Polymetallic Sulfide–Quartz Vein System in the Koudiat Aïcha Massive Sulfide Deposit, Jebilet Massif, Morocco: Microanalytical and Fluid Inclusion Approaches
Abstract
:1. Introduction
2. Geological Setting
3. The Koudiat Aïcha Deposit
4. Methods
5. Mineralogy, Paragenesis and Trace Elements
5.1. Ore Stage I
5.2. Ore Stage II
5.3. Ore Stage III (Cu-Polymetallic Ore Veins)
5.4. Trace Element Distribution
6. Fluid Inclusion Studies
6.1. Carbonic and Aqueous Carbonic Fluids: Stage II
6.2. Aqueous Fluids, Stage III (Cu Base Metals and Precious Metals)
7. Discussion
7.1. Early (Quartz) Veins (Stage II)
7.2. Later (Carbonate) Veins (Stage III)
7.3. Koudiat Aïcha Vein Ores in Their Regional Massive Sulfide Context
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huvelin, P. Etude géologique et gîtologique du massif hercynien des Jebilet (Maroc occidental). Notes Mémoires Service Géologique Maroc 1977, 232, 308. [Google Scholar]
- Bernard, A.J.; Maier, O.W. Mellal. Aperçu sur les amas sulfurés massifs des hercynides marocaines. Miner. Depos. 1988, 23, 104–114. [Google Scholar] [CrossRef]
- Hibti, M. Les amas Sulfurés des Guemassa et des Jebilet (Meseta Sud-Occidentale, Maroc): Temoins de L’hydrothermalisme Précoce dans le Bassin Mesetien. Ph.D. Thesis, Cadi Ayyad University, Marrakesh, Morocco, 2001; 301p. [Google Scholar]
- Belkabir, A.; Gibson, H.L.; Marcoux, E.; Lentz, D.; Rziki, S. Geology and wall rock alteration at the Hercynian Draa Sfar Zn–Pb–Cu massive sulphide deposit, Morocco. Ore Geol. Rev. 2008, 33, 280–306. [Google Scholar] [CrossRef] [Green Version]
- Marcoux, E.; Belkabir, A.; Gibson, H.L.; Lentz, D.; Ruffet, G. Draa Sfar, Morocco: A Visean (331 Ma) pyrrhotite-rich, polymetallic volcanogenic massive sulphide deposit in a Hercynian sediment-dominant terrane. Ore Geol. Rev. 2008, 33, 307–328. [Google Scholar] [CrossRef] [Green Version]
- Moreno, C.; Sáez, R.; González, F.; Almodóvar, G.; Toscano, M.; Playford, G.; Alansari, A.; Rziki, S.; Bajddi, A. Age and depositional environment of the Draa Sfar massive sulphide deposit, Morocco. Miner. Depos. 2008, 43, 891–911. [Google Scholar] [CrossRef]
- Ben Aïssi, L. Contribution à l’étude gîtologique des amas sulfurés polymétalliques de Draa Sfar et de Koudiat Aïcha: Comparaison avec les gisements de Ben Sliman et de Kettara (Jebilets centrales, Maroc hercynien). Unpublished. Ph.D. Thesis, Cadi Ayyad University, Marrakesh, Morocco, 2008; 353p. [Google Scholar]
- Essaifi, A.; Hibti, M. The hydrothermal system of Central Jebilet (Variscan Belt, Morocco): A genetic association between bimodal plutonism and massive sulphide deposits? J. Afr. Earth Sci. 2008, 50, 188–203. [Google Scholar] [CrossRef]
- N’Diaye, I.; Essaifi, A.; Dubois, M.; Lacroix, B.; Goodenough, K.M.; Maacha, L. Fluid flow and polymetallic sulfide mineralization in the Kettara shear zone (Jebilet Massif, Variscan Belt, Morocco). J. Afr. Earth Sci. 2016, 119, 17–37. [Google Scholar] [CrossRef] [Green Version]
- Essaifi, A.; Goodenough, K.; Tornos, F.; Outigua, A.; Ouadjou, A.; Maacha. The Moroccan Massive Sulphide Deposits: Evidence for a Polyphase Mineralization. Minerals 2019, 9, 156. [Google Scholar] [CrossRef] [Green Version]
- Outigua, A.; Essaifi, A.; Corsini, M.; Outhounjite, M.; Zouhair, M. Sidi M’Barek: A representative example of the Moroccan massive sulphide deposits. Geol. Soc. Lond. Spec. Publ. 2021, 502, 67–95. [Google Scholar] [CrossRef]
- Admou, S.; Branquet, Y.; Badra, L.; Barbanson, L.; Outhounjite, M.; Khalifa, A.; Zouhair, M.; Maacha, L. The Hajjar Regional Transpressive Shear Zone (Guemassa Massif, Morocco): Consequences on the deformation of the Base-Metal Massive Sulfide Ore. Minerals 2018, 8, 435. [Google Scholar] [CrossRef] [Green Version]
- Castroviejo, R.; Quesada, C.; Soler, M. Post-depositional tectonic modification of VMS deposits in Iberia and its economic significance. Miner. Depos. 2011, 46, 615–637. [Google Scholar] [CrossRef]
- Chauvet, A. Structural Control of Ore Deposits: The Role of Pre-existing Structures on the Formation of Mineralised Vein Systems. Minerals 2019, 9, 56. [Google Scholar]
- Kampmann, T.; Jansson, N.F.; Stephens, M.B.; Olin, P.H.; Gilbert, S.; Wanhainen, C. Syn-tectonic sulphide remobilization and trace element redistribution at the Falun pyritic Zn-Pb-Cu-(Au-Ag) sulphide deposit, Bergslagen, Sweden. Ore Geol. Rev. 2018, 96, 48–71. [Google Scholar] [CrossRef]
- Wang, C.; Zheng, Y.; Yu, P. Ore genesis and fluid evolution of the Kaladawan South Zn–Pb–Cu ore field, eastern Altyn Mountains (NW China): Evidence from fluid inclusions, H–O isotopes and geochronology. Ore Geol. Rev. 2018, 102, 300–312. [Google Scholar] [CrossRef]
- Lotfi, F.; Belkabir, A.; Brown, A.C.; Marcoux, E.; Brunet, S.; Maacha, L. Geology and Mineralogy of the Hercynian Koudiat Aïcha Polymetallic (Zn-Pb-Cu) Massive Sulphide Deposit, Central Jebilet, Morocco. Explor. Min. Geol. 2008, 17, 145–162. [Google Scholar] [CrossRef]
- Chauvet, A.; Onézime, J.; Charvet, J.; Barbanson, L.; Faure, M. Syn- to late-tectonic stockwork emplacement within the Spanish section of the Iberian Pyrite Belt: Structural, textural and mineralogical constraints in the Tharsis-La Zarza areas. Econ. Geol. 2004, 99, 1781–1792. [Google Scholar] [CrossRef]
- Chauvet, A. Editorial for Special Issue “Structural Control of Mineral Deposits: Theory and Reality”. Minerals 2019, 9, 171. [Google Scholar] [CrossRef] [Green Version]
- Essarraj, S.; Boiron, M.C.; Cathelineau, M.; Tarantola, A.; Leisen, M.; Hibti, M. Mineralogy and ore fluid chemistry of the Roc Blanc Ag deposit, Jebilet Variscan massif, Morocco. J. Afr. Earth Sci. 2017, 127, 175–193. [Google Scholar] [CrossRef]
- Nshimiyimana, F.; Essarraj, S.; Hibti, M.; Boulvais, P.; Boyce, A.J.; Marignac, C.; Maacha, L. The Koudia El Hamra Ag–Pb–Zn deposit, Jebilet, Morocco: Mineralogy and ore fluid characterization. J. Afr. Earth Sci. 2018, 145, 1–17. [Google Scholar] [CrossRef]
- Essarraj, S.; Boiron, M.C.; Cathelineau, M.; Peiffert, C. Evaporitic brines and copper-sulfide ore at Jbel Haïmer (Central Jebilet, Morooco). Ore Geol. Rev. 2021, 129, 103920. [Google Scholar] [CrossRef]
- Essarraj, S.; Boiron, M.C.; Cathelineau, M.; Peiffert, C. Evaporitic brines and copper-sulfide ore at Jbel Haïmer (Central Jebilet, Morooco): A reply. Ore Geol. Rev. 2021, 140, 104409. [Google Scholar] [CrossRef]
- Lagarde, J.L.; Choukroune, P. Cisaillement ductile et granitoïdes syntectoniques: L’exemple du massif hercynien des Jebilet (Maroc). Bull. Société Geol. De Fr. 1982, 24, 299–307. [Google Scholar] [CrossRef]
- Le Corre, C.; Bouloton, J. Un modèle de ‘‘structure en fleur’’ associant décrochement et convergence: Les Jebilet centro-occidentales (Maroc hercynien). Comptes Rendus Académie Sci. Paris 1987, 13, 751–755. [Google Scholar]
- Aarab, E.; Beauchamp, J. Le magmatisme carbonifère préorogénique des Jebilet centrales (Maroc). Précisions pétrographiques et sédimentaires. Implications géodynamiques. Comptes Rendus Académie Sci. Paris 1987, 304, 169–175. [Google Scholar]
- Beauchamp, J. Le Carbonifère inférieur des Jebilet et de l’Atlas de Marrakech (Maroc): Migration et comblement d’un bassin marin. Bull. Société Géologique De Fr. 1984, 7, 1025–1032. [Google Scholar] [CrossRef]
- Beauchamp, J.; Izart, A.; Piqué, A. Les bassins d’avant-pays de la chaîne hercynienne au Carbonifère inférieur. Can. J. Earth Sci. 1991, 28, 2024–2041. [Google Scholar] [CrossRef]
- Huvelin, P. Sur l’âge viséen supérieur des schistes de Kettara et du Jbel Sarhlef (Jebilet centrales, Maroc). Comptes Rendus Somm. Société Géologique De Fr. 1961, 290–291. [Google Scholar]
- Bordonaro, M. Tectonique et pétrographie du district à pyrrhotite de Kettara (Paléozoïque des Jebilet, Maroc). Unpublished. Ph.D. Thesis, Louis Pasteur University, Strasbourg, France, 1983; 132p. [Google Scholar]
- Essaifi, A.; Samson, S.; Goodenough, K. Geochemical and Sr–Nd isotopic constraints on the petrogenesis and geodynamic significance of the Jebilet magmatism (Variscan Belt, Morocco). Geol. Mag. 2013, 151, 666–691. [Google Scholar] [CrossRef] [Green Version]
- Essaifi, A.; Potrel, A.; Capdevila, R.; Lagarde, J.L. U–Pb dating: Emplacement age of the bimodal magmatism of Central Jebilet (Variscan Belt, Morocco). Geodynamic implications. Comptes Rendus Geosci. 2003, 335, 193–203. [Google Scholar] [CrossRef]
- Essaifi, A.; Lagarde, J.L.; Capdevila, R. Deformation and displacement from shear zone patterns in the Variscan upper crust, Jebilet, Morocco. J. Afr. Earth Sci. 2001, 32, 335–350. [Google Scholar] [CrossRef]
- Mrini, Z.; Rafi, A.; Duthou, J.L.; Vidal, P. Chronologie Rb–Sr des granitoïdes hercyniens du Maroc: Conséquences. Bull. Société Géologique De Fr. 1992, 163, 281–291. [Google Scholar]
- Delchini, S.; Lahfid, A.; Lacroix, B.; Baudin, T.; Hoepffner, C.; Guerrot, C.; Lach, P.; Saddiqi, O.; Ramboz, C. The geological evolution of the Variscan Jebilet massif, Morocco, inferred from new structural and geochronological analyses. Tectonics 2018, 37, 4470–4493. [Google Scholar] [CrossRef] [Green Version]
- El Hassani, A. Etude lithostratigraphique, tectonique et pétrographique de la région de Sidi Bou-Othmane (Maroc). Contribution à la connaissance de l’évolution du segment hercynien des Jebilets centrales. Unpublished. Ph.D. Thesis, University of Aix-Marseille, Marseille, France, 1980; 114p. [Google Scholar]
- Bouloton, J. Mise en évidence de cordiérite héritée des terrains traversés dans le pluton granitique des Oulad Ouaslam (Jebilet, Maroc). Can. J. Earth Sci. 1992, 29, 658–668. [Google Scholar] [CrossRef]
- Tisserant, D. Les isotopes du strontium et l’histoire hercynienne du Maroc. Etude de quelques massifs atlasiques et m’es’etiens. Unpublished. Ph.D. Thesis, University of Strasbourg, Strasbourg, France, 1977; 103p. [Google Scholar]
- Delchini, S.; Lahfid, A.; Plunder, A.; Michard, A. Applicability of the RSCM geothermometry approach in a complex tectono-metamorphic context: The Jebilet massif case study (Variscan Belt, Morocco). Lithos 2016, 256–257, 1–12. [Google Scholar] [CrossRef]
- Gasquet, D.; Bouloton, J. Les Filons de Microdiorite des Jebilet Centrales (Meseta Marocaine): Pré-Rifting Permien? Réunion extraordinaire SGF: Marrakech, Morocco, 1995; p. 55. [Google Scholar]
- Youbi, N.; Bellon, H.; Marzin, A.; Piqué, A.; Cotten, J.; Cabanis, B. Du cycle orogénique hercynien au pré-rifting de l’Atlantique central au Maroc occidental: Les microdiorites des Jbilet sont-elles des marqueurs magmatiques de ce passage? Comptes Rendus Académie Sci. Paris 2001, 333, 295–302. [Google Scholar] [CrossRef]
- Dostal, J.; Keppie, J.D.; Hamilton, M.A.; Aarab, E.M.; Lefort, J.P.; Murphy, J.B. Crustal xenoliths in Triassic lamprophyre dykes in western Morocco: Tectonic implications for the Rheic ocean suture. Geol. Mag. 2005, 142, 159–172. [Google Scholar] [CrossRef]
- Bouloton, J.; Gasquet, D.; Pin, C. Petrogenesis of the Early-Triassic quartz-monzodiorite dykes from Central Jebilet (Moroccan Meseta): Trace element and Nd-Sr isotope constraints on magma sources, and inferences on their geodynamic context. J. Afr. Earth Sci. 2019, 149, 451–464. [Google Scholar] [CrossRef]
- Bouloton, J.; Gasquet, D. Melting and undercooled crystallization of felsic xenoliths from minor intrusions (Jebilet massif, Morocco). Lithos 1995, 35, 201–219. [Google Scholar] [CrossRef]
- Tourani, A.; Lund, J.J.; Banaouiss, N.; Gaupp, R. Stratigraphy of Triassic syn-rift deposits in western Morocco. Zent. Geol. Palaeontol. 2000, 9, 1193–1215. [Google Scholar]
- Medina, F. Superimposed extensional tectonics in the Argana Triassic formations (Morocco), related to the early rifting of the Central Atlantic. Geol. Mag. 1991, 128, 525–536. [Google Scholar] [CrossRef]
- El Arabi, E.H. La série permienne et triasique du rift haut-atlasique: Nouvelles datations; évolution tectonosédimentaire. Unpublished. Ph.D. Thesis, Hassan II University, Casablanca, Morocco, 2007; 225p. [Google Scholar]
- Studer, M.A. Tectonique et pétrographie des roches sédimentaires, éruptives et métamorphiques de la région de Tounfite-Tirrhist (Haut Atlas central mésozoïque, Maroc). Notes Mémoires Ser. Géologique Maroc 1987, 43, 65–197. [Google Scholar]
- Saddiqi, O.; El Haïmer, F.; Michard, A.; Barbarand, J.; Ruiz, G.M.H.; Mansour, E.M.; Leturmy, P.; Frizon de Lamotte, D. Apatite fission-track analyses on basement granites from south-western Meseta, Morocco: Paleogeographic implications and interpretation of AFT age discrepancies. Tectonophysics 2009, 475, 29–37. [Google Scholar] [CrossRef]
- Frizon de Lamotte, D.; Zizi, M.; Missenard, Y.; Hafid, M.; El Azzouzi, M.; Charrière, A.; Maury, R.C.; Taki, Z.; Benammi, M.; Michard, A. The Atlas system. In Continental Evolution: The Geology of Morocco; Michard, A., Saddiqi, O., Chalouan, A., Frizon de Lamotte, D., Eds.; Springer: Heidelberg, Germany, 2008; pp. 133–202. [Google Scholar]
- Lotfi, F.; Belkabir, A.; Brunet, S.; Brown, A.C.; Marcoux, E. Lithogeochemical, mineralogical analyses and oxygen–hydrogen isotopes of the Hercynian Koudiat Aïcha massive sulphide deposit, Morocco. J. Afr. Earth Sci. 2010, 56, 150–166. [Google Scholar] [CrossRef] [Green Version]
- Fietzke, J.; Frische, M. Experimental evaluation of elemental behavior during LA-ICP-MS: Influences of plasma conditions and limits of plasma robustness. J. Anal. At. Spectrom. 2016, 31, 234–244. [Google Scholar] [CrossRef] [Green Version]
- Wolf, R.E.; Wilson, S.A. USGS Reference Materials Program: U.S. Geological Survey Fact Sheet-3056. 2007; p. 4. Available online: http://minerals.cr.usgs.gov/geo_chem_stand/ (accessed on 10 October 2022).
- Wilson, S.A.; Ridley, W.I.; Koenig, A.E. Development of sulfide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique. J. Anal. At. Spectrom. 2002, 17, 406–409. [Google Scholar] [CrossRef]
- Wohlgemuth-Ueberwasser, C.C.; Ballhaus, C.; Berndt, J.; Stotternée Paliulionyte, V.; Meisel, T. Synthesis of PGE sulfide standards for laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Contrib. Mineral. Petrol. 2007, 154, 607–617. [Google Scholar] [CrossRef]
- Wise, S.A.; Watters, R.L. Cerificate of Analysis Standard Reference Material 616; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Fietzke, J.; Liebetrau, V.; Günther, D.; Gürs, K.; Hametner, K.; Zumholz, K.; Hansteen, T.H.; Eisenhauer, A. An alternative data acquisition and evaluation strategy for improved isotope ratio precision using LA-MC-ICP-MS applied to stable and radiogenic strontium isotopes in carbonates. J. Anal. At. Spectrom. 2008, 23, 955–961. [Google Scholar] [CrossRef] [Green Version]
- Boiron, M.C.; Essarraj, S.; Sellier, E.; Cathelineau, M.; Lespinasse, M.; Poty, B. Identification of fluid inclusions in relation to their host microstructural domains in quartz by cathodoluminescence. Geochim. Cosmochim. Acta 1992, 56, 175–185. [Google Scholar] [CrossRef]
- Shepherd, T.J. Temperature- programmable heating-freezing stage for microthermometric analysis of fluid inclusion. Econ. Geol. 1981, 76, 1244–1247. [Google Scholar] [CrossRef]
- Roedder, E. Fluid Inclusions. Rev. Mineral. 1984, 12, 644. [Google Scholar] [CrossRef]
- Bodnar, R.J.; Vityk, M.O. Interpretation of microthermometric data for H2O-NaCl fluid inclusions. In Fluid Inclusions in Minerals, Methods and Applications; De Vivo, B., Frezzotti, M.L., Eds.; Virginia Tech: Blacksburg, VA, USA, 1994; pp. 117–130. [Google Scholar]
- Steele-MacInnis, M.; Bodnar, R.J.; Naden, J. Numerical model to determine the composition of H2O-NaCl-CaCl2 fluid inclusions based on microthermometric and microanalytical data. Geochim. Cosmochim. Acta 2011, 75, 21–40. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, E.J.; Vaughan, D.J. Magnetic phase relations of pyrrhotite. J. Geomagn. Geoelectr. 1972, 24, 441–458. [Google Scholar] [CrossRef] [Green Version]
- Cook, N.J.; Ciobanu, C.L.; Pring, A.; Skinner, W.; Shimizu, M.; Danyushevsky, L.; Saini-Eidukat, B.; Melcher, F. Trace and minor elements in sphalerite: A LA-ICPMS study. Geochim. Cosmochim. Acta 2009, 73, 4761–4791. [Google Scholar] [CrossRef]
- Bowles, J.F.W.; Howie, R.A.; Vaugnan, D.J.; Zussman, J. Rock-Forming Minerals 5A, Non-Silicates: Oxides, Hydroxides, and Sulfides, 2nd ed.; The Geological Society of London: London, UK, 2011; 920p. [Google Scholar]
- Belissont, R.; Boiron, M.C.; Luais, B.; Cathelineau, M. LA-ICP-MS analyses of minor and trace elements and bulk Geisotopes in zoned Ge-rich sphalerites from the Noailhac—Saint- Salvy deposit (France): Insights into incorporation mechanismsand ore deposition processes. Geochim. Cosmochim. Acta 2014, 126, 518–540. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L.; Brugger, J.; Etschmann, B.; Howard, D.L.; de Jonge, M.D.; Ryan, C.; Paterson, D. Determination of the oxidation state of Cu in substituted Cu-In-Fe- bearing sphalerite via μ-XANES spectroscopy. Am. Mineral. 2012, 97, 476–479. [Google Scholar] [CrossRef]
- Wilkinson, J.J. Fluid inclusions in hydrothermal ore deposits. Lithos 2001, 55, 229–272. [Google Scholar] [CrossRef]
- Larson, L.T.; Miller, J.D.; Nadeau, J.E.; Roedder, E. Two sources of error in low-temperature inclusion homogenization determination, and corrections on published temperatures for the East Tennessee and Laisvall deposits. Econ. Geol. 1973, 68, 113–116. [Google Scholar] [CrossRef]
- Bodnar, R.J.; Bethke, P.M. Systematics of stretching of fluid inclusions I: Fluorite and sphalerite at 1 atmosphere confining pressure. Econ. Geol. 1984, 79, 141–161. [Google Scholar] [CrossRef]
- Ulrich, M.R.; Bodnar, R.J. Systematics of stretching of fluid inclusions. II. Barite at 1 atm confining pressure. Econ. Geol. 1988, 83, 1037–1046. [Google Scholar] [CrossRef]
- Goldstein, R.H.; Reynolds, T.J. Systematics of Fluid Inclusions in Diagenetic Minerals; Short Course 31; Society of Economic Paleontologists and Mineralogists: Tulsa, OK, USA, 1994; 199p. [Google Scholar] [CrossRef]
- Bastoul, A. Origine et évolution des Fluides Hydro-Carbo-Azotés dans les Formations Métamorphiques: Relations avec les Minéralisations Associées (U, Au, graphite). Unpublished. Ph.D. Thesis, Nancy I University, Nancy, France, 1992; 311p. [Google Scholar]
- Frenzel, M.; Hirsch, T.; Gutzmer, J. Gallium, germanium, indium, and other minor and trace elements in sphalerite as a function of deposit type—A meta-analysis. Ore Geol. Rev. 2016, 76, 52–78. [Google Scholar] [CrossRef]
- Bourdelle, F.; Cathelineau, M. Low- Temperature chlorite geothermometry: A graphical representation based on a T-R2+-Si diagram. Eur. J. Mineral. 2015, 27, 617–626. [Google Scholar] [CrossRef]
- Hollister, L.S.; Burruss, R.C. Phase equilibria in fluid inclusions from the Khtada Lake metamorphic complex. Geochim. Cosmochim. Acta 1976, 40, 163–175. [Google Scholar] [CrossRef]
- Touret, J. An empirical phase diagram for a part of N2-CO2 system at low temperatures. Chem. Geol. 1982, 37, 49–58. [Google Scholar] [CrossRef]
- Huff, T.A.; Nabelek, P.I. Production of carbonic fluids during metamorphism of graphitic pelites in a collisional orogeny. An assessment from fluid inclusions. Geochim. Cosmochim. Acta 2007, 71, 4997–5015. [Google Scholar] [CrossRef]
- Wright, A.J.; Blamey, N.J.F.; Conliffe, J.; Costanzo, A.; Parnell, J. Origin of vein-graphite derived from metamorphic fluids in Moine (Glenfinnan Group) rocks NW Scotland. Scott. J. Geol. 2012, 48, 47–59. [Google Scholar] [CrossRef]
- Lebedev, V.I.; Nagaytsev, Y.V. Minor elements in metamorphic rocks as an ore-metal source for certain deposits. Geochem. Int. 1980, 17, 31–39. [Google Scholar]
- Haack, U.; Heinrichs, H.; Boness, M.; Schneider, A. Loss of metals from pelites during regional metamorphism. Contrib. Mineral. Petrol. 1984, 85, 116–132. [Google Scholar] [CrossRef]
- Hammerli, J.; Spandler, C.; Oliver, N.H.S.; Sossi, P.; Dipple, G.M. Zn and Pb mobility during metamorphism of sedimentary rocks and potential implications for some base metal deposits. Miner. Depos. 2015, 50, 657–664. [Google Scholar] [CrossRef]
- Zhong, R.; Li, W.; Chen, Y.; Huo, H. Ore-forming conditions and genesis of the Huogeqi Cu–Pb–Zn–Fe deposit in the northern margin of the North China Craton: Evidence from ore, petrologic characteristics. Ore Geol. Rev. 2012, 44, 107–120. [Google Scholar] [CrossRef]
- Liu, B.; Cao, F.G.; Liu, W.G.; Lei, H.M.; Liu, M.F. Geological feature and metallogenic conditions analysis of Kaladawanxi Pb-Zn ore deposit in the Altyn area. Xinjiang Geol. 2012, 30, 55–58, (In Chinese, with English abstract). [Google Scholar]
- Walter, B.F.; Burisch, M.; Fusswinkel, T.; Marks, M.A.W.; Steele-MacInnis, M.; Wälle, M.; Apukhtina, O.; Markl, G. Multi-reservoir fluid mixing processes in rift-related hydrothermal veins, Schwarzwald, SW-Germany. J. Geochem. Explor. 2018, 186, 158–186. [Google Scholar] [CrossRef]
- Walter, B.F.; Kortenbruck, P.; Scharrer, M.; Zeitvogel, C.; Wälle, M.; Mertz-Kraus, R.; Markl, G. Chemical evolution of ore-forming brines—Basement leaching, metal provenance, and the redox link between barren and ore-bearing hydrothermal veins. A case study from the Schwarzwald mining district in SW-Germany. Chem. Geol. 2019, 506, 126–148. [Google Scholar] [CrossRef]
- Heijlen, W.; Banks, D.A.; Muchez, P.; Stensgard, B.M.; Yardley, B. The Nature of Mineralizing Fluids of the Kipushi Zn-Cu Deposit, Katanga, Democratic Repubic of Congo: Quantitative Fluid Inclusion Analysis using Laser Ablation ICP-MS and Bulk Crush-Leach Methods. Econ. Geol. 2008, 103, 1459–1482. [Google Scholar] [CrossRef]
- Pasava, J. Geochemistry and role of anoxic sediments in the origin of the Imiter deposit in Morocco. Czech Geol. Surv. Bull. 1994, 69, 1–11. [Google Scholar]
- Borisenko, A.S.; Lebedev, V.I.; Borovikov, A.A.; Pavlova, G.G.; Kalinin, Y.A.; Nevol’ko, P.A.; Maacha, L.; Kostin, A.V. Forming conditions and age of native silver deposits in Anti-Atlas (Morocco). Dokl. Earth Sci. 2014, 456, 663–666. [Google Scholar] [CrossRef]
- Nshimiyimana, F.; Essarraj, S.; Hibti, M.; Boulvais, P.h.; Boyce, J.A. Post-Hercynian circulation of brines in the central Jebilet: The Bir N’has, Sarhlef and Bramram Pb-Zn deposits, Morocco. In Proceedings of the Goldschmidt 2020, Honolulu, HI, USA, 21–26 June 2020. [Google Scholar] [CrossRef]
- Valenza, K.; Moritz, R.; Mouttaqi, A.; Fontignie, D.; Sharp, Z. Vein and karst barite deposits in the western Jebilet of Morocco: Fluid inclusion and isotope (S, O, Sr) evidence for regional fluid mixing related to Central Atlantic rifting. Econ. Geol. 2000, 95, 587–606. [Google Scholar]
- Burisch, M.; Walter, B.F.; Wälle, M.; Markl, G. Tracing fluid migration pathways in the root zone below unconformity-related hydrothermal veins: Insights from trace element systematics of individual fluid inclusions. Chem. Geol. 2016, 429, 44–50. [Google Scholar] [CrossRef]
- Burisch, M.; Markl, G.; Gutzmer, J. Breakup with benefits -hydrothermal mineral systems related to the disintegration of a supercontinent. Earth Planet. Sci. Lett. 2022, 580, 117373. [Google Scholar] [CrossRef]
- Laville, E.; Piqué, A. La distension crustale atlantique et atlasique au Maroc au début du Mésozoïque: Le rejeu des structures hercyniennes. Bull. Société Geol. De Fr. 1991, 162, 1161–1171. [Google Scholar]
- Piqué, A.; Laville, E. L’ouverture de l’Atlantique Central: Un rejeu en extension des structures paléozoïques. Comptes Rendus De L’académie Des Sci. Paris 1993, 317, 1325–1328. [Google Scholar]
- Piqué, A.; Laville, E. The central Atlantic rifting: Reactivation of Palaeozoic structures. J. Geodyn. 1996, 21, 235–255. [Google Scholar] [CrossRef]
- Essarraj, S.; Boiron, M.C.; Cathelineau, M.; Banks, D.A.; El Boukhari, A.; Chouhaïdi, M.Y. Brines related to Ag deposition in the Zgounder silver deposit (Anti-Atlas, Morocco). Eur. J. Mineral. 1998, 10, 1201–1214. [Google Scholar] [CrossRef]
- Essarraj, S.; Boiron, M.C.; Cathelineau, M.; Banks, D.A.; Benharref, M. Penetration of surface evaporated brines into the Proterozoic basement and deposition of Co and Ag at Bou Azzer (Morocco): Evidence from fluid inclusions. J. Afr. Earth Sci. 2005, 41, 25–39. [Google Scholar] [CrossRef]
- Essarraj, S.; Boiron, M.C.; Cathelineau, M.; Tarantola, A.; Leisen, M.; Boulvais, P.; Maacha, L. Basinal brines at the origin of the Imiter Ag-Hg deposit (Anti-Atlas, Morocco): Evidence from LA-ICP-MS data on fluid inclusions, halogen signatures and stable Isotopes (H, C, O). Econ. Geol. 2016, 111, 1753–1781. [Google Scholar] [CrossRef]
- Essarraj, S.; Boiron, M.C.; Cathelineau, M.; Tarantola, A.; Leisen, M.; Boulvais, P. Basinal brines at the origin of the Imiter Ag-Hg deposit (Anti-Atlas-Morocco): Evidence from LA-ICP-MS data on fluid inclusions, Halogen signatures and stable isotopes (H, C, O). A reply. Econ. Geol. 2017, 112, 1273–1277. [Google Scholar] [CrossRef]
- Walter, B.F.; Burisch, M.; Markl, G. Long-term chemical evolution and modification of continental basement brines—A field study from the Schwarzwald, SW Germany. Geofluids 2016, 16, 604–623. [Google Scholar] [CrossRef] [Green Version]
- Haschke, S.; Gutzmer, J.; Wohlgemuth-Ueberwasser, C.; Kraemer, D.; Burisch, M. The Niederschlag fluorite-(barite) deposit, Erzgebirge/Germany—A fluid inclusion and trace element study. Miner. Depos. 2021, 56, 1071–1086. [Google Scholar] [CrossRef]
- Guilcher, M.; Albert, R.; Gerdes, A.; Gutzmer, J.; Burisch, M. Timing of native metal-arsenide (Ag-Bi-Co-Ni-As±U) veins in continental rift zones—In situ U-Pb geochronology of carbonates from the Erzgebirge/Krušné Hory province. Chem. Geol. 2021, 584, 120476. [Google Scholar] [CrossRef]
Symbol | Definition |
---|---|
Tm CO2 | Melting temperature of dry ice (solid CO2) in inclusions rich in molecular gases |
Th CO2 | Homogenization temperature of the carbonic phase in inclusions rich in molecular gases |
Te | Temperature at which the first liquid appears in inclusion during low-temperature measurements |
Tm hh | Hydrohalite melting temperature |
Tm ice | Ice melting temperature |
Tm cl | Clathrate melting temperature |
Th (L→ V) | Total homogenization temperature (L meaning homogenization to the liquid phase, V meaning homogenization to the vapor phase) |
Tm h | Halite (NaCl) melting temperature, Tm NaCl for Roedder [60] |
Stage II | Stage III | ||||
---|---|---|---|---|---|
Pyrite 2 | Pyrrhotite 2 | Sphalerite 2 | Chalcopyrite | Galena | |
S | 52.07–54.84 (53.29) | 38.03–42.5 (39.64) | 30.80–32.88 (31.76) | 30.29–35.9 (33.39) | 12.17–14.93 (13.90) |
Fe | 45.71–46.6 (46.34) | 57.04–62.29 (59.95) | 2.36–3.65 (3.04) | 28.24–33.56 (30.91) | <LOD – 2.89 |
Zn | <LOD – 13 | <LOD – 23 | 62.26–64.49 (63.29) | 266–632 (419) | <LOD – 19 |
Cu | <LOD – 2 | 0–3 | 32–207 (79) | 33.34–37.63 (35.16) | <LOD – 17 |
As | 836–8490 (2550) | <LOD – 82 | 1–4 (2) | 2–30 (12) | <LOD – 9 |
Pb | 15–243 (141) | 5–132 (109) | 2–452 (51) | 40–596 (235) | 84.09–85.34 (84.5) |
Mn | 2–33 (6) | 1–31 (12) | 1.44–1.69 (1.57) | 2–139 (29) | <LOD – 2.3 |
Co | 6–572 (320) | <LOD – 1 | <LOD – 2 (1) | <LOD – 16 (6) | traces |
Ni | 8–71 (27) | 11–34 (22) | <LOD–17 (10) | 4–198 (83) | 2–22 (9) |
Ga | <LOD – 2 | <LOD | 17–26 (21) | 3–21 (8) | <LOD – 9 |
Ge | <LOD | <LOD | <LOD – 5 | 9–83 (37) | <LOD – 10 |
Se | <LOD – 74 | <LOD – 30 | <LOD – 18 (11) | <LOD – 163 | 94–176 (123) |
Mo | 3–13 (7) | 10 | <LOD – 5 (3) | 10–54 (32) | 6 |
Ag | <LOD – 23 (9) | 1–9 (4) | 6–24 (12) | 158–291 (212) | 705–1136 (963) |
Cd | <LOD – 4 (3) | <LOD – 4 | 1825–2197 (1943) | <LOD – 6 | <LOD – 3 |
In | traces | traces | 55–71 (60) | 8–16 (12) | <LOD – 1 |
Sn | 1 | <LOD – 1 | 1–5 (3) | 240–473 (353) | 76–133 (103) |
Sb | <LOD – 122 (24) | <LOD – 19 (5) | <LOD – 21 (8) | 31–77 (56) | 130–210 (177) |
Te | <LOD – 6 | <LOD – 4 | <LOD – 2 (1) | 3–15 (11) | 8–9 (9) |
Au | <LOD – 2 | <LOD | <LOD – 1 | <LOD – 2 | <LOD – 4 (1) |
Hg | traces | <LOD | 1–4 (3) | <LOD – 2 | <LOD – 1 |
Tl | <LOD – 3 | <LOD – 2 (1) | traces | 1–6 (3) | 57–78 (70) |
Bi | <LOD – 18 (6) | <LOD – 9 (2) | <LOD – 1 | 3–9 (4) | 1903–2554 (236) |
Fluid Inclusions-Vein Ores | Microthermometry Data | ||||
---|---|---|---|---|---|
Carbonic/Aqueous carbonic fluids-Ore stage II | Th CO2 | Tm CO2 | Tm cl | Tm ice | Th |
Vc1 random in Q1 (9 FIs) | −149.9/−143.4 (V) | ||||
−145 | |||||
Lw-c FIP in Q1 (15 FIs) | 8–11.5 | −13.6/−7.6 | 290–354 > 400 (L) | ||
Lc1 FIP in Q1 (30 FIs) | −141.1/−130.1 (L) | ||||
−135 | |||||
Vc2 - Primary in RecQ/Sphalerite 2 (30 FIs) | −124.6/−96 (V, C, L) | ||||
−109 | |||||
Lc2 FIP in Q1 and recrystallized Q1 (17 FIs) | −60.6/−24.6 (L) | −63.4/−61.6 | |||
−42 and −27 | −62.5 | ||||
Aqueous fluids-Ore stage III | Te | Tm ice | Th | Tmh | |
Lwh (49 FIs) Secondary in Q1 and Q2 | −69/−56 | −42.6/−30 | 116–182 (L) | 143–227 | |
−35 | 170 | 200 | |||
Primary in calcite (8 FIS) | 81–114 (L) | ||||
Lw1 (17 FIs) Secondary in quartz Q1, Q2 | −56/−53 | −28.6/−23.4 | 117–229 (L) | ||
−26 | 170 | ||||
Lw2 (112 FIs) Secondary in Q1, Q2 | −54/−38 | −18.2/−2.3 | 109–261 (L) | ||
−8 | 160 and 210 | ||||
Lw1 (6 FIs) + Lw2 (7 FIs) Secondary/calcite | 91–134 (L) |
Central Jebilet Early Vein–Shear Zone Fluids | Th CO2 (°C) | Tm CO2 (°C) | N2 (mol %) | CH4 (mol%) | CO2 (mol %) | Koudiat Aïcha Banded–Veins–Shear Zones Fluids |
---|---|---|---|---|---|---|
N2-CH4-(CO2) fluids | Early carbonic fluids | |||||
Sidi Bou Othmane Metamorphic (a) | −153/−90 L,V,C | −75/−64 | 50–98 | 2–35 | 0–30 | Vc1 – Quartz 1 Th CO2: −149.9/−143.4 V |
Kettara - Metamorphic (b) | −124.1/−105.2 V (L) | 49.8–60.4 | 39.6–50.2 | 0 | Lc1 – Pyrrhotite 2 Th CO2: −141.1/−130.1 L | |
Roc Blanc - Metamorphic (c) | −106/−73 V | −85/−71.1 | 46–47 | 37–40 | 14–16 | Vc2 – Sphalerite 2 Th CO2: −124.6/−96 V,C,L |
Koudia El Hamra (d) | −120/−110 V | 58–63 | 33–38 | 4–5 | ||
Jbel Haïmer (e) | −71.6/−60.5 V | −102.8/−68.5 | 39.4–69.8 | 22.1–51.5 | 7.7–18.6 | |
CH4-N2-CO2 fluids | ||||||
Sidi Bou Othmane | −112/−98 L | 23–29 | 71–75 | 0 | ||
Kettara | −99.4/−70.4 V,L L | 21–38.1 | 36.1–67.5 | 11.5–27 | ||
Jbel Haïmer | −97 V | −102 | 4.8–6.2 | 64.5–70 | 23.8–30.7 | |
CH4 Fluid - Kettara | −97.4/−2 L-V | 100 | ||||
CO2-N2-CH4 fluids | Late carbonic fluids Lc2 | |||||
Sidi Bou Othmane-Central Jebilet | −40/18 L | −68/−57.7 | 3–30 | 1–10 | 60–96 | Th CO2: −60.6/−24.6 L Tm CO2: −63.4/−61.6 |
Kettara | −61.1/−56.7 | 0–36.1 | 0–6 | 57.8–100 | ||
Roc Blanc | −51.8/−29.1 V | −69/−63.7 | 23–31 | 18–23 | 49–58 | |
Jbel Haïmer | −46.9/18.6 L | −65/−57.6 | 10.3–29.3 | 4–12.2 | 58.5–88 |
Ore Brines-Jebilet Vein Deposits | Salinity wt% | Th (°C) | Tmh (°C) |
---|---|---|---|
High salinity brines | |||
Koudia El Hamra (b) | 30–38.1 | 202–294 (220) | 113–246 (200) |
Jbel Haïmer (c) | 31.3–39 | 174–264 (220) | 155–262 (220) |
Koudiat Aïcha | 34–37.7 | 116–182 (170) | 143–227 (200) |
Intermediate salinity brines | |||
Roc Blanc (a) | 19.6 – >30 | 139–218 (180) | |
Koudia El Hamra (b) | 20.3 – > 27 | 129–283 | |
Jbel Haïmer (c) | 22.4 – >30 | 186–242 | |
Koudiat Aïcha | 23.2–30 | 117–229 (170) | |
Low salinity aqueous fluids | |||
Roc Blanc (a) | 5.7–19.4 | 127–244 (180) | |
Koudia El Hamra (b) | 5.3–20.9 | 186–298 (230) | |
Jbel Haïmer (c) | 9–15.3 | 156–242 | |
Koudiat Aïcha | 3.9–21.1 | 109–261 (160–210) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Essarraj, S.; Zoheir, B.; Steele-MacInnis, M.; Frische, M.; Khalifa, A.; Ouadjou, A. Polymetallic Sulfide–Quartz Vein System in the Koudiat Aïcha Massive Sulfide Deposit, Jebilet Massif, Morocco: Microanalytical and Fluid Inclusion Approaches. Minerals 2022, 12, 1396. https://doi.org/10.3390/min12111396
Essarraj S, Zoheir B, Steele-MacInnis M, Frische M, Khalifa A, Ouadjou A. Polymetallic Sulfide–Quartz Vein System in the Koudiat Aïcha Massive Sulfide Deposit, Jebilet Massif, Morocco: Microanalytical and Fluid Inclusion Approaches. Minerals. 2022; 12(11):1396. https://doi.org/10.3390/min12111396
Chicago/Turabian StyleEssarraj, Samira, Basem Zoheir, Matthew Steele-MacInnis, Matthias Frische, Abdelali Khalifa, and Abdelmalek Ouadjou. 2022. "Polymetallic Sulfide–Quartz Vein System in the Koudiat Aïcha Massive Sulfide Deposit, Jebilet Massif, Morocco: Microanalytical and Fluid Inclusion Approaches" Minerals 12, no. 11: 1396. https://doi.org/10.3390/min12111396
APA StyleEssarraj, S., Zoheir, B., Steele-MacInnis, M., Frische, M., Khalifa, A., & Ouadjou, A. (2022). Polymetallic Sulfide–Quartz Vein System in the Koudiat Aïcha Massive Sulfide Deposit, Jebilet Massif, Morocco: Microanalytical and Fluid Inclusion Approaches. Minerals, 12(11), 1396. https://doi.org/10.3390/min12111396