Mechanistic Investigation for Solidification of Pb in Fly Ash by Alkali Mineral Slag—Calcium Chloroaluminate as an Example
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation and Experimental Method
2.2.1. Preparation of Alkali Mineral Slag Cementitious Solidified Body
2.2.2. Preparation of Calcium Chloroaluminate
2.2.3. Leaching Toxicity Analysis of Heavy Metals
2.3. Characterizations and Analytical Methods
3. Results and Discussion
3.1. Gelatinization of Fly Ash by Alkaline Mineral Slag in Grate Furnace
3.1.1. Leaching of Heavy Metals from Solidified Bodies under Different Mineral Slag Dosages
3.1.2. Leaching of Heavy Metals from Solidified Bodies under Different Dosages of Activator
3.1.3. Leaching of Heavy Metals from Solidified Bodies under Different Water Addition
3.1.4. Solidification Effect Analysis
3.2. Stability Analysis of Calcium Chloroaluminate
3.2.1. SEM Analysis
3.2.2. Stability Analysis
3.3. Analysis of Pb Curing by Hydration Products—Calcium Chloroaluminate
3.3.1. Adsorption Experiments of Pb by Calcium Chloroaluminate at Different Temperatures and pH
3.3.2. XRD Analysis of Cured Products at Different Temperatures and pH
3.3.3. FT-IR Analysis of Cured Products at Different Temperatures and pH
3.3.4. SEM Analysis of Cured Products
3.3.5. XPS Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- National Bureau of Statistics of China. The Statistics of China Statistical Yearbook; China Statistics Press: Beijing, China, 2021.
- Fan, C.; Wang, B.; Ai, H.; Liu, Z. A comparative study on characteristics and leaching toxicity of fluidized bed and grate furnace MSWI fly ash. J. Environ. Manag. 2022, 305, 114345. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.G. The effect of alkalinity of Class F PC fly ash on metal release. Fuel 2006, 85, 1403–1410. [Google Scholar] [CrossRef]
- Tian, H.; Gao, J.; Lu, L.; Zhao, D.; Cheng, K.; Qiu, P. Temporal trends and spatial variation characteristics of hazardous air pollutant emission inventory from municipal solid waste incineration in China. Environ. Sci. Technol. 2012, 46, 10364–10371. [Google Scholar] [CrossRef]
- Biswas, P.; Wu, C.Y. Control of toxic metal emissions from combustors using sorbents: A review. J. Air Waste Manag. Assoc. 1998, 48, 113–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, J.; Williams, P.T. Heavy Metal Adsorption onto Flyash in Waste Incineration Flue Gases. Process. Saf. Environ. 2000, 78, 40–46. [Google Scholar] [CrossRef]
- Senneca, O.; Cortese, L.; Di Martino, R.; Fabbricino, M.; Ferraro, A.; Race, M.; Scopino, A. Mechanisms affecting the delayed efficiency of cement based stabilization/solidification processes. J. Clean. Prod. 2020, 261, 121230. [Google Scholar] [CrossRef]
- Shi, C.; Qian, J. High performance cementing materials from industrial slags—A review. Resour. Conserv. Recycl. 2000, 29, 195–207. [Google Scholar] [CrossRef]
- Chen, W.; Brouwers, H.J.H. The hydration of slag, part 2: Reaction models for blended cement. J. Mater. Sci. 2007, 42, 444–464. [Google Scholar] [CrossRef]
- Chen, W.; Brouwers, H.J.H. The hydration of slag, part 1: Reaction models for alkali-activated slag. J. Mater. Sci. 2007, 42, 428–443. [Google Scholar] [CrossRef]
- Glasser, F.P.; Kindness, A.; Stronach, S.A. Stability and solubility relationships in AFm phases: Part I. Chloride, sulfate and hydroxide. Cem. Concr. Res. 1999, 29, 861–866. [Google Scholar] [CrossRef]
- Mills, S.J.; Christy, A.G.; Genin, J.M.R.; Kameda, T.; Colombo, F. Nomenclature of the hydrotalcite supergroup; natural layered double hydroxides. Mineral. Mag. 2012, 76, 1289–1336. [Google Scholar] [CrossRef] [Green Version]
- Renaudin, G.; Kubel, F.; Rivera, J.P.; Francois, M. Structural phase transition and high temperature phase structure of Friedels salt, 3CaO·Al2O3·CaCl2·10H2O. Cem. Concr. Res. 1999, 29, 1937–1942. [Google Scholar] [CrossRef]
- Theiss, F.L.; Ayoko, G.A.; Frost, R.L. Iodide removal using LDH technology. Chem. Eng. J. 2016, 296, 300–309. [Google Scholar] [CrossRef]
- Świetlik, R.; Trojanowska, M.; Karbowska, B.; Zembrzuski, W. Speciation and mobility of volatile heavy metals (Cd, Pb, and Tl) in fly ashes. Environ. Monit. Assess. 2016, 188, 637. [Google Scholar] [CrossRef] [PubMed]
- Verhulst, D.; Buekens, A.; Spencer, P.J.; Eriksson, G. Thermodynamic Behavior of Metal Chlorides and Sulfates under the Conditions of Incineration Furnaces. Environ. Sci. Technol. 1995, 30, 50–56. [Google Scholar] [CrossRef]
- Lia, F.B.; Gary, T.R. Preparation of Calcium Silicate Absorbent from Iron Blast Furnace Slag. J. Air Waste Manag. 2011, 50, 1655–1662. [Google Scholar]
- Shao, N.; Tang, S.; Liu, Z.; Li, L.; Yan, F.; Liu, F.; Li, S.; Zhang, Z. Hierarchically Structured Calcium Silicate Hydrate-Based Nanocomposites Derived from Steel Slag for Highly Efficient Heavy Metal Removal from Wastewater. ACS Sustain. Chem. Eng. 2018, 6, 14926–14935. [Google Scholar] [CrossRef]
- Shao, Y. Mineral Slag-Based Cementitious Materials Curing Stabilized Waste Incineration Fly Ash Mechanism Research. Ph.D. Thesis, Wuhan University, Wuhan, China, 2014. Available online: https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CDFDLAST2016&filename=1015550299.nh (accessed on 3 July 2022).
- Yu, P.; Kirkpatrick, R.J.; Poe, B.; McMillan, P.F.; Cong, X. Structure of Calcium Silicate Hydrate (C-S-H): Near-, Mid-, and Far-Infrared Spectroscopy. J. Am. Ceram. Soc. 1999, 82, 742–748. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, W.; Hou, F.; He, X. Strength, leachability and microstructure characterisation of Na2SiO3-activated ground granulated blast-furnace slag solidified MSWI fly ash. Waste Manag. Res. 2007, 25, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Myneni, S.C.B.; Traina, S.J.; Waychunas, G.A.; Logan, T.J. Vibrational spectroscopy of functional group chemistry and arsenate coordination in ettringite. Geochim. Cosmochim. Acta 1998, 62, 3499–3514. [Google Scholar] [CrossRef]
- Abanades, S.; Flamant, G.; Gagnepain, B.; Gauthier, D. Fate of heavy metals during municipal solid waste incineration. Waste Manag. Res. 2002, 20, 55–68. [Google Scholar] [CrossRef] [PubMed]
Sample | Grate Furnace Incineration Fly Ash (%) |
---|---|
CaO | 30.80 |
Cl | 14.72 |
Na2O | 13.09 |
SO3 | 6.64 |
SiO2 | 5.32 |
K2O | 4.92 |
MgO | 3.44 |
Al2O3 | 2.07 |
Other | 4.45 |
Loss on ignition | 14.55 |
Physical Property | Instruments or Methods | Experimental Data |
---|---|---|
Water content | ASTM C311 | 0.73% |
Specific surface area | TriStar 3020 physical breathing apparatus | 4.4320 m2/g |
pH | GB/T15555.12-1995 | 12.33 |
Heavy Metal | Fly Ash Leaching (mg/L) | Total Amount (mg/kg) | Leaching Rate (%) | GB 16889-2008 |
---|---|---|---|---|
Ba | 0.250 | 26.0 | 19.0 | 25 |
Cd | 2.372 | 576 | 8.2 | 0.15 |
Cr | 0.692 | 546.3 | 2.5 | 4.5 |
Cu | 0.903 | 881.6 | 2.0 | 40 |
Ni | 0.023 | 4.4 | 10.4 | 0.5 |
Pb | 1.694 | 1689.6 | 2.0 | 0.25 |
Zn | 2.295 | 2475.2 | 1.9 | 100 |
Component | CaO | SiO2 | Al2O3 | MgO | SO3 | K2O | Other | Loss on Ignition |
---|---|---|---|---|---|---|---|---|
Mineral Slag (%) | 38.47 | 30.99 | 16.74 | 9.87 | 2.62 | 0.39 | 0.26 | 0.66 |
Different Mineral Slag Dosages | Leaching Concentration of Pb (mg/L) | Different Dosages of Activator | Leaching Concentration of Pb (mg/L) | Different Water Addition | Leaching Concentration of Pb (mg/L) |
---|---|---|---|---|---|
0% | 1.629 | 0% | 1.577 | 27.5% | 0.106 |
10% | 0.817 | 1% | 0.978 | 30% | 0.104 |
20% | 0.716 | 2% | 0.762 | 32.5% | 0.099 |
30% | 0.661 | 3% | 0.325 | 35% | 0.101 |
40% | 0.071 | 4% | 0.103 | \ | \ |
50% | 0.009 | 5% | 0.077 | \ | \ |
Landfill standard | 0.25 | \ | 0.25 | \ | 0.25 |
Rectangular Block Prism Structure | Amorphous Residue | ||||
---|---|---|---|---|---|
Element | Mass Analysis | Atomic Fraction | Element | Mass Analysis | Atomic Fraction |
C K | 15.98 | 29.89 | O K | 48.79 | 71.95 |
O K | 34.52 | 48.48 | Na K | 4.52 | 4.64 |
Al K | 1.17 | 0.97 | Al K | 4.41 | 3.86 |
Cl K | 1.41 | 0.90 | Cl K | 8.88 | 5.91 |
Ca K | 32.27 | 18.09 | Ca K | 20.57 | 12.11 |
Au M | 11.92 | 1.36 | Au M | 11.16 | 1.34 |
Pb M | 2.72 | 0.30 | Pb M | 1.67 | 0.19 |
Total amount | 100.00 | Total amount | 100.00 |
Spectrum Lines | Peak Position before Curing/ev | Peak Position after Curing/eV |
---|---|---|
O1s | 531 | 532 |
C1s | 284.4 | 284.45 |
Ca2p | 346.6 | 347.25 |
Cl2p | 198.05 | 198.35 |
Pb4f | 138.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, M.; Li, Q.; Liang, C.; Ma, Z.; Liu, Z. Mechanistic Investigation for Solidification of Pb in Fly Ash by Alkali Mineral Slag—Calcium Chloroaluminate as an Example. Minerals 2022, 12, 1499. https://doi.org/10.3390/min12121499
Zhu M, Li Q, Liang C, Ma Z, Liu Z. Mechanistic Investigation for Solidification of Pb in Fly Ash by Alkali Mineral Slag—Calcium Chloroaluminate as an Example. Minerals. 2022; 12(12):1499. https://doi.org/10.3390/min12121499
Chicago/Turabian StyleZhu, Mingxin, Qianyong Li, Chuan Liang, Zhengzhuo Ma, and Zhiying Liu. 2022. "Mechanistic Investigation for Solidification of Pb in Fly Ash by Alkali Mineral Slag—Calcium Chloroaluminate as an Example" Minerals 12, no. 12: 1499. https://doi.org/10.3390/min12121499
APA StyleZhu, M., Li, Q., Liang, C., Ma, Z., & Liu, Z. (2022). Mechanistic Investigation for Solidification of Pb in Fly Ash by Alkali Mineral Slag—Calcium Chloroaluminate as an Example. Minerals, 12(12), 1499. https://doi.org/10.3390/min12121499