar]
Index | Subtypes of Cryosols, Depth (cm) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Turbic Gleyic Cryosols (Reductaquic) | Turbic Cryosols (Reductaquic) | Turbic Gleyic Natric Cryosols (Reductaquic) | |||||||||
0–6(14) | 6(14)–43(50) | 43(50)–80(83) | 80(83)–∞ | 0–5(10) | 5(10)–35(45) | 35(45)–∞ | 0–40(42) | 40(42)–61(72) | 61(72)–∞ | ||
Physicochemical properties | pH | 5.0 ± 0.1 | 6.2 ± 0.1 | 7.0 ± 0.1 | 7.0 ± 0.1 | 5.5 ± 0.1 | 6.5 ± 0.1 | 6.3 ± 0.1 | 5.3 ± 0.1 | 6.7 ± 0.1 | 7.0 ± 0.1 |
Humus, % | 6.8 ± 0.7 | 1.4 ± 0.1 | 1.9 ± 0.2 | 0.9 ± 0.1 | 2.7 ± 0.3 | 1.3 ± 0.1 | 2.7 ± 0.3 | 4.9 ± 0.5 | 0.9 ± 0.1 | 0.7 ± 0.1 | |
SOC, % | 3.9 ± 0.4 | 0.8 ± 0.1 | 1.1 ± 0.1 | 0.5 ± 0.1 | 1.6 ± 0.2 | 0.8 ± 0.1 | 1.6 ± 0.2 | 0.5 ± 0.1 | 0.4 ± 0.1 | 1.1 ± 0.1 | |
TN, % | 0.20 ± 0.01 | 0.16 ± 0.01 | 0.13 ± 0.01 | 0.13 ± 0.01 | 0.16 ± 0.01 | 0.16 ± 0.01 | 0.17 ± 0.01 | 0.16 ± 0.01 | 0.16 ± 0.01 | 0.17 ± 0.01 | |
Exchangeable Ca, meq/100 g | 15.0 ± 0.8 | 19.3 ± 0.9 | 23.1 ± 1.2 | 18.8 ± 0.9 | 10.1 ± 0.5 | 12.5 ± 0.6 | 14.6 ± 0.7 | 8.4 ± 0.4 | 15.6 ± 0.8 | 14.8 ± 0.7 | |
Exchangeable Mg, meq/100 g | 7.8 ± 0.4 | 10.3 ± 0.5 | 5.3 ± 0.3 | 7.5 ± 0.4 | 4.9 ± 0.2 | 6.6 ± 0.3 | 5.3 ± 0.3 | 4.3 ± 0.2 | 7.0 ± 0.4 | 7.9 ± 0.4 | |
SOC/TN | 19.5 | 5.1 | 8.8 | 4 | 10 | 4.8 | 9.3 | 3 | 2.2 | 6.6 | |
Granulometric fractions | 1–0.25 mm | 9.95 | 3.51 | 4.43 | 11.41 | 16.62 | 9.22 | 7.65 | 3.01 | 1.91 | 1.11 |
0.25–0.05 mm | 57.81 | 58.51 | 55.53 | 70.93 | 62.10 | 60.66 | 64.55 | 69.27 | 76.35 | 56.17 | |
0.05–0.01 mm | 9.00 | 11.84 | 11.88 | 6.68 | 4.86 | 4.90 | 5.78 | 14.24 | 8.32 | 22.18 | |
0.01–0.005 mm | 3.54 | 4.88 | 7.58 | 3.16 | 3.38 | 5.00 | 4.68 | 1.66 | 1.70 | 5.32 | |
0.005–0.001 mm | 8.32 | 6.88 | 8.68 | 3.36 | 6.16 | 9.04 | 9.66 | 3.72 | 4.52 | 9.60 | |
<0.001 mm | 11.38 | 14.38 | 11.90 | 4.46 | 6.88 | 8.14 | 7.68 | 8.10 | 7.20 | 5.62 | |
<0.01 mm | 23.2 | 26.1 | 28.2 | 11 | 16.4 | 25.2 | 22 | 13.5 | 13.4 | 21 | |
>0.01 mm | 76.8 | 73.9 | 71.8 | 89 | 83.6 | 74.8 | 78 | 86.5 | 86.6 | 79 | |
Potentially toxic elements (PTEs) | Pb, mg/kg | 3.84 ± 0.92 | 2.12 ± 0.51 | 2.25 ± 0.54 | 1.42 ± 0.34 | 4.21 * ± 1.01 | 2.81 ± 0.67 | 2.96 ± 0.71 | 2.62 ± 0.63 | 2.2 ± 0.53 | 2.21 ± 0.53 |
Ni, mg/kg | 2.55 ± 0.61 | 5.25 * ± 1.26 | 5.02 * ± 1.20 | 3.78 ± 0.91 | 4.52 * ± 1.08 | 4.24 * ± 1.02 | 5.12 * ± 1.23 | 1.49 ± 0.36 | 3.38 ± 0.81 | 4.68 ± 1.12 | |
Mn, mg/kg | 22.87 * ± 5.49 | 41.75 * ± 10.02 | 46.5 * ± 11.16 | 43.81 * ± 10.51 | 55.78 * ± 13.39 | 38.88 * ± 9.33 | 39.43 * ± 9.05 | 15.23 ± 3.36 | 27.35 * ± 6.56 | 39.55 * ± 9.49 | |
Cd, mg/kg | 0.023 * ± 0.006 | 0.011 ± 0.003 | 0.014 * ± 0.003 | 0.016 * ± 0.004 | 0.022 ± 0.005 | 0.008 * ± 0.002 | 0.015 * ± 0.004 | 0.006 ± 0.001 | 0.008 ± 0.002 | 0.019 ± 0.005 | |
Co, mg/kg | 1.51 ± 0.36 | 2.42 ± 0.58 | 2.54 ± 0.61 | 2.2 ± 0.53 | 2.3 ± 0.55 | 1.96 ± 0.47 | 2.27 ± 0.54 | 1.53 ± 0.37 | 2.16 ± 0.52 | 2.49 ± 0.60 | |
Cr, mg/kg | 2.18 ± 0.52 | 2.61 ± 0.63 | 2.49 ± 0.60 | 3.3 ± 0.79 | 2.25 ± 0.54 | 2.21 ± 0.53 | 2.12 ± 0.51 | 1.71 ± 0.41 | 2.11 ± 0.51 | 1.84 ± 0.44 | |
Zn, mg/kg | 4.46 ± 1.07 | 6.76 ± 1.62 | 7.48 ± 1.8 | 6.21 ± 1.49 | 3.74 ± 0.9 | 6.35 ± 1.52 | 6.92 ± 1.56 | 4.55 ± 1.09 | 5.14 ± 1.23 | 7.06 ± 1.69 | |
Cu, mg/kg | 4.83 ± 0.016 | 6.65 ± 1.6 | 8.12 ± 1.95 | 3.86 ± 0.93 | 7.69 ± 1.85 | 7.89 ± 1.89 | 10.44 ± 2.51 | 2.1± 0.50 | 2.86 ± 0.69 | 4.67 ± 1.12 | |
As, mg/kg | 0.25 ± 0.06 | <0.05 | 0.07 ± 0.02 | <0.05 | 0.22 ± 0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 |
PTE, mg/kg | Background Values, mg/kg | Raw Data | Clr-Transformed Data | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Median | Min | Max | CV | SD | T.Mean 5% | Mean | Median | CV | SD | T.Mean 5% | ||
Pb | 2.88 | 7.30 | 7.35 | 2.15 | 14.3 | 6.46 | 2.54 | 7.25 | 0.78 | 0.79 | 0.34 | 0.58 | 0.78 |
Ni | 1.77 | 6.49 | 5.21 | 0.85 | 28.1 | 17.4 | 4.17 | 6.04 | 0.57 | 0.52 | 0.30 | 0.55 | 0.54 |
Mn | 13.2 | 394.9 | 261.9 | 15.9 | 2983 | 260,897 | 510.8 | 311.8 | 4.36 | 4.40 | 0.90 | 0.95 | 4.36 |
Cd | 0.03 | 0.07 | 0.02 | 0.00 | 0.38 | 0.01 | 0.10 | 0.06 | −4.67 | −4.81 | 1.24 | 1.11 | 4.66 |
Co | 2.14 | 5.90 | 4.20 | 0.04 | 69.6 | 89.6 | 9.46 | 4.60 | −0.34 | 0.23 | 2.09 | 1.44 | 0.28 |
Cr | 4.70 | 21.4 | 4.26 | 0.28 | 734.0 | 9056 | 95.2 | 7.07 | 0.43 | 0.17 | 1.28 | 1.13 | 0.33 |
Zn | 6.31 | 15.7 | 12.2 | 0.50 | 73.1 | 274 | 16.5 | 13.6 | 0.92 | 1.25 | 1.26 | 1.12 | 0.97 |
Cu | 11.5 | 11.5 | 9.91 | 1.15 | 104.0 | 183.6 | 13.6 | 9.70 | 1.01 | 0.90 | 0.32 | 0.57 | 0.99 |
As | 0.22 | 0.13 | 0.03 | 0.03 | 1.25 | 0.04 | 0.20 | 0.10 | −3.89 | −4.02 | 1.29 | 1.13 | 3.93 |
PTE | Factor Load after Rotat | |||
---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | |
Pb | −0.529 * | 0.378 | 0.167 | 0.498 |
Ni | −0.365 | 0.686 * | 0.243 | 0.066 |
Mn | −0.234 | 0.509 * | −0.004 | −0.746 * |
Cd | 0.828 * | 0.258 | −0.082 | 0.201 |
Co | 0.226 | −0.575 * | 0.624 * | −0.297 |
Cr | 0.144 | −0.338 | −0.791 * | −0.182 |
Zn | 0.874 * | 0.109 | 0.077 | 0.294 |
Cu | −0.392 | −0.676 * | 0.384 | 0.146 |
As | −0.623 * | −0.281 | −0.481 | 0.256 |
Eigenvalue | 2.529 | 1.929 | 1.493 | 1.143 |
% Total variance | 28.10 | 21.44 | 16.59 | 12.70 |
Cumulative % | 28.10 | 49.55 | 66.14 | 78.84 |
Background Values, n = 212 | Minimum | Maximum | Mean | Geometric Mean | Standard Deviation | Variance | |
---|---|---|---|---|---|---|---|
Pb | 2.88 | ||||||
Ni | 1.77 | ||||||
Mn | 13.19 | ||||||
Cd | 0.03 | ||||||
Co | 2.14 | ||||||
Cr | 4.70 | ||||||
Zn | 6.31 | ||||||
Cu | 11.50 | ||||||
As | 0.22 |
Contamination Category (Level of Index of Total Contamination) | Area, km2 | |||
---|---|---|---|---|
2007 | 2011 | 2014 | 2018 | |
Allowable (Zc ˃ 16) | - | - | - | 61.0 |
Moderately hazardous (Zc = 16–32) | 210.0 | 305.0 | - | 104.9 |
Highly hazardous (Zc = 32–128) | 45.0 | 1.44 | 122.0 | 260.9 |
Extremely hazardous (Zc < 128) | - | - | 18.2 | 51.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gololobova, A.; Legostaeva, Y.; Popov, V.; Makarov, V.; Shadrinova, O. Geochemical Characteristics of Soils to the Impact of Diamond Mining in Siberia (Russia). Minerals 2022, 12, 1518. https://doi.org/10.3390/min12121518
Gololobova A, Legostaeva Y, Popov V, Makarov V, Shadrinova O. Geochemical Characteristics of Soils to the Impact of Diamond Mining in Siberia (Russia). Minerals. 2022; 12(12):1518. https://doi.org/10.3390/min12121518
Chicago/Turabian StyleGololobova, Anna, Yana Legostaeva, Vladimir Popov, Victor Makarov, and Olesya Shadrinova. 2022. "Geochemical Characteristics of Soils to the Impact of Diamond Mining in Siberia (Russia)" Minerals 12, no. 12: 1518. https://doi.org/10.3390/min12121518
APA StyleGololobova, A., Legostaeva, Y., Popov, V., Makarov, V., & Shadrinova, O. (2022). Geochemical Characteristics of Soils to the Impact of Diamond Mining in Siberia (Russia). Minerals, 12(12), 1518. https://doi.org/10.3390/min12121518