Distribution of Mercury in the Water-Suspended Matter-Bottom Sediments System of the Lake Onego Water Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. Analytical Methods
2.4. Data Analysis
3. Results
3.1. Mercury in the Water–Suspended Matter System
3.2. Mercury in the Bottom Sediments
3.3. Results of the Cluster Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Raj, D.; Maiti, S.K. Sources, toxicity, and remediation of mercury: An essence review. Environ. Monit. Assess. 2019, 191, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Selin, N. Global Biogeochemical Cycling of Mercury: A Review. Annu. Rev. Environ. Resour. 2009, 34, 43–63. [Google Scholar] [CrossRef] [Green Version]
- Hsu-Kim, H.; Kucharzyk, K.H.; Zhang, T.; Deshusses, M.A. Mechanisms Regulating Mercury Bioavailability for Methylating Microorganisms in the Aquatic Environment: A Critical Review. Environ. Sci. Technol. 2013, 47, 2441–2456. [Google Scholar] [CrossRef] [PubMed]
- Burton, G.A.; Landrum, P.F. Toxicity of sediments. In Encyclopedia of Sediments and Sedimentary Rocks; Kluwer Academic Publishers: Amsterdam, The Netherlands, 2003; pp. 748–751. [Google Scholar]
- Klapstein, S.; Nelson, J. Methylmercury biogeochemistry in freshwater ecosystems: A review focusing on DOM and photodemethylation. Bull. Environ. Contam. Toxicol. 2018, 100, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Walters, D.; Jardine, T.; Cade, B.; Kidd, K.; Muir, D.; Leipzig-Scott, P. Trophic Magnification of Organic Chemicals: A Global Synthesis. Environ. Sci. Technol. 2016, 50, 4650–4658. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, M.; Schwarzbach, S.; Sulaiman, R. Effects of mercury on wildlife: A comprehensive review. Environ. Toxicol. Chem. 1998, 17, 146–160. [Google Scholar] [CrossRef]
- Mergler, D.; Anderson, H.; Chan, L.; Mahaffey, K.; Murray, M.; Sakamoto, M.; Stern, A. Methylmercury Exposure and Health Effects in Humans: A Worldwide Concern. Ambio 2007, 36, 3–11. [Google Scholar] [CrossRef]
- Kocman, D.; Wilson, S.; Amos, H.; Telmer, K.; Steenhuisen, F.; Sunderland, E.; Mason, R.; Outridge, P.; Horvat, M. Toward an Assessment of the Global Inventory of Present-Day Mercury Releases to Freshwater Environments. Int. J. Environ. Res. Public Health 2017, 14, 138. [Google Scholar] [CrossRef] [Green Version]
- Driscoll, C.T.; Mason, R.P.; Chan, H.M.; Jacob, D.J.; Pirrone, N. Mercury as a global pollutant: Sources, pathways, and effects. Environ. Sci. Technol. 2013, 47, 4967–4983. [Google Scholar] [CrossRef]
- Obrist, D.; Kirk, J.; Zhang, L.; Sunderland, E.; Jiskra, M.; Selin, N. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio 2018, 47, 116–140. [Google Scholar] [CrossRef]
- Streets, D.G.; Devane, M.K.; Lu, Z.; Bond, T.C.; Sunderland, E.M.; Jacob, D.J. All-time releases of mercury to the atmosphere from human activities. Environ. Sci. Technol. 2011, 45, 10485–10491. [Google Scholar] [CrossRef] [Green Version]
- Amos, H.M.; Jacob, D.J.; Streets, D.G.; Sunderland, E.M. Legacy impacts of all-time anthropogenic emissions on the global mercury cycle. Global Biogeochem. Cycles 2013, 27, 410–421. [Google Scholar] [CrossRef] [Green Version]
- Horowitz, H.M.; Jacob, D.J.; Amos, H.M.; Streets, D.G.; Sunderland, E.M. Historical mercury releases from commercial products: Global environmental implications. Environ. Sci. Technol. 2014, 48, 10242–10250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamborg, C.H.; Hammerschmidt, C.R.; Bowman, K.L.; Swarr, G.J.; Munson, K.M.; Ohnemus, D.C.; Lam, P.J.; Heimbürger, L.-E.; Rijkenberg, M.J.A.; Saito, M.A. A global ocean inventory of anthropogenic mercury based on water column measurements. Nature 2014, 512, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jaeglé, L.; Thompson, L. Natural biogeochemical cycle of mercury in a global three-dimensional ocean tracer model. Global Biogeochem. Cycles 2014, 28, 553–570. [Google Scholar] [CrossRef]
- Amos, H.M.; Sonke, J.E.; Obrist, D.; Robins, N.; Hagan, N.; Horowitz, H.M.; Mason, R.P.; Witt, M.; Hedgecock, I.M.; Corbitt, E.S.; et al. Observational and modeling constraints on global anthropogenic enrichment of mercury. Environ. Sci. Technol. 2015, 49, 4036–4047. [Google Scholar] [CrossRef] [PubMed]
- Streets, D.; Horowitz, H.; Jacob, D.; Lu, Z.; Levin, L.; ter Schure, A.; Sunderland, E. Total Mercury Released to the Environment by Human Activities. Environ. Sci. Technol. 2017, 51, 5969–5977. [Google Scholar] [CrossRef]
- Filatov, N. Onego Lake. Atlas; KarNTS RAN: Petrozavodsk, Russia, 2010; p. 151. [Google Scholar]
- Kulik, N.; Efremenko, N.; Belkina, N.; Strakhovenko, V.; Gatalskaya, E.; Orlov, A. Fe, Mn, Al, Cu, Zn, and Cr in the sedimentary matter of Lake Onego. Quat. Int. 2022. [Google Scholar] [CrossRef]
- Sokolov, V.; Kalinin, Y. Shungites of Karelia and Ways of their Complex Use; KarNTS RAN: Petrozavodsk, Russia, 1975; p. 240. [Google Scholar]
- Filippov, M. Shungitonosnye Porody Onezhskoi Structury; Fillipov, M.M., Ed.; KarNTS RAN: Petrozavodsk, Russia, 2002; p. 280. [Google Scholar]
- Taylor, S. Abundance of chemical elements in the continental crust: A new table. Geochim. Cosmochim. Acta 1964, 28, 1273–1285. [Google Scholar] [CrossRef]
- Lukashin, V.; Klyuvitkin, A.; Lisitzin, A.; Novigatsky, A. The MSL-110 small sediment trap. Oceanology 2011, 51, 699–703. [Google Scholar] [CrossRef]
- Strakhovenko, V.; Belkina, N.; Efremenko, N.; Potakhin, M.; Subetto, D.; Frolova, L.; Nigamatzyanova, G.; Ludikova, A.; Ovdina, E. The First Data on the Mineralogy and Geochemistry of the Suspension of Lake Onego. Russ. Geol. Geophys. 2022, 63, 55–71. [Google Scholar] [CrossRef]
- Davis, J.C.; Sampson, R.J. Statistics and Data Analysis in Geology, 3rd ed.; Wiley: New York, NY, USA, 1986; p. 646. [Google Scholar]
- Feng, C.; Wu, F.; Zhao, X.; Li, H.; Chang, H. Water quality criteria research and progress. Sci. China Earth Sci. 2012, 55, 882–891. [Google Scholar] [CrossRef]
- Efremova, T.; Sabylina, A.; Lozovik, P.; Slaveykova, V.; Zobkova, M.; Pasche, N. Seasonal and spatial variation in hydrochemical parameters of Lake Onego (Russia): Insights from 2016 field monitoring. Inland Waters 2019, 9, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Gorbunov, A.; Lyapunov, S.; Ermolaev, B.; Okina, O.; Frontas′eva, M.; Pavlov, S. Macro- and microelements distribution in urbanized ecosystems of karelia. Hum. Ecol. 2020, 27, 4–14. [Google Scholar] [CrossRef]
- Subetto, D.; Rybalko, A.; Strakhovenko, V.; Belkina, N.; Tokarev, M.; Potakhin, M.; Aleshin, M.; Belyaev, P.; Dubois, N.; Kuznetzov, V.; et al. Structure of Late Pleistocene and Holocene Sediments in the Petrozavodsk Bay, Lake Onego (NW Russia). Minerals 2020, 10, 964. [Google Scholar] [CrossRef]
- Strakhovenko, V.; Subetto, D.; Ovdina, E.; Danilenko, I.; Belkina, N.; Efremenko, N.; Maslov, A. Mineralogical and geochemical composition of Late Holocene bottom sediments of Lake Onego. J. Great Lakes Res. 2020, 46, 443–455. [Google Scholar] [CrossRef]
- Strakhovenko, V.; Subetto, D.; Ovdina, E.; Belkina, N.; Efremenko, N. Distribution of Elements in Iron-Manganese Formations in Bottom Sediments of Lake Onego (NW Russia) and Small Lakes (Shotozero and Surgubskoe) of Adjacent Territories. Minerals 2020, 10, 440. [Google Scholar] [CrossRef]
- Strakhovenko, V.; Belkina, N.; Subetto, D.; Rybalko, A.; Efremenko, N.; Kulik, N.; Potakhin, M.; Zobkov, M.; Ovdina, E.; Ludikova, A. Distribution of rare earth elements and yttrium in water, suspended matter and bottom sediments in Lake Onego: Evidence of the watershed transformation in the Late Pleistocene. Quat. Int. 2021. [Google Scholar] [CrossRef]
- Gorbunov, A.; Lyapunov, S.; Ermolaev, B. Distribution of mercury in natural and urban environments of karelia, northwest russia. Hum. Ecol. 2019, 26, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Ignatieva, N.; Petrova, T.; Guseva, M. Estimation of pollution of surface waters on the territory of the drainage basin of Lake Ladoga according to hydro-chemical indicators. Proc. Samara Sci. Cent. Russ. Acad. Sci. 2015, 17, 91–96. [Google Scholar]
- Sanin, A.; Strokov, A.; Terskii, P. Assessment of natural processes impact on content of heavy metals in water of Lake Onego. Vestnik of Saint Petersburg University. Earth Sci. 2020, 65, 146–171. [Google Scholar] [CrossRef]
- Nriagu, J.; Pacyna, J. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 1988, 333, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Clarkson, T. The three modern faces of mercury. Environ. Health Perspect 2002, 110, 11–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hylander, L.; Meili, M. The Rise and Fall of Mercury: Converting a Resource to Refuse After 500 Years of Mining and Pollution. Crit. Rev. Environ. Sci. Technol. 2005, 35, 1–36. [Google Scholar] [CrossRef]
- Wu, T. Distribution of methylmercury in a mercury-contaminated ecosystem. Pract. Period. Hazard. Toxic Radioact. Waste Manag. 2006, 10, 192–197. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Li, Q.; Meng, B.; Wang, C.; Feng, X.; He, T.; Dominik, J. Spatial distribution and methylation of mercury in a eutrophic reservoir heav-ily contaminated by mercury in Southwest China. Appl. Geochem. 2013, 33, 182–190. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, M.; Chien, L.; Lin, C.; Hsi, H. Distribution of mercury and methylmercury in surface water and surface sediment of river, irrigation canal, reservoir, and wetland in Taiwan. Environ. Sci. Pollut. Res. 2019, 26, 17762–17773. [Google Scholar] [CrossRef]
- Nelson, Y.; Lion, L.; Shuler, M.; Ghiorse, W. Effect of Oxide Formation Mechanisms on Lead Adsorption by Biogenic Manganese (Hydr)oxides, Iron (Hydr)oxides, and Their Mixtures. Environ. Sci. Technol. 2002, 36, 421–425. [Google Scholar] [CrossRef]
- Beal, S.; Osterberg, E.; Zdanowicz, C.; Fisher, D. Ice Core Perspective on Mercury Pollution during the Past 600 Years. Environ. Sci. Technol. 2015, 49, 7641–7647. [Google Scholar] [CrossRef]
- Yudovich, Y. Geochemistry of Manganese; IG Komi NTs URO RAN: Syktyvkar, Russia, 2014; p. 540. [Google Scholar]
Element | Electrothermal Atomization | Flame Atomization |
---|---|---|
Al | - | 5.0–5.0 × 104 |
K | - | 5.0–5.0 × 105 |
Na | - | 5.0–5.0 × 105 |
Mg | - | 5.0–5.0 × 105 |
Ca | - | 5.0–5.0 × 103 |
Fe | - | 5.0–5.0 × 103 |
Be | 0.50–1.0 × 103 | 5.0–1.0 × 103 |
V | - | 5.0–1.0 × 103 |
Cr | - | 1.0–5.0 × 103 |
Mn | - | 1.0–5.0 × 103 |
Co | 0.5–1.0 × 103 | 1.0–5.0 × 103 |
Ni | 0.5–1.0 × 103 | 1.0–5.0 × 103 |
Cu | - | 1.0–5.0 × 103 |
Zn | - | 1.0–5.0 × 103 |
Sr | - | 5.0–5.0 × 103 |
Cd | 0.05–1.0 × 103 | 1.0–5.0 × 103 |
Sb | 5.0–1.0 × 103 | 1.0–5.0 × 103 |
Ba | - | 5.0–5.0 × 103 |
Pb | 0.5–1.0 × 103 | 1.0–5.0 × 103 |
Lake Area | Hg in Sedimentation Traps Material (2020/2021), μg/g | Hg in Water | Hg in Bottom Sediments | ||
---|---|---|---|---|---|
Hgdissolved, μg/L | Hgsuspended, μg/L | 0–20 cm, μg/g | 20–200 cm, μg/g | ||
Povenetsky Bay | 0.76/ND | 0.01 | 0.012 | 0.041 | 0.023 |
Zaonezhsky Bay | 0.09/0.07 | 0.3 | 0.06 | 0.05 | 0.019 |
Small Onego | 0.19/0.09 | 0.385 | 0.003 | 0.053 | 0.033 |
Lizhemskaya Bay | 4.37/ND | 0.25 | 0.003 | 0.073 | 0.044 |
Unitskaya Bay | 0.18/0.08 | 0.125 | 0.02 | 0.07 | 0.016 |
Kondopoga Bay | 0.10/0.15 | 0.01 | 0.073 | 0.089 | 0.031 |
Petrozavodsk Bay | 0.11/0.16 | 0.36 | 0.019 | 0.052 | 0.027 |
Big Onego | 0.12/0.12 | 0.54 | 0.012 | 0.076 | 0.058 |
Central Onego | ND/0.10 | 0.173 | 0.002 | 0.069 | 0.044 |
South Onego | 0.06/0.07 | 0.85 | 0.002 | 0.08 | 0.044 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malov, V.; Subetto, D.; Strakhovenko, V.; Ovdina, E.; Belkina, N. Distribution of Mercury in the Water-Suspended Matter-Bottom Sediments System of the Lake Onego Water Area. Minerals 2022, 12, 1410. https://doi.org/10.3390/min12111410
Malov V, Subetto D, Strakhovenko V, Ovdina E, Belkina N. Distribution of Mercury in the Water-Suspended Matter-Bottom Sediments System of the Lake Onego Water Area. Minerals. 2022; 12(11):1410. https://doi.org/10.3390/min12111410
Chicago/Turabian StyleMalov, Victor, Dmitry Subetto, Vera Strakhovenko, Ekaterina Ovdina, and Natalia Belkina. 2022. "Distribution of Mercury in the Water-Suspended Matter-Bottom Sediments System of the Lake Onego Water Area" Minerals 12, no. 11: 1410. https://doi.org/10.3390/min12111410
APA StyleMalov, V., Subetto, D., Strakhovenko, V., Ovdina, E., & Belkina, N. (2022). Distribution of Mercury in the Water-Suspended Matter-Bottom Sediments System of the Lake Onego Water Area. Minerals, 12(11), 1410. https://doi.org/10.3390/min12111410