Typomorphic Characteristics of Gold-Bearing Pyrite and Its Genetic Implications for the Fang’an Gold Deposit, the Bengbu Uplift, Eastern China
Abstract
1. Introduction
2. Geology Characteristics
2.1. Regional Geology
2.2. Deposit Geology
3. Sampling and Analytical Methods
4. Analysis Results
5. Discussion
5.1. Characteristics of Fe and S in Pyrite
5.2. Characteristics of Co and Ni in Pyrite
5.3. Gold Occurrence
5.4. Gold Mineralization
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, G.; Liu, G.S.; Niu, M.L.; Xie, C.L.; Wang, Y.S.; Xiang, B.W. Syn-collisional transform faulting of the Tan-Lu Fault zone, East China. Int. J. Earth Sci. 2009, 98, 135–155. [Google Scholar] [CrossRef]
- Zhai, M.; Li, T.S.; Peng, P. Precambrian key tectonic events and evolution of the North China craton. Geol. Soc. Lond. Spec. Publ. 2010, 338, 235–262. [Google Scholar] [CrossRef]
- Zhu, G.; Liu, C.; Gu, C.; Zhang, S.; Li, Y.; Su, N.; Xiao, S.Y. Oceanic plate subduction history in the western Pacific Ocean: Constraint from late Mesozoic evolution of the Tan-Lu fault zone. China Earth Sci. 2018, 61, 386–405. [Google Scholar] [CrossRef]
- Liu, Z.; Ni, P.; Zhang, Y.Q. An Early Cretaceous gold metallogenesis in the Wuhe area, Eastern Anhui province: Constraints from geology, fluid inclusion, H-O isotope and geochronology on the Hekou gold deposit. Ore Geol. Rev. 2021, 138, 104319. [Google Scholar] [CrossRef]
- Li, C.; Yan, J.; Wang, A.G. Petrogenesis of Cretaceous granitoids in the Bengbu–Wuhe area, southeastern North China Craton: Implications for gold mineralization. Ore Geol. Rev. 2020, 126, 103740. [Google Scholar] [CrossRef]
- Wang, A.D.; Liu, Y.C.; Gu, X.F. Late-Neoarchean magmatism and metamorphism at the southeastern margin of the North China Craton and their tectonic implications. Precambrian Res. 2012, 220, 65–79. [Google Scholar] [CrossRef]
- Li, S.R.; Santosh, M. Geodynamics of heterogeneous gold mineralization in the North China Craton and its relationship to lithospheric destruction. Gondwana Res. 2017, 50, 267–292. [Google Scholar] [CrossRef]
- Yang, Z.; Deng, Y.F.; Yuan, F.; Li, Y.; Lin, T.; Zhang, S.L.; Zhang, J.J. Ore source and ore-forming age of Hekou and Rongdu Au deposit in Wuhe area, Bengbu city. Acta Petrol. Sin. 2019, 35, 3875–3893, (In Chinese with English Abstract). [Google Scholar]
- Yang, Z. Metallogenic Geological Characteristics and Genesis of Gold Polymetallic Deposits in Bengbu Wuhe Area, Anhui Province. Master’s Thesis, Hefei University of Technology, Hefei, China, 2020. [Google Scholar]
- Shi, K.; Yang, X.Y.; Du, J.G. Geochemistry and Geochronology of Intermediate Rocks in the Jiangshan Au Deposit in the Bengbu Uplift, North Anhui Province: Clues to Regional Au Mineralization. Acta Geol. Sin. 2020, 94, 1909–1920. [Google Scholar] [CrossRef]
- Hu, H.F.; Xu, X.C.; Chen, F.; Xu, W. A comparison of metallogenic geological conditions of gold deposits between the Bengbu-Wuhe area in Anhui and Eastern Shandong Province. Geology 2015, 39, 187–193, (In Chinese with English Abstract). [Google Scholar]
- Wan, J.; Wang, A.; Pan, J. Episodic crustal growth and reworking at the southeastern margin of the North China Craton: Evidence from zircon U–Pb and Lu–Hf isotopes of Archean tonalite–trondhjemite–granodiorite gneisses in the Bengbu-Wuhe area. Acta Geochim. 2021, 40, 366–389. [Google Scholar] [CrossRef]
- Li, C.; Yan, J.; Yang, C.; Song, C.Z.; Wang, A.G.; Zhang, D.Y. Generation of leucogranites via fractional crystallization: A case study of the Jurassic Bengbu granite in the southeastern North China Craton. Lithos 2020, 352–353, 105271. [Google Scholar] [CrossRef]
- Zhang, S.L.; Wang, Q.S.; Zhang, J.J.; Zhu, Y.K. Comparative study of geology for the gold formations in the Wuhe, Jiaodong and Xiaoqingling areas. Anhui Geol. 2017, 27, 90–94, (In Chinese with English Abstract). [Google Scholar]
- Zhang, J.J.; Zhang, S.L.; Zhu, Y.K. Metallogenic geological conditions and metallogenic model of the Hekou Pb-Au deposit in the Wuhe area, Anhui Province. J. Geol. 2019, 1, 57–66. [Google Scholar]
- Kang, C.X.; Yang, X.Z.; Cai, Y.T. Geological and geochemical characteristics of Middle Jurassic granites in Bengbu uplift, Southeast of North China craton. Acta Geol. Sin. 2017, 91, 83–85. [Google Scholar]
- Yang, D.B.; Xu, W.L.; Wang, Q.H.; Pei, F.P.; Ji, W.Q. Petrogenesis of Late Jurassic Jingshan granite in Bengbu Uplift, Anhui province: Constraints from geochemistry and Hf isotope of zircons. Acta Petrol. Sin. 2006, 22, 2923–2932. [Google Scholar]
- Yang, D.B.; Xu, W.L.; Pei, F.P.; Wang, Q.H.; Liu, X.M. Formation time and magma source of granites in Bengbu Uplift, Evidence from LA-ICPMS zircon U-Pb dating and tracing. Geochimica 2005, 34, 443–454, (In Chinese with English Abstract). [Google Scholar]
- Yang, D.B.; Xu, W.L.; Wang, Q.H.; Pei, F.P. Chronology and geochemistry of Mesozoic granitoids in the Bengbu area, central China: Constraints on the tectonic evolution of the eastern North China Craton. Lithos 2010, 114, 200–216. [Google Scholar] [CrossRef]
- Wang, A.D.; Liu, Y.C.; Gu, X.F.; Li, S.G.; Xie, H.Q. Zircon SHRIMP U-Pb dating for garnet-bearing gneissic granite at Laoshan, Bengbu: Implications for recycling of the subducted continental crust of the South China Block. J. Mineral. Petrol. 2009, 29, 38–43. [Google Scholar]
- Fu, X.; Zhang, D.; Yao, Z. Geochronology and Petrogenesis of Granitoid Intrusions in the Feidong District, Southern Tan–Lu Fault Zone, China. Acta Geol. Sin. 2020, 94, 1960–1976. [Google Scholar]
- Liu, Y.C.; Zhang, P.G.; Wang, C.C.; Groppo, C.; Rolfo, F.; Yang, Y.; Li, Y.; Deng, L.P.; Song, B. Petrology, geochemistry and zirconology of impure calcite marbles from the Precambrian metamorphic basement at the southeastern margin of the NorthChina Craton. Lithos 2017, 290, 189–209. [Google Scholar] [CrossRef]
- Liu, C.H.; Zhao, G.C.; Liu, F.L.; Cai, J. The southwestern extension of the Jiao-Liao-Ji belt in the North China Craton: Geochronological and geochemical evidence from the Wuhe Group in the Bengbu area. Lithos 2018, 304, 258–279. [Google Scholar] [CrossRef]
- Zhu, G.; Wang, Y.S.; Niu, M.L.; Xie, C.L.; Li, C.C. 40Ar/39Ar dating of strike-slip motion on the Tan-Lu fault zone, East China. J. Struct. Geol. 2005, 27, 1379–1398. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Gao, S.; Günther, D.; Xu, J.; Gao, C.G.; Chen, H.H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Xiao, X.; Zhou, T.F.; White, N.C.; Zhang, L.J.; Fan, Y.; Wang, F.Y.; Chen, X.F. The formation and trace elements of garnet in the skarn zone from the Xinqiao Cu-S-Fe-Au deposit, Tongling ore district, Anhui Province, Eastern China. Lithos 2018, 302–303, 467–479. [Google Scholar] [CrossRef]
- Chen, G.Y.; Shao, W.; Sun, D.S. Mineralogy and Mineralization of Gold Ore Genesis in Jiaodong; Chong Qing Publish Company: Chongqing, China, 1989. [Google Scholar]
- Chen, Y.; Fan, Y.; Zhou, T.F. Pyrite textures and compositions in Jiangshan gold deposit, Bengbu Uplift, southeastern North China Craton: Implications for ore genesis. Ore Geol. Rev. 2020, 122, 103512. [Google Scholar] [CrossRef]
- Batanova, V.G.; Sobolev, A.V.; Magnin, V. Trace element analysis by EPMA in geosciences: Detection limit, precision and accuracy. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; Volume 304, p. 012001. [Google Scholar]
- Hetherington, C.J.; Jercinovic, M.J.; Williams, M.L. Understanding geologic processes with xenotime: Composition, chronology, and a protocol for electron probe microanalysis. Chem. Geol. 2008, 254, 133–147. [Google Scholar] [CrossRef]
- Xu, K.Q.; Ni, P. Important Geological Factors Controlling the Formation of Gold Deposits in East China. Chin. J. Geochem. 1997, 16, 1–7. [Google Scholar]
- Li, H.B.; Zeng, F.Z. The pyrite’s typomorphic characteristics in gold deposit. Contrib. Geol. Miner. Resour. Res. 2005, 20, 199–203, (In Chinese with English Abstract). [Google Scholar]
- Yan, Y.T.; Li, S.R.; Jia, B.J. Composition typomorphic characteristics of pyrite in various genetic type gold deposits. In Advanced Materials Research; Trans Tech Publications Ltd.: Bäch, Switzerland, 2012; Volume 463, pp. 25–29. [Google Scholar]
- Li, H.L.; Li, G.M. Compositional characteristics of pyrite ore formed in the main metallogenic period of various types of hydrothermal gold deposits. Earth Sci. Front. 2019, 26, 202. [Google Scholar]
- Gong, L.; Ma, G. The characteristic typomorphic composition of pyrite and its indicative meaning to metal deposits. Contrib. Geol. Miner. Resour. Res. 2011, 26, 162–166, (In Chinese with English Abstract). [Google Scholar]
- Yan, Y.T.; Li, S.R.; Jia, B.J. A new method to quantify morphology of pyrite, and application to magmatic-hydrothermal gold deposits in Jiaodong Peninsula, China. In Advanced Materials Research; Trans Tech Publications Ltd.: Bäch, Switzerland, 2012; Volume 446, pp. 2015–2027. [Google Scholar]
- Reich, M.; Kesler, S.E.; Utsunomiya, S. Solubility of gold in arsenian pyrite. Geochim. Cosmochim. Acta 2005, 69, 2781–2796. [Google Scholar] [CrossRef]
- Deditius, A.P.; Reich, M.; Kesler, S.E. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits. Geochim. Cosmochim. Acta 2014, 140, 644–670. [Google Scholar] [CrossRef]
- Tooth, B.; Ciobanu, C.L.; Green, L.; O’Neill, B.; Brugger, J. Bi-melt formation and gold scavenging from hydrothermal fluids: An experimental study. Geochim. Cosmochimca Acta 2011, 75, 5423–5443. [Google Scholar] [CrossRef]
- Ridley, J.R.; Diamond, L.W. Fluid chemistry of orogenic lode gold deposits and implications for genetic models. Rev. Econ. Geol. 2000, 13, 141–162. [Google Scholar]
- Kolb, J.; Rogers, A.; Meyer, F.M. Relative timing of deformation and two-stage gold mineralization at the Hutti Mine, Dharwar Craton, India. Min. Depos. 2005, 40, 156–174. [Google Scholar] [CrossRef]
- Fougerouse, D.; Micklethwaite, S.; Ulrich, S.; Miller, J.; Godel, B.; Adams, D.T.; McCuaig, T.C. Evidence for two stages of mineralization in West Africa’s largest gold deposit: Obuasi, Ghana. Econ. Geol. 2017, 112, 3–22. [Google Scholar] [CrossRef]
- Gourcerol, B.; Kontak, D.J.; Thurston, P.C.; Petrus, J.A. Application of LA-ICP-MS sulfide analysis and methodology to deciphering elemental paragenesis and associations in addition to multistage processes in metamorphic gold settings. Can. Mineral. 2018, 56, 39–64. [Google Scholar] [CrossRef]
- Gourcerol, B.; Kontak, D.J.; Petrus, J.A.; Thurston, P.C. Application of LA ICP-MS analysis of arsenopyrite to gold metallogeny of the Meguma Terrane, Nova Scotia, Canada. Gondwana Res. 2020, 81, 265–290. [Google Scholar] [CrossRef]
- Wagner, T.; Klemd, R.; Wenzel, T.; Mattson, B. Gold upgrading in metamorphosed massive sulfide ore deposits: Direct evidence from laser-ablation-inductively coupled plasma-mass spectrometry analysis of invisible gold. Geology 2007, 35, 775–778. [Google Scholar] [CrossRef]
- Hastie, E.C.G.; Schindler, M.; Kontak, D.J. Transport and coarsening of gold nanoparticles in an orogenic deposit by dissolution–reprecipitation and Ostwald ripening. Commun. Earth Environ. 2021, 2, 1–9. [Google Scholar] [CrossRef]
- Lawley, C.J.M.; Creaser, R.A.; Jackson, S.; Yang, Z.; Davis, B.; Pehrsson, S.; Dubé, B.; Mercier-Langevin, P.; Vaillancourt, D. Unravelling the Western Churchill Provincepaleoproterozoic gold metalloted: Constraints from Re-Os arsenopyrite and U-Pb xenotime geochronology and LA-ICP-MS arsenopyrite trace element chemistry at the BIF-hosted Meliadine Gold District, Nunavut, Canada. Econ. Geol. 2015, 110, 1425–1454. [Google Scholar] [CrossRef]
- Xu, G.F.; Shao, J.L. The characteristic typomorphic of pyrite and significance. Geol. Rev. 1980, 26, 541–546. [Google Scholar]
- Bajwah, Z.U.; Seccombe, P.K.; Offler, R. Trace element distribution, Co: Ni ratios and genesis of the big cadia iron-copper deposit, New South Wales, Australia. Miner. Depos. 1987, 22, 292–303. [Google Scholar] [CrossRef]
- Wu, Y.F.; Fougerouse, D.; Evans, K.; Reddy, S.M.; Saxey, D.W.; Guagliardo, P.; Li, J.W. Gold, arsenic, and copper zoning in pyrite: A record of fluid chemistry and growth kinetics. Geology 2019, 47, 641–644. [Google Scholar] [CrossRef]
- Koglin, N.; Frimmel, H.E.; Minter, W. Trace-element characteristics of different pyrite types in Mesoarchaean to Palaeoproterozoic placer deposits. Miner. Depos. 2010, 45, 259–280. [Google Scholar] [CrossRef]
- Zhao, H.X.; Frimmel, H.E.; Jiang, S.Y. LA-ICP-MS trace element analysis of pyrite from the Xiaoqinling gold district, China: Implications for ore genesis. Ore Geol. Rev. 2011, 43, 142–153. [Google Scholar] [CrossRef]
- Palme, H.; O’Neill, H.S.C. Cosmochemical estimates of mantle composition. Treatise Geochem. 2003, 2, 568. [Google Scholar]
- Rudnick, R.L.; Gao, S.; Holland, H.D. Composition of the continental crust. Crust 2003, 3, 1–64. [Google Scholar]
- Yu, G.; Yang, G.; Chen, J. Re-Os dating of gold-bearing arsenopyrite of the Maoling gold deposit, Liaoning Province, Northeast China and its geological significance. Chin. Sci. Bull. 2005, 50, 1509–1514. [Google Scholar] [CrossRef]
- Zhao, J.; Liang, J.; Li, J. Gold and sulfur sources of the Taipingdong Carlin-type gold deposit: Constraints from simultaneous determination of sulfur isotopes and trace elements in pyrite using nanoscale secondary ion mass spectroscopy. Ore Geol. Rev. 2020, 117, 103299. [Google Scholar] [CrossRef]
- Deng, J.; Yang, L.Q.; Groves, D.I.; Zhang, L.; Qiu, K.F.; Wang, Q.F. An integrated mineral system model for the gold deposits of the giant Jiaodong province, Eastern China. Earth-Sci. Rev. 2020, 208, 103274. [Google Scholar] [CrossRef]
Stage | Point | Ga | Ge | S | Ag | Au | Ni | Co | As | Fe | Cu | Zn | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | F4-4-PY-1 | 0 | 0.0281 | 49.4148 | 0.0041 | 0.0625 | 0.0754 | 0.0761 | 0 | 49.1491 | 0.1022 | 0.0069 | 99.6488 |
1 | F4-4-PY-2 | 0 | 0 | 49.8711 | 0.0189 | 0 | 0.0036 | 0.3949 | 0 | 48.8738 | 0.0149 | 0 | 99.9457 |
1 | ZK141-H11 | 0 | 0 | 48.158 | 0.028 | 0 | 0.025 | 0.091 | 0.049 | 50.142 | 0.054 | 0 | 99.128 |
1 | ZK141-H11 | 0 | 0 | 52.469 | 0.029 | 0.009 | 0 | 0.002 | 0.061 | 46.959 | 0 | 0 | 100.14 |
1 | N2-PY-1 | 0 | 0 | 51.2155 | 0.0118 | 0.0069 | 0.009 | 0.1385 | 0 | 47.2491 | 0.0177 | 0 | 99.3704 |
2 | F4-2-PY-5 | 0 | 0.0018 | 49.1633 | 0.0077 | 0.0416 | 0.0179 | 0.0159 | 0 | 49.1354 | 0 | 0.0157 | 99.1843 |
2 | F4-1-PY-1 | 0 | 0 | 50.1432 | 0 | 0.0832 | 0 | 0.039 | 0.005 | 48.297 | 0.1367 | 0.0088 | 99.506 |
2 | F4-1-PY-2 | 0 | 0.0053 | 49.4552 | 0.001 | 0.0902 | 0.0072 | 0.0142 | 0 | 48.9403 | 0.0121 | 0.0216 | 99.2505 |
2 | F4-1-PY-4 | 0 | 0 | 46.3357 | 0 | 0.0765 | 0.0394 | 0.0618 | 0 | 48.4876 | 0 | 0 | 95.7775 |
2 | ZK141-H13 | 0 | 0 | 52.46 | 0.027 | 0.049 | 0.041 | 0.098 | 0.111 | 46.347 | 0 | 0 | 96.866 |
2 | ZK141-H13 | 0 | 0 | 52.203 | 0.008 | 0.056 | 0 | 0.087 | 0.022 | 47.183 | 0.019 | 0 | 100.288 |
2 | H17-PY-3 | 0 | 0.0311 | 52.1037 | 0.0144 | 0 | 0.1528 | 0.1048 | 0 | 46.7288 | 0.0568 | 0.0088 | 100.0108 |
2 | ZK141-H13 | 0 | 0 | 52.051 | 0.042 | 0 | 0.034 | 0.044 | 0 | 47.189 | 0 | 0.057 | 100.046 |
2 | H17-PY-1 | 0.0371 | 0.0417 | 50.4985 | 0 | 0.1522 | 0.0126 | 0.0585 | 0 | 46.7403 | 0 | 0.0775 | 98.3235 |
2 | F4-2-PY-6 | 0.005 | 0 | 49.4862 | 0 | 0 | 0.0108 | 0.0584 | 0 | 49.0708 | 0.0177 | 0.0441 | 99.4674 |
2 | F4-2-PY-1 | 0.01 | 0 | 50.3203 | 0 | 0 | 0.1221 | 0.0567 | 0.0237 | 49.1287 | 0.0735 | 0 | 100.4499 |
2 | ZK141-H13 | 0.007 | 0 | 52.217 | 0.023 | 0 | 0 | 0.05 | 0.057 | 47.016 | 0.045 | 0.054 | 100.158 |
2 | ZK141-H13 | 0 | 0 | 52.287 | 0 | 0.013 | 0 | 0.073 | 0.064 | 47.294 | 0 | 0 | 100.429 |
2 | ZK141-H13 | 0 | 0 | 51.988 | 0 | 0.011 | 0 | 0.016 | 0 | 47.423 | 0.001 | 0.07 | 100.174 |
2 | ZK141-H13 | 0.017 | 0.014 | 51.694 | 0 | 0 | 0 | 0.085 | 0.051 | 47.369 | 0.05 | 0 | 99.957 |
2 | ZK141-H13 | 0.012 | 0 | 51.966 | 0 | 0 | 0 | 0.044 | 0.108 | 47.176 | 0.027 | 0 | 99.995 |
2 | ZK141-H13 | 0 | 0 | 52.841 | 0.029 | 0 | 0 | 0.046 | 0.046 | 46.076 | 0.024 | 0 | 99.711 |
2 | ZK141-H13 | 0.005 | 0 | 52.144 | 0 | 0 | 0 | 0.011 | 0.014 | 46.856 | 0 | 0.051 | 99.661 |
2 | ZK141-H13 | 0 | 0.01 | 52.333 | 0.021 | 0.041 | 0.056 | 0.02 | 0 | 46.235 | 0.056 | 0 | 99.415 |
2 | ZK141-H17 | 0 | 0.038 | 53.224 | 0 | 0 | 0 | 0.025 | 0 | 45.36 | 0.271 | 0.025 | 99.601 |
2 | F4-2-PY-7 | 0 | 0.007 | 50.2351 | 0 | 0 | 0 | 0.0656 | 0 | 48.9749 | 0.0325 | 0 | 100.0207 |
2 | F4-2-PY-3 | 0 | 0 | 50.2032 | 0 | 0 | 0.0862 | 0.0956 | 0.0174 | 48.9903 | 0.0009 | 0.0441 | 100.1669 |
2 | F4-2-PY-4 | 0 | 0 | 49.342 | 0 | 0 | 0.0072 | 0.0106 | 0.203 | 48.8755 | 0.0446 | 0 | 99.2679 |
3 | 1549-PY-2 | 0 | 0 | 52.33 | 0.0201 | 0.0415 | 0 | 0.0462 | 0 | 47.0166 | 0.0121 | 0 | 100.2038 |
3 | ZK141-H6 | 0 | 0 | 50.451 | 0 | 0.019 | 0 | 0.069 | 0 | 48.152 | 0.123 | 0 | 99.513 |
3 | ZK141-H6 | 0 | 0 | 51.615 | 0.015 | 0.021 | 0 | 0.082 | 0.016 | 47.427 | 0.034 | 0 | 99.975 |
3 | ZK141-H6 | 0 | 0.01 | 52.506 | 0.029 | 0 | 0 | 0.06 | 0.009 | 46.61 | 0.337 | 0 | 100.246 |
3 | ZK141-H1 | 0 | 0.05 | 51.433 | 0 | 0.026 | 0 | 0.053 | 0 | 46.689 | 0.003 | 0.069 | 99.069 |
3 | ZK141-H4 | 0 | 0 | 53.031 | 0.019 | 0.06 | 0 | 0.042 | 0.007 | 46.156 | 0 | 0.046 | 100.059 |
3 | ZK141-H11 | 0.02 | 0.034 | 52.731 | 0.019 | 0 | 0.046 | 0.111 | 0 | 46.675 | 0.056 | 0 | 100.372 |
3 | ZK141-H11 | 0.012 | 0.033 | 51.712 | 0.042 | 0 | 0.021 | 0.037 | 0 | 47.762 | 0.056 | 0 | 100.326 |
3 | H17-PY-2 | 0 | 0 | 52.5273 | 0 | 0.0345 | 0 | 0.0444 | 0.0442 | 46.5909 | 0.0456 | 0.0619 | 100.087 |
3 | H17-PY-4 | 0 | 0 | 52.0677 | 0.0397 | 0.0345 | 0.0503 | 0.0994 | 0.0369 | 46.34 | 0.1396 | 0 | 99.7345 |
3 | F4-1-2-PY-2 | 0 | 0 | 50.3255 | 0.0072 | 0 | 0.0287 | 0.0514 | 0.0199 | 48.712 | 0.0474 | 0.0088 | 99.9712 |
3 | F4-1-2-PY-3 | 0 | 0.0228 | 49.6464 | 0.0066 | 0.0347 | 0.0789 | 0.0973 | 0.0623 | 48.6983 | 0.053 | 0.0441 | 99.4791 |
3 | F4-1-2-PY-4 | 0 | 0.0508 | 49.1736 | 0 | 0.0069 | 0.0269 | 0.023 | 0 | 48.3353 | 0.0474 | 0 | 98.4057 |
3 | F4-1-3-PY-2 | 0 | 0 | 49.2931 | 0.0097 | 0 | 0 | 0.092 | 0.0486 | 48.5112 | 0.0567 | 0 | 98.7843 |
3 | F4-1-3-PY-3 | 0 | 0 | 49.3239 | 0 | 0 | 0.0251 | 0.0673 | 0 | 48.6918 | 0.0688 | 0.0049 | 98.9047 |
3 | F4-1-3-PY-4 | 0 | 0.0123 | 49.2288 | 0 | 0 | 0 | 0.0584 | 0.005 | 48.6244 | 0.0762 | 0.0265 | 98.745 |
3 | 1549-PY-1 | 0.0222 | 0 | 52.3566 | 0.0015 | 0.0553 | 0.0396 | 0.048 | 0 | 47.1191 | 0.0475 | 0.0314 | 100.4698 |
3 | F4-1-2-PY-6 | 0 | 0 | 49.9961 | 0.0312 | 0 | 0.6241 | 0.8695 | 0.0062 | 47.2792 | 0.0753 | 0 | 99.6443 |
3 | 1549-PY-3 | 0 | 0 | 52.7541 | 0.0015 | 0 | 0.0395 | 0.0888 | 0.1303 | 46.8642 | 0.0978 | 0.0913 | 100.8182 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Xiong, L.; Zhong, Z.; Ren, S.; Zhang, G.; Wang, J.; Zhang, Y.; Song, C. Typomorphic Characteristics of Gold-Bearing Pyrite and Its Genetic Implications for the Fang’an Gold Deposit, the Bengbu Uplift, Eastern China. Minerals 2022, 12, 1196. https://doi.org/10.3390/min12101196
Wang Y, Xiong L, Zhong Z, Ren S, Zhang G, Wang J, Zhang Y, Song C. Typomorphic Characteristics of Gold-Bearing Pyrite and Its Genetic Implications for the Fang’an Gold Deposit, the Bengbu Uplift, Eastern China. Minerals. 2022; 12(10):1196. https://doi.org/10.3390/min12101196
Chicago/Turabian StyleWang, Ying, Li Xiong, Ze Zhong, Shenglian Ren, Gang Zhang, Juan Wang, Yan Zhang, and Chuanzhong Song. 2022. "Typomorphic Characteristics of Gold-Bearing Pyrite and Its Genetic Implications for the Fang’an Gold Deposit, the Bengbu Uplift, Eastern China" Minerals 12, no. 10: 1196. https://doi.org/10.3390/min12101196
APA StyleWang, Y., Xiong, L., Zhong, Z., Ren, S., Zhang, G., Wang, J., Zhang, Y., & Song, C. (2022). Typomorphic Characteristics of Gold-Bearing Pyrite and Its Genetic Implications for the Fang’an Gold Deposit, the Bengbu Uplift, Eastern China. Minerals, 12(10), 1196. https://doi.org/10.3390/min12101196