Morpho-Constitutional Classification of Urinary Stones as Prospective Approach for the Management of Human Pathological Biomineralization: New Insights from Southern Italy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Classification of Uroliths and Etiology
3.1.1. CaOx Stones
3.1.2. Uric Acids
3.1.3. CaP Stones
3.1.4. Mixed Stones
3.2. Distribution and Risk Factors
3.2.1. Demographics and Environment
n. | Country/Locality | Year | N. of Stones | Ox. (%) | Ph. (%) | Pur. (%) | Others (%) | Sex Ratio | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | Italy, Campania | 2018–2019 | 49 | 51.0 | 4.1 | 32.6 | 12.2 | 6.00 | § |
2 | Italy, Basilicata | 2007–2008 | 80 | 59.0 | 5.0 | 18.0 | 18.0 | 1.27 | [12] |
3 | France | 1976–2001 | 27,980 | 65.2 | 18.3 | 9.4 | 7.1 | 2.28 | [83] |
4 | Spain, Balearic Islands | - | 700 | 63.1 | 11.8 | 8.2 | 16.9 | - | [86] |
5 | Iran, Fars | 2013 | 83 | 30.8 | 5.1 | 30.8 | 33.3 | 2.19 | [19] |
6 | Iran, Ardabil | 2001–2006 | 1268 | 80.3 | 0.4 | 18.6 | 0.7 | 2.66 | [87] |
7 | Iraq | 1997 | 25 | 46.1 | 38.4 | 15.4 | - | 4.00 | [17] |
8 | China | 2003–2012 | 12,846 | 78.3 | 18.0 | 3.6 | 0.2 | - | [89] |
9 | Japan | 2005 | 11,650 | 43.8 | 49.2 | 3.8 | 3.1 | - | [85] |
10 | Jordan, Irbid City | 2004–2005 | 135 | 60.0 | - | 6.7 | 33.3 | 1.04 | [16] |
11 | Russia | 1980–2008 | 750 | 66.0 | 20.8 | 10.5 | 2.7 | 1.90 | [96] |
12 | Democratic Republic of Congo | 2010–2018 | 62 | 72.7 | 13.6 | 12.9 | 0.8 | 1.41 | [90] |
13 | Algeria, El Bayadh district | - | - | 58.1 | 25.8 | 12.9 | 3.2 | - | [56] |
14 | Korea | 2009 | - | - | - | - | - | 1.80 | [97] |
15 | Italy, Milan | 1986; 1998 | - | - | - | - | - | 1.40; 1.74 | [4] |
3.2.2. Comorbidities, Lifestyle, and Dietary Habits
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Antonucci, M.; Recupero, S.M.; Marzio, V.; De Dominicis, M.; Pinto, F.; Foschi, N.; Di Gianfrancesco, L.; Bassi, P.; Ragonese, M. The impact of COVID-19 outbreak on urolithiasis emergency department admissions, hospitalizations and clinical management in central Italy: A multicentric analysis. Actas Urol. Esp. Engl. Ed. 2020, 44, 611–616. [Google Scholar] [CrossRef]
- Croppi, E.; Ferraro, P.M.; Taddei, L.; Gambaro, G. Prevalence of renal stones in an Italian urban population: A general practice-based study. Urol. Res. 2012, 40, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Prezioso, D.; Illiano, E.; Piccinocchi, G.; Cricelli, C.; Piccinocchi, R.; Saita, A.; Micheli, C.; Trinchieri, A. Urolithiasis in Italy: An epidemiological study. Arch. Ital. Urol. Androl. 2014, 86, 99–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trinchieri, A.; Coppi, F.; Montanari, E.; Del Nero, A.; Zanetti, G.; Pisani, E. Increase in the prevalence of symptomatic upper urinary tract stones during the last ten years. Eur. Urol. 2000, 37, 23–25. [Google Scholar] [CrossRef]
- Cloutier, J.; Villa, L.; Traxer, O.; Daudon, M. Kidney stone analysis: “Give me your stone, I will tell you who you are!”. World J. Urol. 2015, 33, 157–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daudon, M.; Dessombz, A.; Frochot, V.; Letavernier, E.; Haymann, J.P.; Jungers, P.; Bazin, D. Comprehensive morpho-constitutional analysis of urinary stones improves etiological diagnosis and therapeutic strategy of nephrolithiasis. Comptes Rendus Chim. 2016, 19, 1470–1491. [Google Scholar] [CrossRef]
- Giannossi, M.L.; Summa, V. A Review of Pathological Biomineral Analysis Techniques and Classification Schemes. In An Introduction to the Study of Mineralogy; Cumhur, A., Ed.; IntechOpen: London, UK, 2012; pp. 123–146. ISBN 978-953-307-896-0. [Google Scholar]
- Gràcia-Garcia, S.; Millán-Rodríguez, F.; Rousaud-Barón, F.; Montañés-Bermúdez, R.; Angerri-Feu, O.; Sánchez-Martín, F.; Villavicencio-Mavrich, H.; Oliver-Samper, A. Why and how we must analyze urinary calculi. Actas Urol. Esp. 2011, 35, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Daudon, M.; Bader, C.A.; Jungers, P. Urinary calculi: Review of classification methods and correlations with etiology. Scanning Microsc. 1993, 7, 1081–1086. [Google Scholar] [PubMed]
- Daudon, M.; Jungers, P.; Bazin, D. Stone morphology: Implication for pathogenesis. In Proceedings of the AIP Conference Proceedings, Tsukuba, Japan, 12–14 March 2008; American Institute of Physics: New York, NY, USA, 2008; Volume 1049, pp. 199–215. [Google Scholar]
- Mercurio, M.; Izzo, F.; Gatta, G.D.; Salzano, L.; Lotrecchiano, G.; Saldutto, P.; Germinario, C.; Grifa, C.; Varricchio, E.; Carafa, A. May a comprehensive mineralogical study of a jackstone calculus and some other human bladder stones unveil health and environmental implications? Environ. Geochem. Health 2021, 44, 3297–3320. [Google Scholar] [CrossRef]
- Giannossi, M.L.; Mongelli, G.; Tateo, F.; Summa, V. Mineralogical and morphological investigation of kidney stones of a Mediterranean region (Basilicata, Italy). J. Xray Sci. Technol. 2012, 20, 175–186. [Google Scholar] [CrossRef]
- Bazin, D.; Letavernier, E.; Haymann, J.-P.; Frochot, V.; Daudon, M. Crystalline pathologies in the human body: First steps of pathogenesis. Ann. Biol. Clin. 2020, 78, 349–362. [Google Scholar] [CrossRef] [PubMed]
- Bazin, D.; Daudon, M.; Frochot, V.; Haymann, J.-P.; Letavernier, E. Foreword to microcrystalline pathologies: Combining clinical activity and fundamental research at the nanoscale. Comptes Rendus Chim. 2022, 25, 11–35. [Google Scholar] [CrossRef]
- Sivaguru, M.; Saw, J.J.; Williams, J.C.; Lieske, J.C.; Krambeck, A.E.; Romero, M.F.; Chia, N.; Schwaderer, A.L.; Alcalde, R.E.; Bruce, W.J.; et al. Geobiology reveals how human kidney stones dissolve in vivo. Sci. Rep. 2018, 8, 13731. [Google Scholar] [CrossRef] [Green Version]
- Abboud, I.A. Mineralogy and chemistry of urinary stones: Patients from North Jordan. Environ. Geochem. Health 2008, 30, 445–463. [Google Scholar] [CrossRef] [PubMed]
- Afaj, A.H.; Sultan, M.A. Mineralogical composition of the urinary stones from different provinces in Iraq. Sci. World J. 2005, 5, 24–38. [Google Scholar] [CrossRef] [Green Version]
- Keshavarzi, B.; Ashayeri, N.Y.; Moore, F.; Irani, D.; Asadi, S.; Zarasvandi, A.; Salari, M. Mineralogical composition of urinary stones and their frequency in patients: Relationship to gender and age. Minerals 2016, 6, 131. [Google Scholar] [CrossRef]
- Keshavarzi, B.; Yavarashayeri, N.; Irani, D.; Moore, F.; Zarasvandi, A.; Salari, M. Trace elements in urinary stones: A preliminary investigation in Fars province, Iran. Environ. Geochem. Health 2015, 37, 377–389. [Google Scholar] [CrossRef]
- Bazin, D.; Chevallier, P.; Matzen, G.; Jungers, P.; Daudon, M. Heavy elements in urinary stones. Urol. Res. 2007, 35, 179–184. [Google Scholar] [CrossRef]
- Bazin, D.; Bouderlique, E.; Daudon, M.; Frochot, V.; Haymann, J.-P.; Letavernier, E.; Tielens, F.; Weil, R. Scanning electron microscopy—A powerful imaging technique for the clinician. Comptes Rendus Chim. 2022, 25, 37–60. [Google Scholar] [CrossRef]
- Carpenter, P.; Counce, D.; Kluk, E.; Nabelek, C. Characterization of Corning EPMA Standard Glasses 95IRV, 95IRW, and 95IRX. J. Res. Natl. Inst. Stand. Technol. 2002, 107, 703–718. [Google Scholar] [CrossRef]
- Donovan, J.J.; Hanchar, J.M.; Picolli, P.M.; Schrier, M.D.; Boatner, L.A.; Jarosewich, E. Contamination in the Rare-Earth Element Orthophosphate Reference Samples. J. Res. Natl. Inst. Stand. Technol. 2002, 107, 693–701. [Google Scholar] [CrossRef] [PubMed]
- Donovan, J.J.; Hanchar, J.M.; Picolli, P.M.; Schrier, M.D.; Boatner, L.A.; Jarosewich, E. A re-examination of the rare-earth-element orthophosphate standards in use for electron-microprobe analysis. Can. Mineral. 2003, 41, 221–232. [Google Scholar] [CrossRef]
- Jarosewich, E. Smithsonian Microbeam Standards. J. Res. Natl. Inst. Stand. Technol. 2002, 107, 681–685. [Google Scholar] [CrossRef] [PubMed]
- Jarosewich, E.; White, J.S. Strontianite reference sample for electron microprobe and SEM analyses. J. Sediment. Res. 1987, 57, 762–763. [Google Scholar] [CrossRef]
- Jarosewich, E.; Boatner, L.A. Rare-Earth Element Reference Samples for Electron Microprobe Analysis. Geostand. Newsl. 1991, 15, 397–399. [Google Scholar] [CrossRef]
- Jarosewich, E.; MacIntyre, I.G. Carbonate reference samples for electron microprobe and scanning electron microscope analyses. J. Sediment. Res. 1983, 53, 677–678. [Google Scholar] [CrossRef]
- Jarosewich, E.; Gooley, R.; Husler, J. Chromium Augite—A New Microprobe Reference Sample. Geostand. Newsl. 1987, 11, 197–198. [Google Scholar] [CrossRef]
- Vicenzi, E.P.; Eggins, S.; Logan, A.; Wysoczanski, R. Microbeam Characterization of Corning Archeological Reference Glasses: New Additions to the Smithsonian Microbeam Standard Collection. J. Res. Natl. Inst. Stand. Technol. 2002, 107, 719–727. [Google Scholar] [CrossRef]
- Pearle, M.S.; Goldfarb, D.S.; Assimos, D.G.; Curhan, G.; Denu-Ciocca, C.J.; Matlaga, B.R.; Monga, M.; Penniston, K.L.; Preminger, G.M.; Turk, T.M.T. Medical management of kidney stones: AUA guideline. J. Urol. 2014, 192, 316–324. [Google Scholar] [CrossRef]
- Türk, C.; Donaldson, J.F.; Neisius, A.; Petrik, A.; Skolarikos, A.; Thomas, K. EAU Guideline: Bladder Stones; EAU Guideline Office: Arnhem, The Netherlands, 2019; ISBN 978-94-92671-07-3. [Google Scholar]
- Türk, C.; Petřík, A.; Sarica, K.; Seitz, C.; Skolarikos, A.; Straub, M.; Knoll, T. EAU Guidelines on Interventional Treatment for Urolithiasis. Eur. Urol. 2016, 69, 475–482. [Google Scholar] [CrossRef]
- Frassetto, L.; Kohlstadt, I. Treatment and prevention of kidney stones: An Update. Am. Fam. Physician 2011, 84, 1234–1242. [Google Scholar] [PubMed]
- Wang, C.J.; Hsu, C.S.; Chen, H.W.; Tsai, P.C.; Chang, C.H. Long-Term Effects of Lemonade Therapy on Hypocitraturic Nephrolithiasis and Stone Recurrence: A Mini Review. Int. J. Nephrol. Kidney Fail. 2016, 2, 1–4. [Google Scholar]
- Petit, I.; Belletti, G.D.; Debroise, T.; Llansola-Portoles, M.J.; Lucas, I.T.; Leroy, C.; Bonhomme, C.; Bonhomme-Coury, L.; Bazin, D.; Daudon, M.; et al. Vibrational Signatures of Calcium Oxalate Polyhydrates. ChemistrySelect 2018, 3, 8801–8812. [Google Scholar] [CrossRef]
- Izatulina, A.R.; Gurzhiy, V.V.; Krzhizhanovskaya, M.G.; Kuz’mina, M.A.; Leoni, M.; Frank-Kamenetskaya, O.V. Hydrated Calcium Oxalates: Crystal Structures, Thermal Stability, and Phase Evolution. Cryst. Growth Des. 2018, 18, 5465–5478. [Google Scholar] [CrossRef]
- Mills, S.J.; Christy, A.G. The Great Barrier Reef Expedition 1928–29: The crystal structure and occurrence of weddellite, ideally CaC2O4·2.5H2O, from the Low Isles, Queensland. Mineral. Mag. 2016, 80, 399–406. [Google Scholar] [CrossRef]
- Conti, C.; Brambilla, L.; Colombo, C.; Dellasega, D.; Gatta, G.D.; Realini, M.; Zerbi, G. Stability and transformation mechanism of weddellite nanocrystals studied by X-ray diffraction and infrared spectroscopy. Phys. Chem. Chem. Phys. 2010, 12, 14560–14566. [Google Scholar] [CrossRef] [PubMed]
- Daudon, M.; Petay, M.; Vimont, S.; Deniset, A.; Tielens, F.; Haymann, J.-P.; Letavernier, E.; Frochot, V.; Bazin, D. Urinary tract infection inducing stones: Some clinical and chemical data. Comptes Rendus Chim. 2022, 25, 315–334. [Google Scholar] [CrossRef]
- Daudon, M.; Reveillaud, R.; Jungers, P. Piridoxilate-associated calcium oxalate urinary calculi: A new metabolic drug-induced nephrolithiasis. Lancet 1985, 325, 1338. [Google Scholar] [CrossRef]
- Daudon, M.; Reveillaud, R.-J.; Normand, M.; Petit, C.; Jungers, P. Piridoxilate-induced calcium oxalate calculi: A new drug-induced metabolic nephrolithiasis. J. Urol. 1987, 138, 258–260. [Google Scholar] [CrossRef]
- Abrol, N.; Kekre, N.S. Revisiting Randall’s plaque. Afr. J. Urol. 2014, 20, 174–179. [Google Scholar] [CrossRef] [Green Version]
- Çiftçioğlu, N.; Vejdani, K.; Lee, O.; Mathew, G.; Aho, K.M.; Kajander, E.O.; McKay, D.S.; Jones, J.A.; Stoller, M.L. Association between Randall’s plaque and calcifying nanoparticles. Int. J. Nanomed. 2008, 3, 105. [Google Scholar] [CrossRef] [PubMed]
- Letavernier, E.; Bazin, D.; Daudon, M. Randall’s plaque and kidney stones: Recent advances and future challenges. Comptes Rendus Chim. 2016, 19, 1456–1460. [Google Scholar] [CrossRef]
- Cécile, V.; Dominique, B.; Léa, H.; Odile, S.; Alexandre, G.; Marie-Christine, V.; Vincent, F.; Jean-Philippe, H.; Isabelle, B.; Olivier, T.; et al. Topography, Composition and Structure of Incipient Randall Plaque at the Nanoscale Level. J. Urol. 2016, 196, 1566–1574. [Google Scholar] [CrossRef]
- Gay, C.; Letavernier, E.; Verpont, M.-C.; Walls, M.; Bazin, D.; Daudon, M.; Nassif, N.; Stéphan, O.; de Frutos, M. Nanoscale Analysis of Randall’s Plaques by Electron Energy Loss Spectromicroscopy: Insight in Early Biomineral Formation in Human Kidney. ACS Nano 2020, 14, 1823–1836. [Google Scholar] [CrossRef] [PubMed]
- Bazin, D.; Leroy, C.; Tielens, F.; Bonhomme, C.; Bonhomme-Coury, L.; Damay, F.; Le Denmat, D.; Sadoine, J.; Rode, J.; Frochot, V. Hyperoxaluria is related to whewellite and hypercalciuria to weddellite: What happens when crystalline conversion occurs? Comptes Rendus Chim. 2016, 19, 1492–1503. [Google Scholar] [CrossRef]
- Gibson, R.I. Descriptive human pathological mineralogy. Am. Mineral. J. Earth Planet. Mater. 1974, 59, 1177–1182. [Google Scholar]
- Zhao, W.; Sharma, N.; Jones, F.; Raiteri, P.; Gale, J.D.; Demichelis, R. Anhydrous calcium oxalate polymorphism: A combined computational and synchrotron X-ray diffraction study. Cryst. Growth Des. 2016, 16, 5954–5965. [Google Scholar] [CrossRef] [Green Version]
- Hocart, R.; Watelle-Marion, G.; Thrierr-Sorel, G.; Gerard, A. Nature topotactique de la deshydratation. Acad. Sci. Paris 1965, 261, 2363–2366. [Google Scholar]
- Oztoprak, B.G.; Gonzalez, J.; Yoo, J.; Gulecen, T.; Mutlu, N.; Russo, R.E.; Gundogdu, O.; Demir, A. Analysis and classification of heterogeneous kidney stones using laser-induced breakdown spectroscopy (LIBS). Appl. Spectrosc. 2012, 66, 1353–1361. [Google Scholar] [CrossRef]
- Srivastava, A.; Swain, K.; Ajith, N.; Wagh, D.; Acharya, R.; Reddy, A.; Mete, U. Trace element study of kidney stones from subjects belonging to stone belt region of India. J. Radioanal. Nucl. Chem. 2012, 294, 425–428. [Google Scholar] [CrossRef]
- Primiano, A.; Persichilli, S.; Gambaro, G.; Ferraro, P.M.; D’Addessi, A.; Cocci, A.; Schiattarella, A.; Zuppi, C.; Gervasoni, J. FT-IR analysis of urinary stones: A helpful tool for clinician comparison with the chemical spot test. Dis. Markers 2014, 2014, 176165. [Google Scholar] [CrossRef] [Green Version]
- Aslin Shamema, A.; Thanigai Arul, K.; Senthil Kumar, R.; Kalkura, S.N. Physicochemical analysis of urinary stones from Dharmapuri district. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2015, 134, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Sekkoum, K.; Cheriti, A.; Taleb, S.; Belboukhari, N. FTIR spectroscopic study of human urinary stones from El Bayadh district (Algeria). Arab. J. Chem. 2016, 9, 330–334. [Google Scholar] [CrossRef]
- Pinto, B.; Rocha, E.; Ruiz-Marcellán, F.J. Isolation and characterization of uricine from uric acid stones. Kidney Int. 1976, 10, 437–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evan, A.P.; Lingeman, J.E.; Coe, F.L.; Shao, Y.; Parks, J.H.; Bledsoe, S.B.; Phillips, C.L.; Bonsib, S.; Worcester, E.M.; Sommer, A.J.; et al. Crystal-associated nephropathy in patients with brushite nephrolithiasis. Kidney Int. 2005, 67, 576–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klee, L.W.; Brito, C.G.; Lingeman, J.E. The clinical implications of brushite calculi. J. Urol. 1991, 145, 715–718. [Google Scholar] [CrossRef]
- Berzina-Cimdina, L.; Borodajenko, N. Research of Calcium Phosphates Using Fourier Transform Infrared Spectroscopy. In Infrared Spectroscopy—Materials Science, Engineering and Technology; IntechOpen: London, UK, 2012; pp. 123–148. [Google Scholar]
- Medina, E.; Romero, C.; García, P.; Brenes, M. Characterization of bioactive compounds in commercial olive leaf extracts, and olive leaves and their infusions. Food Funct. 2019, 10, 4716–4724. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, P.; Chakraborty, A.; Mukherjee, A.K. Phase composition and morphological characterization of human kidney stones using IR spectroscopy, scanning electron microscopy and X-ray Rietveld analysis. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2018, 200, 33–42. [Google Scholar] [CrossRef]
- Kanchana, G.; Sundaramoorthi, P.; Jeyanthi, G.P. Bio-Chemical Analysis and FTIR-Spectral Studies of Artificially Removed Renal Stone Mineral Constituents. J. Miner. Mater. Charact. Eng. 2009, 8, 161–170. [Google Scholar] [CrossRef]
- Selvaraju, R.; Raja, A.; Thiruppathi, G. FT-IR spectroscopic, thermal analysis of human urinary stones and their characterization. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2015, 137, 1397–1402. [Google Scholar] [CrossRef]
- Wilson, E.V.; Bushiri, M.J.; Vaidyan, V.K. Characterization and FTIR spectral studies of human urinary stones from Southern India. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2010, 77, 442–445. [Google Scholar] [CrossRef] [PubMed]
- Carpentier, X.; Daudon, M.; Traxer, O.; Jungers, P.; Mazouyes, A.; Matzen, G.; Véron, E.; Bazin, D. Relationships between carbonation rate of carbapatite and morphologic characteristics of calcium phosphate stones and etiology. Urology 2009, 73, 968–975. [Google Scholar] [CrossRef] [PubMed]
- Griffith, D.P. Infection-induced renal calculi. Kidney Int. 1982, 21, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Kono, T.; Sakae, T.; Nakada, H.; Kaneda, T.; Okada, H. Confusion between Carbonate Apatite and Biological Apatite (Carbonated Hydroxyapatite) in Bone and Teeth. Minerals 2022, 12, 170. [Google Scholar] [CrossRef]
- Coe, F.L.; Coe, F. Uric acid and calcium oxalate nephrolithiasis. Kidney Int. 1983, 24, 392–403. [Google Scholar] [CrossRef] [Green Version]
- Bouzidi, H.; de Brauwere, D.; Daudon, M. Does urinary stone composition and morphology help for prediction of primary hyperparathyroidism? Nephrol. Dial. Transplant. 2011, 26, 565–572. [Google Scholar] [CrossRef] [Green Version]
- Daudon, M.; Bouzidi, H.; Bazin, D. Composition and morphology of phosphate stones and their relation with etiology. Urol. Res. 2010, 38, 459–467. [Google Scholar] [CrossRef]
- Gault, M.H.; Chafe, L.L.; Morgan, J.M.; Parfrey, P.S.; Harnett, J.D.; Walsh, E.A.; Prabhakaran, V.M.; Dow, D.; Colpitts, A. Comparison of patients with idiopathic calcium phosphate and calcium oxalate stones. Medicine 1991, 70, 345–359. [Google Scholar] [CrossRef]
- Konnak, J.W.; Kogan, B.A.; Lau, K. Renal calculi associated with incomplete distal renal tubular acidosis. J. Urol. 1982, 128, 900–902. [Google Scholar] [CrossRef]
- Pak, C.Y.C.; Poindexter, J.R.; Adams-Huet, B.; Pearle, M.S. Predictive value of kidney stone composition in the detection of metabolic abnormalities. Am. J. Med. 2003, 115, 26–32. [Google Scholar] [CrossRef]
- Sorokin, I.; Mamoulakis, C.; Miyazawa, K.; Rodgers, A.; Talati, J.; Lotan, Y. Epidemiology of stone disease across the world. World J. Urol. 2017, 35, 1301–1320. [Google Scholar] [CrossRef] [PubMed]
- Curhan, G.C. Epidemiology of stone disease. Urol. Clin. N. Am. 2007, 34, 287–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Chen, Y.; Liao, B.; Luo, D.; Wang, K.; Li, H.; Zeng, G. Epidemiology of urolithiasis in Asia. Asian J. Urol. 2018, 5, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Hornberger, B.; Bollner, M.R. Kidney stones. Physician Assist. Clin. 2018, 3, 37–54. [Google Scholar] [CrossRef]
- Scales, C.D., Jr.; Smith, A.C.; Hanley, J.M.; Saigal, C.S.; Urologic Diseases in America Project. Prevalence of kidney stones in the United States. Eur. Urol. 2012, 62, 160–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pugliese, J.M.; Baker, K.C. Epidemiology of nephrolithiasis in personnel returning from Operation Iraqi Freedom. Urology 2009, 74, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, F.; Nada, M.O.; Bin Farid, A.; Haleem, M.A.; Razack, S.M.A. Epidemiology of urolithiasis with emphasis on ultrasound detection: A retrospective analysis of 5371 cases in Saudi Arabia. Saudi J. Kidney Dis. Transplant. 2015, 26, 386. [Google Scholar] [CrossRef] [PubMed]
- AURO. Linea Guida per la Calcolosi Delle vie Urinarie; Associazione Urologi Italiani: Pietra Ligure, Italy, 2007. [Google Scholar]
- Daudon, M.; Doré, J.-C.; Jungers, P.; Lacour, B. Changes in stone composition according to age and gender of patients: A multivariate epidemiological approach. Urol. Res. 2004, 32, 241–247. [Google Scholar] [CrossRef]
- Yasui, T.; Iguchi, M.; Suzuki, S.; Okada, A.; Itoh, Y.; Tozawa, K.; Kohri, K. Prevalence and epidemiologic characteristics of lower urinary tract stones in Japan. Urology 2008, 72, 1001–1005. [Google Scholar] [CrossRef]
- Yasui, T.; Iguchi, M.; Suzuki, S.; Kohri, K. Prevalence and epidemiological characteristics of urolithiasis in Japan: National trends between 1965 and 2005. Urology 2008, 71, 209–213. [Google Scholar] [CrossRef]
- Grases, F.; Costa-Bauzá, A.; Ramis, M.; Montesinos, V.; Conte, A. Simple classification of renal calculi closely related to their micromorphology and etiology. Clin. Chim. Acta 2002, 322, 29–36. [Google Scholar] [CrossRef]
- Shokouhi, B.; Gasemi, K.; Norizadeh, E. Chemical composition and epidemiological risk factors of urolithiasis in Ardabil Iran. Res. J. Biol. Sci. 2008, 3, 620–626. [Google Scholar]
- Wu, W.; Yang, D.; Tiselius, H.-G.; Ou, L.; Liang, Y.; Zhu, H.; Li, S.; Zeng, G. The characteristics of the stone and urine composition in Chinese stone formers: Primary report of a single-center results. Urology 2014, 83, 732–737. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Yang, B.; Ou, L.; Liang, Y.; Wan, S.; Li, S.; Zeng, G. Urinary stone analysis on 12,846 patients: A report from a single center in China. Urolithiasis 2014, 42, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Diangienda, P.K.D.; Moningo, D.M.; Makulo, J.-R.R.; Sumaili, E.K.; Mafuta, E.M.; Mayindu, A.N.; Punga-Maole, A.M.L.; Haymann, J.-P.; Daudon, M. Morpho-constitutional analysis of urinary stones from patients with urolithiasis in the Democratic Republic of Congo. Afr. J. Urol. 2021, 27, 99. [Google Scholar] [CrossRef]
- Diangienda, P.K.D.; Moningo, D.M.; Mayindu, A.N.; Haymann, J.-P.; Daudon, M. Heavy metals in urinary stones in the Democratic Republic of Congo. Afr. J. Urol. 2021, 27, 1–9. [Google Scholar] [CrossRef]
- Diasiama, P.D.K.; Molamba, D.M.; Rissasy, J.-R.M.; Kiswaya, E.S.; Musalu, É.M.; Ngoma, A.; Nkumu, M.L.; Punga-Maole, A.; Nkandi, S.L.L.; Haymann, J.-P. Composition chimique des calculs urinaires et caractéristiques épidémiologiques associées en République Démocratique du Congo. Néphrol. Thér. 2021, 17, 441–450. [Google Scholar] [CrossRef]
- Mbonu, O.; Attah, C.H.; Ikeakor, I. Urolithiasis in an African population. Int. Urol. Nephrol. 1984, 16, 291–296. [Google Scholar] [CrossRef]
- Moser, R.; Zaccarini, F.; Alber, T.; Kerbl, R. First finding of tiemannite, HgSe, in human bladder stones: An electron microprobe study. Micron 2020, 138, 102928. [Google Scholar] [CrossRef]
- Romero, V.; Akpinar, H.; Assimos, D.G. Kidney stones: A global picture of prevalence, incidence, and associated risk factors. Rev. Urol. 2010, 12, e86. [Google Scholar] [CrossRef]
- Novikov, A.; Nazarov, T.; Startsev, V.Y. Epidemiology of stone disease in the Russian Federation and Post-Soviet era. In Urolithiasis; Springer: London, UK, 2012; pp. 97–105. [Google Scholar]
- Bae, S.R.; Seong, J.-M.; Kim, L.Y.; Paick, S.H.; Kim, H.G.; Lho, Y.S.; Park, H.K. The epidemiology of reno-ureteral stone disease in Koreans: A nationwide population-based study. Urolithiasis 2014, 42, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Brikowski, T.H.; Lotan, Y.; Pearle, M.S. Climate-related increase in the prevalence of urolithiasis in the United States. Proc. Natl. Acad. Sci. USA 2008, 105, 9841–9846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izzo, F.; Furno, A.; Cilenti, F.; Germinario, C.; Gorrasi, M.; Mercurio, M.; Langella, A.; Grifa, C. The domus domini imperatoris Apicii built by Frederick II along the Ancient Via Appia (southern Italy): An example of damage diagnosis for a Medieval monument in rural environment. Constr. Build. Mater. 2020, 259, 119718. [Google Scholar] [CrossRef]
- Kuta, J.; Machát, J.; Benová, D.; Červenka, R.; Kořistková, T. Urinary calculi—Atypical source of information on mercury in human biomonitoring. Cent. Eur. J. Chem. 2012, 10, 1475–1483. [Google Scholar] [CrossRef]
- Kuta, J.; Machát, J.; Benová, D.; Červenka, R.; Zeman, J.; Martinec, P. Association of minor and trace elements with mineralogical constituents of urinary stones: A hard nut to crack in existing studies of urolithiasis. Environ. Geochem. Health 2013, 35, 511–522. [Google Scholar] [CrossRef]
- Singh, V.K.; Rai, P.K. Kidney stone analysis techniques and the role of major and trace elements on their pathogenesis: A review. Biophys. Rev. 2014, 6, 291–310. [Google Scholar] [CrossRef] [Green Version]
- Giannossi, M.L.; Summa, V.; Mongelli, G. Trace element investigations in urinary stones: A preliminary pilot case in Basilicata (Southern Italy). J. Trace Elem. Med. Biol. 2013, 27, 91–97. [Google Scholar] [CrossRef]
- Madore, F.; Stampfer, M.J.; Rimm, E.B.; Curhan, G.C. Nephrolithiasis and risk of hypertension. Am. J. Hypertens. 1998, 11, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Reiner, A.P.; Kahn, A.; Eisner, B.H.; Pletcher, M.J.; Sadetsky, N.; Williams, O.D.; Polak, J.F.; Jacobs, D.R.; Stoller, M.L. Kidney stones and subclinical atherosclerosis in young adults: The CARDIA study. J. Urol. 2011, 185, 920–925. [Google Scholar] [CrossRef] [Green Version]
- Luo, W.; Zhou, Y.; Gao, C.; Yan, P.; Xu, L. Urolithiasis, Independent of Uric Acid, Increased Risk of Coronary Artery and Carotid Atherosclerosis: A Meta-Analysis of Observational Studies. Biomed Res. Int. 2020, 2020, 1026240. [Google Scholar] [CrossRef] [Green Version]
- Bao, Y.; Wei, Q. Water for preventing urinary stones. Cochrane Database Syst. Rev. 2012, 2, CD004292. [Google Scholar] [CrossRef] [PubMed]
- Taylor, E.N.; Fung, T.T.; Curhan, G.C. DASH-style diet associates with reduced risk for kidney stones. J. Am. Soc. Nephrol. 2009, 20, 2253–2259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vita, P.; Allocca, V.; Celico, F.; Fabbrocino, S.; Mattia, C.; Monacelli, G.; Musilli, I.; Piscopo, V.; Scalise, A.R.; Summa, G. Hydrogeology of continental southern Italy. J. Maps 2018, 14, 230–241. [Google Scholar] [CrossRef] [Green Version]
- Borghi, L.; Meschi, T.; Amato, F.; Briganti, A.; Novarini, A.; Giannini, A. Urinary volume, water and recurrences in idiopathic calcium nephrolithiasis: A 5-year randomized prospective study. J. Urol. 1996, 155, 839–843. [Google Scholar] [CrossRef]
n. | ID Sample | Sex | Age | Occupation | Body Weight | Height | BMI | Calculus Weight | Other Diseases § |
---|---|---|---|---|---|---|---|---|---|
1 | KS001 | M | 28 | Farmer | 62 kg | 169 cm | 21.7 kg/cm2 | 29 mg | - |
2 | KS002 | M | 54 | Architect | 95 kg | 175 cm | 31.0 kg/cm2 | 15 mg | DLP |
3 | KS003 | M | 63 | Farmer | 78 kg | 172 cm | 26.4 kg/cm2 | 47 mg | DM |
4 | KS004 | F | 69 | Housewife | 65 kg | 165 cm | 23.9 kg/cm2 | 50 mg | HTN, OP |
5 | KS005 | M | 35 | Farmer | 70 kg | 175 cm | 22.9 kg/cm2 | 13 mg | - |
6 | KS006B * | M | 76 | Retired | 78 kg | 175 cm | 25.5 kg/cm2 | 1086 mg | - |
7 | KS007 | F | 60 | Housewife | 74 kg | 160 cm | 28.9 kg/cm2 | 280 mg | DM, UC |
8 | KS008 | M | 53 | Cook | 85 kg | 175 cm | 27.8 kg/cm2 | 325 mg | HTN |
9 | KS009 | M | 51 | Farmer | 87 kg | 185 cm | 25.4 kg/cm2 | 101 mg | - |
10 | KS010 | M | 39 | Driver | 70 kg | 170 cm | 24.2 kg/cm2 | 10 mg | - |
11 | KS011B * | M | 75 | Farmer | 69 kg | 165 cm | 25.3 kg/cm2 | 531 mg | DM, HTN |
12 | KS012B * | M | 73 | Farmer | 90 kg | 175 cm | 29.4 kg/cm2 | 1553 mg | ASHD |
13 | KS013 | M | 42 | Researcher | 74 kg | 180 cm | 22.8 kg/cm2 | 20 mg | - |
14 | KS014 | M | 74 | Retired | 50 kg | 170 cm | 17.3 kg/cm2 | 20 mg | - |
15 | KS015 | M | 54 | Office worker | 78 kg | 175 cm | 25.5 kg/cm2 | 41 mg | - |
16 | KS016 | M | 57 | Railway man | 85 kg | 178 cm | 26.8 kg/cm2 | 51 mg | HTN |
17 | KS017 | M | 57 | Merchant | 70 kg | 180 cm | 21.6 kg/cm2 | 9 mg | GERD |
18 | KS018 | M | 54 | Physician | 82 kg | 175 cm | 26.8 kg/cm2 | 24 mg | GERD |
19 | KS020B * | M | 67 | Barman | 78 kg | 165 cm | 28.7 kg/cm2 | 1050 mg | DLP |
20 | KS021 | M | 64 | Accountant | 84 kg | 180 cm | 25.9 kg/cm2 | 98 mg | ASHD |
21 | KS022B * | M | 76 | Farmer | 74 kg | 170 cm | 25.6 kg/cm2 | 3150 mg | - |
22 | KS023B * | M | 75 | Office worker | 75 kg | 165 cm | 27.5 kg/cm2 | 9750 mg | HTN |
23 | KS024 | F | 40 | Housewife | 101 kg | 160 cm | 39.5 kg/cm2 | 18 mg | HTN, DTR |
24 | KS025 | F | 36 | Housewife | 98 kg | 160 cm | 38.3 kg/cm2 | 16 mg | DTR, RF |
25 | KS026 | M | 52 | Office worker | 81 kg | 178 cm | 25.6 kg/cm2 | 70 mg | - |
26 | KS027 | M | 63 | Office worker | 85 kg | 174 cm | 28.1 kg/cm2 | 100 mg | - |
27 | KS028B | M | 67 | Physician | 82 kg | 176 cm | 26.5 kg/cm2 | 530 mg | ASHD |
28 | KS029B | M | 78 | Office worker | 74 kg | 180 cm | 22.8 kg/cm2 | 3700 mg | DM |
29 | KS030 | M | 59 | Physician | 86 kg | 178 cm | 27.1 kg/cm2 | 180 mg | ASHD |
30 | KS031 | F | 24 | Workman | 48 kg | 160 cm | 18.8 kg/cm2 | 30 mg | |
31 | KS032B | M | 68 | Fisherman | 75 kg | 165 cm | 27.5 kg/cm2 | 1580 mg | HTN |
32 | KS033B | M | 83 | Office worker | 78 kg | 182 cm | 23.5 kg/cm2 | 700 mg | DM |
33 | KS034B | M | 78 | Bricklayer | 78 kg | 168 cm | 27.6 kg/cm2 | 3900 mg | DM |
34 | KS035B | M | 75 | Farmer | 82 kg | 170 cm | 28.4 kg/cm2 | 1320 mg | DM |
35 | KS036B | M | 69 | Executive manager | 75 kg | 180 cm | 23.1 kg/cm2 | 270 mg | - |
36 | KS037B | M | 67 | Prison guard | 72 kg | 176 cm | 23.2 kg/cm2 | 870 mg | HTN |
37 | KS038B | M | 62 | Office worker | 69 kg | 165 cm | 25.3 kg/cm2 | 5200 mg | DLP, HUE |
38 | KS039 | F | 81 | Housewife | 86 kg | 165 cm | 31.6 kg/cm2 | 1000 mg | HTN, HT |
39 | KS040 | M | 60 | Office worker | 64 kg | 165 cm | 23.5 kg/cm2 | 2400 mg | BPH |
40 | KS041 | M | 72 | Retired | 78 kg | 170 cm | 27.0 kg/cm2 | 1380 mg | DM, ASHD |
41 | KS043 | M | 76 | Retired | 68 kg | 165 cm | 25.0 kg/cm2 | 800 mg | HTN, COPD |
42 | KS044 | M | 75 | Businessman | 62 kg | 160 cm | 24.2 kg/cm2 | 500 mg | BLCA |
43 | KS045 | M | 80 | Retired | 75 kg | 170 cm | 26.0 kg/cm2 | 500 mg | HTN, HUE |
44 | KS046 | M | 72 | Retired | 78 kg | 180 cm | 24.1 kg/cm2 | 20 mg | DM, CRC, BLCA |
45 | KS047 | F | 50 | Domestic helper | 45 kg | 162 cm | 17.1 kg/cm2 | 1300 mg | HTN, DTR |
46 | KS048 | M | 52 | Office worker | 78 kg | 182 cm | 23.5 kg/cm2 | 50 mg | - |
47 | KS049 | M | 32 | Unemployed | 70 kg | 175 cm | 22.9 kg/cm2 | 60 mg | - |
48 | KS050B | M | 81 | Retired | 78 kg | 165 cm | 28.7 kg/cm2 | 60 mg | BPH, HTN |
49 | KS051B | M | 78 | Retired | 72 kg | 165 cm | 26.4 kg/cm2 | 300 mg | HTN, DM |
Morphological Features | Mineralogical Composition | Type | |||||
---|---|---|---|---|---|---|---|
n. | ID | Surface | Internal Structure | Color | Main Phases | Minor Phases | |
1 | KS004 | Smooth and umbilicated | Thin layers surrounding a compact concentric core | Whitish/brown | CaOx | CaP (tr.), O.M. (tr.) | Ia |
2 | KS010 | Mammillary and umbilicated | Compact concentric, locally unorganized | Pale brown | CaOx | CaP (tr.) | Ia |
3 | KS030 | Mammillary and umbilicated | Concentric layers | Brown | CaOx | CaP (tr.) | Ia |
4 | KS044 | Smooth and umbilicated | Thin layers surrounding a compact concentric core | Whitish/brown | CaOx | CaP (tr.), O.M. (tr.) | Ia |
5 | KS045 | Mammillary and rough | Compact radiating structure | Brown | CaOx | CaP, O.M. | Ia |
6 | KS049 | Mammillary | Compact radiating structure | Brown | CaOx | CaP (tr.), O.M. (tr.) | Ia |
7 | KS014 | Mammillary and rough | Compact unorganized | Brown | CaOx | CaP (tr.) | Ib |
8 | KS012B * | Sea urchin appearance | Compact concentric, locally unorganized | Dark brown | CaOx | CaP (tr.) | Ia |
9 | KS026 | Mammillary and rough | Compact radiating and concentric, locally unorganized | Brown | CaOx | CaP (tr.) | Ia |
10 | KS017 | - | Compact unorganized | Dark brown | CaOx | CaP (tr.), O.M. (tr.) | Ib |
11 | KS021 | Rough | Compact unorganized | Dark brown | CaOx | UA, O.M. (tr.) | Ib |
12 | KS024 | Mammillary and rough | Compact unorganized | Dark brown | CaOx | CaP (tr.) | Ib |
13 | KS027 | Mammillary and rough | Compact unorganized | Brown | CaOx | CaP (tr.) | Ib |
14 | KS033B | Smooth, locally budding | Compact concentric, locally unorganized | Dark/pale brown | CaOx | CaP (tr.) | Ie |
15 | KS018 | - | Compact unorganized | Pale brown | CaOx | CaP | I |
16 | KS025 | Mammillary | Gap | Pale brown | CaOx | CaP (tr.), O.M. (tr.) | I |
17 | KS031 | - | Compact radiating structure, poorly organized | Dark brown | CaOx | CaP (tr.) | I |
18 | KS051 | Mammillary, loose bipyramidal crystals | Compact radiating and concentric structure | Colorless/brown | CaOx | CaP | I |
19 | KS001 | Spiculated, bipyramidal crystals | Loose crystallization | Light brown | CaOx | CaP (tr.) | IIa |
20 | KS005 | Spiculated, bipyramidal crystals | Loose crystallization | Light brown | CaOx | CaP, O.M. (tr.) | IIa |
21 | KS013 | Spiculated, bipyramidal crystals | Compact unorganized | Brown | CaOx | - | IIa |
22 | KS048 | Spiculated, bipyramidal crystals | Loose crystallization | Colorless | CaOx | CaP | IIa |
23 | KS028B | Spiculated, bipyramidal crystals | Compact unorganized | Pale brown | CaOx | CaP (tr.) | IIb |
24 | KS036B | Spiculated, bipyramidal crystals | Compact unorganized | Brown | CaOx | CaP (tr.), O.M. (tr.) | IIb |
25 | KS040 | Spiculated, bipyramidal crystals | Compact unorganized | Brown | CaOx | CaP (tr.) | IIb |
26 | KS003 | Smooth | Compact and concentric | Orange | UA | - | IIIa |
27 | KS011B * | Smooth | Compact and concentric | Pale yellow | UA | CaOx | IIIa |
28 | KS015 | Smooth | Compact and concentric | Orange | UA | CaOx (tr.) | IIIa |
29 | KS016 | Smooth | Compact and concentric | Orange | UA | - | IIIa |
30 | KS023B * | Smooth | Compact and concentric | Orange | UA | - | IIIa |
31 | KS029B | Smooth | Compact and concentric | Orange/Gray | UA | - | IIIa |
32 | KS034B | Smooth | Compact and concentric | Orange | UA | - | IIIa |
33 | KS035B | Smooth | Compact and concentric | Orange/Gray | UA | - | IIIa |
34 | KS037B | Smooth | Compact and concentric | Orange | UA | CaOx (tr.) | IIIa |
35 | KS038B | Smooth | Compact and concentric | Orange | UA | - | IIIa |
36 | KS050B | Smooth | Compact and concentric | Orange | UA | O.M. | IIIa |
37 | KS022B * | Rough, embossed | Compact and concentric | Orange/Brown | UA | CaOx (tr.) | IIIa/IIIb |
38 | KS043 | Rough | Porous and poorly organized | Brown/Orange | UA | CaOx | IIIb |
39 | KS020B * | Rough, porous | Concentric, locally porous, and poorly organized | Orange/Gray | UA | - | IIIb |
40 | KS009 | Rough | Porous and poorly organized | Orange | UA | - | IIIb |
41 | KS046 | - | - | Orange | UA | - | III |
42 | KS008 | Rough | Loose concentric layers | Brown/whitish | Carbonated apatite | CaOx | IVa1 |
43 | KS006B * | Rough and dappled | Concentric layers and radial crystallization | Pinkish | Brushite | CaOx, CaP | IVd |
44 | KS002 | Rough and mammillary | Unorganized | Brown | UA/CaOx | CaP (tr.) | IIIb/Ia |
45 | KS039 | Smooth and mammillary | Alternated orange concentric layers and brown compact radiating levels | Orange/dark brown | UA/CaOx | CaP (tr.) | IIIa/Ia |
46 | KS007 | Mammillary and locally spiculated | Thin concentric layers surrounding an unorganized core | Pale brown | CaOx/CaP | - | Ia/IIb/IVa |
47 | KS047 | Mammillary and locally spiculated | Locally compact, concentric layers | Pale brown | CaOx/CaP | - | Ia/IIb/IVa |
48 | KS032B | Rough, spiculated | Unorganized | CaOx/CaP | - | IIa/IVa | |
49 | KS041 | Rough | Unorganized layer surrounding a compact core with radiating crystallization | Grayish/dark brown | AU/CaOx | CaP (tr.) | IIIc/Ia/IIb |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Izzo, F.; Langella, A.; Germinario, C.; Grifa, C.; Varricchio, E.; Di Meo, M.C.; Salzano, L.; Lotrecchiano, G.; Mercurio, M. Morpho-Constitutional Classification of Urinary Stones as Prospective Approach for the Management of Human Pathological Biomineralization: New Insights from Southern Italy. Minerals 2022, 12, 1421. https://doi.org/10.3390/min12111421
Izzo F, Langella A, Germinario C, Grifa C, Varricchio E, Di Meo MC, Salzano L, Lotrecchiano G, Mercurio M. Morpho-Constitutional Classification of Urinary Stones as Prospective Approach for the Management of Human Pathological Biomineralization: New Insights from Southern Italy. Minerals. 2022; 12(11):1421. https://doi.org/10.3390/min12111421
Chicago/Turabian StyleIzzo, Francesco, Alessio Langella, Chiara Germinario, Celestino Grifa, Ettore Varricchio, Maria Chiara Di Meo, Luigi Salzano, Giuseppe Lotrecchiano, and Mariano Mercurio. 2022. "Morpho-Constitutional Classification of Urinary Stones as Prospective Approach for the Management of Human Pathological Biomineralization: New Insights from Southern Italy" Minerals 12, no. 11: 1421. https://doi.org/10.3390/min12111421
APA StyleIzzo, F., Langella, A., Germinario, C., Grifa, C., Varricchio, E., Di Meo, M. C., Salzano, L., Lotrecchiano, G., & Mercurio, M. (2022). Morpho-Constitutional Classification of Urinary Stones as Prospective Approach for the Management of Human Pathological Biomineralization: New Insights from Southern Italy. Minerals, 12(11), 1421. https://doi.org/10.3390/min12111421