Paleoenvironmental Conditions and Factors Controlling Organic Carbon Accumulation during the Jurassic–Early Cretaceous, Egypt: Organic and Inorganic Geochemical Approach
Abstract
:1. Introduction
2. Regional Geology
2.1. Geologic Settings
2.2. Stratigraphic Settings
3. Material and Methods
3.1. Total Organic Carbon (TOC) and Carbonate Analyses
3.2. Major and Trace Element Measurements
4. Results
4.1. Total Organic Carbon Concentration
4.2. Carbonate Content
4.3. Redox Proxies
4.4. Paleoproductivity Proxies
4.5. Detrital Influx and Weathering Proxies
5. Discussion
5.1. Redox Conditions and Paleoproductivity Assessment
5.2. Characterization of Detrital Sediment Flux
5.3. Paleoclimatic Conditions and Continental Weathering
5.4. Major Controlling Processes of Organic Carbon Accumulation
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dromart, G.; Garcia, J.-P.; Picard, S.; Atrops, F.; Lécuyer, C.; Sheppard, S.M.F. Ice age at the Middle-Late Jurassic transition? Earth Planet. Sci. Lett. 2003, 213, 205–220. [Google Scholar] [CrossRef]
- Jenkyns, H.C.; Schouten-Huibers, L.; Schouten, S.; Sinninghe Damsté, J.S. Warm Middle Jurassic–Early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean. Clim. Past 2012, 8, 215–226. [Google Scholar] [CrossRef]
- Weissert, H.; Mohr, H. Late Jurassic climate and its impact on carbon cycling. Palaeogeogr. Palaeoclim. Palaeoecol. 1996, 122, 27–43. [Google Scholar] [CrossRef]
- Egyptian General Petroleum Corporation (EGPC). Western Desert, oil and Gas fields, a comprehensive overview. In Proceedings of the EGPC 11th Petroleum Exploration and Production Conference, Cairo, Egypt, 7–10 November 1992; p. 431. [Google Scholar]
- Mansour, A.; Geršlova, E.; Sykorova, I.; Vöröš, D. Hydrocarbon potential and depositional paleoenvironment of a Middle Jurassic succession in the Falak-21 well, Shushan Basin, Egypt: Integrated palynological, geochemical and organic petrographic approach. Int. J. Coal Geol. 2020, 219, 103374. [Google Scholar] [CrossRef]
- El Diasty, W.S.; El Beialy, S.Y.; Littke, R.; Farag, F.A. Source rock evaluation and nature of hydrocarbons in the Khalda Concession, Shushan Basin, Egypt’s Western Desert. Int. J. Coal Geol. 2016, 162, 45–60. [Google Scholar] [CrossRef]
- Gentzis, T.; Carvajal-Ortiz, H.; Deaf, A.S.; Tahoun, S.S. Multi-proxy approach to screen the hydrocarbon potential of the Jurassic succession in the Matruh Basin, North Western Desert, Egypt. Int. J. Coal Geol. 2018, 190, 29–41. [Google Scholar] [CrossRef]
- Shalaby, M.R.; Hakimi, M.H.; Abdullah, W.H. Modeling of gas generation from the Alam El-Bueib Formation in the Shoushan Basin, northern Western Desert of Egypt. Int. J. Earth Sci. 2013, 102, 319–332. [Google Scholar] [CrossRef]
- El Nady, M.M.; Mohamed, N.S.; Sharaf, L.M. Geochemical and biomarker characteristics of crude oils and source rock hydrocarbon extracts: An implication to their correlation, depositional environment and maturation in the Northern Western Desert, Egypt. Egypt. J. Petrol. 2015, 25, 264–268. [Google Scholar] [CrossRef]
- Canfield, D.E. Factors influencing organic carbon preservation in marine sediments. Chem. Geol. 1994, 114, 315–329. [Google Scholar] [CrossRef]
- Tyson, R.V. Sedimentation rate, dilution, preservation and total organic carbon: Some results of a modeling study. Org. Geochem. 2001, 32, 333–339. [Google Scholar] [CrossRef]
- Mansour, A.; Wagreich, M.; Gier, S.; Gentzis, T.; Urs, K.; Tahoun, S.S.; Elewa, A.M.T. Climate variability and paleoceanography during the Late Cretaceous: Evidence from palynology, geochemistry and stable isotopes analyses from the southern Tethys. Cret. Res. 2021, 126, 104831. [Google Scholar] [CrossRef]
- Mansour, A.; Wagreich, M. Earth system changes during the cooling greenhouse phase of the Late Cretaceous: Coniacian-Santonian OAE3 subevents and fundamental variations in organic carbon deposition. Earth-Sci. Rev. 2022, 229, 104022. [Google Scholar] [CrossRef]
- Arndt, S.; Jørgensen, B.B.; LaRowe, D.E.; Middelburg, J.J.; Pancost, R.D.; Regnier, P. Quantifying the degradation of organic matter in marine sediments: A review and synthesis. Earth-Sci. Rev. 2013, 123, 53–86. [Google Scholar] [CrossRef]
- Said, R. (Ed.) Tectonic framework of Egypt. In The Geology of Egypt; Elsevier: Amsterdam, The Netherlands, 1962; pp. 28–44. [Google Scholar]
- Meshref, W.M. Tectonic framework. In The Geology of Egypt; Said, R., Ed.; Balkema: Rotterdam, The Netherlands, 1990; pp. 113–156. [Google Scholar]
- Guiraud, R. Mesozoic rifting and basin inversion along the northern African Tethyan margin: An overview. In Petroleum Geology of North Afric; Macgregor, D.S., Moody, R.T., Clark-Lowes, D.D., Eds.; Geological Society: London, UK, 1998; pp. 217–229. [Google Scholar]
- Wood, D. The tectonic setting and structural evolution of the Abu Gharadig Basin, western Desert of Egypt. In Proceedings of the 7th Exploration Seminar; Egyptian General Petroleum Corporation: Cairo, Egypt, 1986; p. 250. [Google Scholar]
- Kerdany, M.T.; Cherif, O.H. Mesozoic. In The Geology of Egypt; Said, R., Ed.; Balkema: Rotterdam, The Netherlands, 1990; pp. 407–437. [Google Scholar]
- Guiraud, R.; Bellion, Y. Late Carboniferous to Recent geodynamic evolution of the west Gondwanian cratonic Tethyan margins. In The Ocean Basins and Margins, the Tethys Ocean; Narin, A.E.M., Ed.; Springer: Boston, MA, USA, 1995; Volume 8, pp. 101–124. [Google Scholar]
- Said, R. (Ed.) Cretaceous paleogeographic maps. In The Geology of Egypt; Balkema: Rotterdam, The Netherlands, 1990; pp. 439–449. [Google Scholar]
- Moustafa, A.R. Mesozoic-Cenozoic Basin Evolution in the Northern Western Desert of Egypt. In Proceedings of the 3rd Symposium on the Sedimentary Basins of Libya (The Geology of East Libya), Benghazi, Libya, 11–13 November 2004; Earth Science Society of Libya: Tripoli, Libya, 2008; Volume 3, pp. 29–46. [Google Scholar]
- Müller, G.; Gastner, M. The “Karbonat-Bombe”, a simple device for the determination of the carbonate content in sediments, soils, and other materials. Neues Jahrb. Mineral. Mon. 1971, 10, 466–469. [Google Scholar]
- Tribovillard, N.; Algeo, T.J.; Lyons, T.; Riboulleau, A. Trace metals as paleoredox and paleoproductivity proxies: An update. Chem. Geol. 2006, 232, 12–32. [Google Scholar] [CrossRef]
- Wedepohl, K.H. The composition of the upper Earth’s crust and the natural cycles of selected metals. In Metals and Their Compounds in the Environment; Merian, E., Ed.; VCH-Verlagsgesellschaft: Weinheim, Germany, 1991; pp. 3–17. [Google Scholar]
- Reitz, A.; Pfeifer, K.; de Lange, G.J.; Klump, J. Biogenic barium and the detrital Ba/Al ratio: A comparison of their direct and indirect determination. Mar. Geol. 2004, 204, 289–300. [Google Scholar] [CrossRef]
- Schoepfer, S.D.; Shen, J.; Wei, H.; Tyson, R.V.; Ingall, E.; Algeo, T.J. Total organic carbon, organic phosphorus, and biogenic barium fluxes as proxies for paleomarine productivity. Earth-Sci. Rev. 2015, 149, 23–52. [Google Scholar] [CrossRef]
- Algeo, T.J.; Maynard, J.B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chem. Geol. 2004, 206, 289–318. [Google Scholar] [CrossRef]
- Ripley, E.M.; Shaffer, N.R.; Gilstrap, M.S. Distribution and geochemical characteristics of metal enrichment in the new Albany shale (Devonian-Mississippian), Indiana. Econ. Geol. 1990, 85, 1790–2807. [Google Scholar] [CrossRef]
- Berner, R.A.; Raiswell, R. Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: A new theory. Geochem. Cosmochim. Acta 1983, 47, 855–862. [Google Scholar] [CrossRef]
- Lewan, M.D. Factors controlling the proportionality of vanadium to nickel in crude oils. Geochim. Cosmochim. Acta 1984, 48, 2231–2238. [Google Scholar] [CrossRef]
- Hatch, J.R.; Leventhal, J.S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) stark shale member of the Dennis Limestone, Wabaunsee County, Kansas, USA. Chem. Geol. 1992, 99, 65–82. [Google Scholar] [CrossRef]
- Jones, B.; Manning, D.A.C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chem. Geol. 1994, 111, 111–129. [Google Scholar] [CrossRef]
- Zhou, C.; Jiang, S.-Y. Palaeoceanographic redox environments for the lower Cambrian Hetang Formation in South China: Evidence from pyrite framboids, redox sensitive trace elements, and sponge biota occurrence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 271, 279–286. [Google Scholar] [CrossRef]
- Ingall, E.; Kolowith, L.; Lyons, T.; Hurtgen, M. Sediment carbon, nitrogen and phosphorus cycling in an anoxic fjord, Effingham Inlet, British Columbia. Am. J. Sci. 2005, 305, 240–258. [Google Scholar] [CrossRef]
- Mort, H.; Adatte, T.; Föllmi, K.; Steinmann, P.; Matera, V.; Berner, Z.; Stüben, D. Phosphorus and the roles of productivity and nutrient recycling during Oceanic Anoxic Event 2. Geology 2007, 35, 483–486. [Google Scholar] [CrossRef]
- Babu, C.P.; Brumsack, H.J.; Schnetger, B.; Böttcher, M.E. Barium as a productivity proxy in continental margin sediments: A study from the eastern Arabian sea. Mar. Geol. 2002, 184, 189–206. [Google Scholar] [CrossRef]
- Rutsch, H.-J.; Mangini, A.; Bonani, G.; Dittrich-Hannen, B.; Kubile, P.W.; Suter, M.; Segl, M. 10Be and Ba concentrations in western African sediments trace productivity in the past. Earth Planet. Sci. Lett. 1995, 133, 129–143. [Google Scholar] [CrossRef]
- Kasten, S.; Haese, R.R.; Zabel, M.; Ruhlemann, C.; Schulz, H.D. Barium peaks at glacial terminations in sediments of the equatorial Atlantic Ocean—Relicts of deglacial productivity pulses? Chem. Geol. 2001, 175, 635–651. [Google Scholar] [CrossRef]
- McManus, J.; Berelson, W.M.; Klinkhammer, G.P.; Johnson, K.S.; Coale, K.H.; Anderson, R.F.; Kumar, N.; Burdige, D.J.; Hammond, D.E.; Brumsack, H.J.; et al. Geochemistry of barium in marine sediments: Implications for its use as a paleoproxy. Geochim. Cosmochim. Acta 1998, 62, 3453–3473. [Google Scholar] [CrossRef]
- Keeley, M.L.; Dungworth, G.; Floyd, C.S.; Forbes, G.A.; King, C.; McGarva, R.M.; Shaw, D. The Jurassic System in northern Egypt: I. Regional stratigraphy and implications for hydrocarbon prospectively. J. Pet. Geol. 1990, 13, 397–420. [Google Scholar] [CrossRef]
- El Beialy, S.Y.; Zalat, A.; Ali, A.S. The palynology of the Bathonian-early Oxfordian succession in the East Faghur-1 well, Western Desert, Egypt. Egypt J. Paleontol. 2002, 2, 399–414. [Google Scholar]
- Xia, G.; Mansour, A. Paleoenvironmental changes during the early Toarcian Oceanic Anoxic Event: Insights into organic carbon distribution and controlling mechanisms in the eastern Tethys. J. Asian Earth Sci. 2022, 237, 105344. [Google Scholar] [CrossRef]
- Liguori, B.T.P.; Almeida, M.G.D.E.; Redenze, C.E.D.E. Barium and its Importance as an Indicator of (Paleo)Productivity. An. Acad. Bras. Ciênc. 2016, 88, 2093–2103. [Google Scholar] [CrossRef]
- Ratcliffe, K.T.; Wright, A.M.; Spain, D.R. Unconventional methods for unconventional plays: Using elemental data to understand shale resource plays. Pet. Explor. Soc. Aust. News Res. 2012, 117, 50–54. [Google Scholar]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell: Malden, MA, USA, 1985. [Google Scholar]
- Chen, H.-F.; Yeh, P.-Y.; Song, S.-R.; Hsu, S.-C.; Yang, T.-N.; Wang, Y.; Chi, Z.; Lee, T.-Q.; Chen, M.-T.; Cheng, C.-L.; et al. The Ti/Al molar ratio as a new proxy for tracing sediment transportation processes and its application in aeolian events and sea level change in East Asia. J. Asian Earth Sci. 2013, 73, 31–38. [Google Scholar] [CrossRef]
- Ratcliffe, K.T.; Wright, A.M.; Hallsworth, C.; Morton, A.; Zaitlin, B.A.; Potocki, D.; Wray, D. An example of alternative correlation techniques in a low-accommodation setting, nonmarine hydrocarbon system: The (Lower Cretaceous) Mannville Basal Quartz succession of southern Alberta. Am. Assoc. Pet. Geol. Bull. 2004, 88, 1419–1432. [Google Scholar] [CrossRef]
- LaGrange, M.T.; Konhauser, K.O.; Catuneanu, O.; Harris, B.S.; Playter, T.L.; Gingras, M.K. Sequence stratigraphy in organic-rich marine mudstone successions using chemostratigraphic datasets. Earth-Sci. Rev. 2020, 203, 103137. [Google Scholar] [CrossRef]
- Fralick, P.W.; Kronberg, B.I. Geochemical discrimination of clastic sedimentary rock sources. Sediment. Geol. 1997, 113, 111–124. [Google Scholar] [CrossRef]
- Schlanger, S.O. Strontium storage and release during deposition and diagenesis of marine carbonates release to sea-level variations. In Physical and Chemical Weathering in Geochemical Cycles; Lerman, A., Meybeck, M., Eds.; Kluwer Academic: Dordrecht, The Netherlands, 1988; pp. 323–339. [Google Scholar]
- Dypvik, H.; Harris, N.B. Geochemical facies analysis of fine-grained siliciclastics using Th/U, Zr/Rb and (Zr + Rb)/Sr ratios. Chem. Geol. 2001, 181, 131–146. [Google Scholar] [CrossRef]
- Fourcade, E.; Azéma, J.; Bassoullet, J.-P.; Cecca, F.; Dercourt, J.; Enay, R.; Guiraud, R. Paleogeography and Paleoenvironment of the Tethyan Realm During the Jurassic Breakup of Pangea. In The Tethys Ocean; Nairn, A.E.M., Ricou, L.E., Vrielynck, B., Dercourt, J., Eds.; Springer: Boston, MA, USA, 1995. [Google Scholar] [CrossRef]
- McLennan, S.M.; Hemming, S.; McDaniel, D.K.; Hanson, G.N. Geochemical approaches to sedimentation, provenance, and tectonics. Geol. Soc. Am. Spec. Pap. 1993, 284, 21–40. [Google Scholar]
- Bouchez, J.; Gaillardet, J. How accurate are rivers as gauges of chemical denudation of the Earth surface? Geology 2014, 42, 171–174. [Google Scholar] [CrossRef]
- Dellinger, M.; Gaillardet, J.; Bouchez, J.; Calmels, D.; Louvat, P.; Dosseto, A.; Gorge, C.; Alanoca, L.; Maurice, L. Riverine Li isotope fractionation in the Amazon River basin controlled by the weathering regimes. Geochim. Cosmochim. Acta 2015, 164, 71–93. [Google Scholar] [CrossRef] [Green Version]
- Niebuhr, B. Geochemistry and time-series analyses of orbitally forced Upper Cretaceous marl-limestone rhythmites (Lehrte West Syncline, northern Germany). Geol. Mag. 2005, 142, 31–55. [Google Scholar] [CrossRef]
- Shen, J.; Zhang, E.L.; Xia, W.L. Records from lake sediments of the Qinghai lake to mirror climatic and environmental changes of the past about 1000 years. Quat. Res. 2001, 21, 508–513. [Google Scholar]
- Zobaa, M.K.; El Beialy, S.Y.; El-Sheikh, H.A.; El Beshtawy, M.K. Jurassic-Cretaceous palynomorphs, palynofacies, and petroleum potential of the Sharib-1X and Ghoroud-1X wells, north Western Desert, Egypt. J. Afr. Earth Sci. 2013, 78, 51–65. [Google Scholar] [CrossRef]
- Ricken, W. Bedding rhythms and cyclic sequences as documented in organic carbon-carbonate patterns, Upper Cretaceous, Western Interior, U.S. Sediment. Geol. 1996, 102, 131–154. [Google Scholar] [CrossRef]
- Pratt, L.M. Influence of palaeoenvironmental factors on the preservation of organic matter in middle Cretaceous Greenhorn Formation near Pueblo, Colorado. AAPG Bull. 1984, 68, 1146–1159. [Google Scholar]
- Meyers, S.R.; Sageman, B.B.; Lyons, T.W. Organic carbon burial rate and the molybdenum proxy: Theoretical framework and application to Cenomanian-Turonian oceanic anoxic event 2. Paleoceanography 2005, 20, PA2002. [Google Scholar] [CrossRef]
- Kennedy, M.J.; Wagner, T. A clay mineral continental amplifier for marine carbon sequestration in a greenhouse ocean. Proc. Natl. Acad. Sci. USA 2011, 108, 9776–9781. [Google Scholar] [CrossRef]
- Henrichs, S.M.; Reeburgh, W.S. Anaerobic mineralization of marine sediment organic matter: Rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiol. J. 1987, 5, 191–237. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansour, A.; Gentzis, T.; Ied, I.M.; Ahmed, M.S.; Wagreich, M. Paleoenvironmental Conditions and Factors Controlling Organic Carbon Accumulation during the Jurassic–Early Cretaceous, Egypt: Organic and Inorganic Geochemical Approach. Minerals 2022, 12, 1213. https://doi.org/10.3390/min12101213
Mansour A, Gentzis T, Ied IM, Ahmed MS, Wagreich M. Paleoenvironmental Conditions and Factors Controlling Organic Carbon Accumulation during the Jurassic–Early Cretaceous, Egypt: Organic and Inorganic Geochemical Approach. Minerals. 2022; 12(10):1213. https://doi.org/10.3390/min12101213
Chicago/Turabian StyleMansour, Ahmed, Thomas Gentzis, Ibrahim M. Ied, Mohamed S. Ahmed, and Michael Wagreich. 2022. "Paleoenvironmental Conditions and Factors Controlling Organic Carbon Accumulation during the Jurassic–Early Cretaceous, Egypt: Organic and Inorganic Geochemical Approach" Minerals 12, no. 10: 1213. https://doi.org/10.3390/min12101213
APA StyleMansour, A., Gentzis, T., Ied, I. M., Ahmed, M. S., & Wagreich, M. (2022). Paleoenvironmental Conditions and Factors Controlling Organic Carbon Accumulation during the Jurassic–Early Cretaceous, Egypt: Organic and Inorganic Geochemical Approach. Minerals, 12(10), 1213. https://doi.org/10.3390/min12101213