Influence of Mining Activities on Arsenic Concentration in Rice in Asia: A Review
Abstract
:1. Introduction
2. China Case Study
Province | Sampling Site | Major Metals | Sampling Period | n | Mean (mg/kg) | Range (mg/kg) | Ref. |
---|---|---|---|---|---|---|---|
Hunan | Shimen mine | As | 2008 | 13 | 0.48 | [19] | |
2010 | 8 | 0.29 | 0.11–0.84 | [16] | |||
2013 | 10 | 0.513 | 0.272–1.148 | [20] | |||
Changning mining area | Pb, Zn | 2008 | 11 | 0.48 | [19] | ||
Shuikhoushan mine | Pb, Zn | 2013 | 28 | 0.586 | 0.235–0.986 | [7] | |
Xikhuanshan mine (Lengshuijiang) | Sb | 2007–2008 | 7 | 0.476 | 0.084–0.657 | [21] | |
2013 | 20 | 0.517 | 0.235–0.750 | [7] | |||
GYB (Chenzhou mine tailing spill) | Pb, Zn | 2002 | 0.49 | [13] | |||
JCT (Chenzhou mine tailing spill) | Pb, Zn | 2002 | 0.93 | [13] | |||
Bailutang metal processing area | 2008 | 13 | 0.44 | [19] | |||
2013 | 0.76 | [12] | |||||
Dengjiatang smelter | 2013 | 0.40 | [12] | ||||
Shizhuyuan, Dongbo, Manaoshan mines | 2013 | 1.07 | [12] | ||||
Yizhang mining area | Pb, Zn | 2008 | 6 | 0.51 | [19] | ||
Huayuan mine | Pb, Zn | 2003 | 6 | 0.486 | 0.230–0.651 | [22] | |
Chatian mine | Hg, Zn | 2003 | 5 | 0.437 | 0.216–0.551 | [22] | |
Yuetang mining area | Mn | 2008 | 7 | 0.43 | [19] | ||
Qibaoshan mine | Cu, Zn, Pb | 2013 | 6 | 0.261 | 0.211–0.342 | [7] | |
Non impacted sites | 2008 | 38 | 0.063 | 0.009–0.367 | [23] | ||
Overall | 2015 | 69 | 0.308 | 0.174–0.730 | [8] | ||
Guang-dong | Dabaoshan mine | Cu, Zn, Pb | 2008 | 95 | 0.19 | 0.074–0.447 | [23] |
Lianhuashan mine | W | 2006-2008 | 33 | 0.564 | 0.152–1.094 | [24] | |
2010 | 73 | 0.36 | 0.03–1.04 | [18] | |||
2011 | 107 | 0.32 | 0–1.0 | [25] | |||
Fankou mine | Pb, Zn | 2013 | 20 | 0.25 | 0.18–0.39 | [9] | |
Lechang mine | Pb, Zn | 2013 | 8 | 0.28 | 0.17–0.38 | [17] | |
Bing tailing pond | Pb, Zn | 2017 | 0.32 | 0.13–0.75 | [26] | ||
Huahang-Simiao | 2008 | 17 | 0.191 | 0.127–0.275 | [27] | ||
Overall | 2015 | 28 | 0.202 | 0.125–0.329 | [8] | ||
Hubei | Tonglushan | Cu | 2014 | 16 | 0.31 | 0.14–1.33 | [9] |
Overall | 2015 | 43 | 0.246 | 0.109–0.341 | [8] |
3. India Case Study
Location | Sampling Site | n | Mean (mg/kg) |
---|---|---|---|
Singhbhum Copper Belt, [32] | Bhatin | 3 | 0.008 |
Kuldiha | 3 | 0.096 | |
Darisai | 3 | 0.071 | |
Bodamdera (Rakha mine vicinity) | 3 | 0.017 | |
Rakha (Rakha mine vicinity) | 3 | 0.080 | |
Jagganathpur | 3 | 0.033 | |
Kendadih (Kendadih mine vicinity) | 3 | 0.112 | |
Terenga (Kendadih mine vicinity) | 3 | 0.142 | |
Benashol (Kendadih mine vicinity) | 3 | 0.142 | |
Kutludih (Maubhandar mine vicinity) | 3 | 0.056 | |
Chirugoda (Ghatsila mine vicinity) | 3 | 0.162 | |
Pathergoda (Surda mine vicinity) | 3 | 0.067 | |
Latia (Badia, Mosabani mine vicinity) | 3 | 0.064 | |
Badia (Badia, Mosabani mine vicinity) | 3 | 0.127 | |
Nadia district, West Bengal, [36] | Chakdaha | 18 | 0.23 |
Ranaghat-I | 12 | 0.30 | |
Shantipur | 12 | 0.40 | |
Krishnanagar | 12 | 0.24 | |
Haringhata | 9 | 0.54 | |
Contai (control site) | 5 | 0.05 |
4. Bangladesh Case Study
5. Thailand Case Study
Location | Type of Rice | n | Mean (mg/kg) | Range (mg/kg) | Ref. |
---|---|---|---|---|---|
Gold mine in Wang Saphung | |||||
Around gold mine | Polished sticky rice | 0.34 | [54] | ||
Under tailing pond | Polished sticky rice | 0.19 | [54] | ||
Mae Tao sub-district | Polished white rice | 31 | 0.316 | 0.193–0.462 | [51] |
Polished sticky rice | 28 | 0.336 | 0.137–0.612 | [51] | |
Ron Phibun | - | 5 | 0.682 | 0.291–1.361 | [55] |
Market | Polished white rice | 30 | 0.125 | 0.088–0.220 | [56] |
Polished sticky rice | 30 | 0.136 | 0.087–0.262 | [56] |
6. Vietnam Case Study
7. Indonesia Case Study
8. Korea Case Study
Location | Major Metals | Sampling Period | n | Mean (mg/kg) | Range (mg/kg) | Ref. |
---|---|---|---|---|---|---|
Gubong mine | Au Ag | 1997 | 0.30 | [94] | ||
Okdong mine | Cu, Pb, Zn | 2000–2001 | 2 | 0.17 | [95] | |
2001–2002 | 0.24 | [85] | ||||
Hwacheon mine | Au, Ag, Pb, Zn | 2001–2002 | 3 | 0.23 | [85] | |
Dongil mine | Au, Ag, Cu, Zn | 2000–2001 | 2 | 0.15 | [95] | |
Dongjeong mine | Au, Ag, Cu | 2002–2003 | 3 | 0.20 | 0.12–0.28 | [96] |
Boeun mine | Coal | 2002–2004 | 0.04 | [97] | ||
Sanggok mine | Au, Ag, Pb, Zn | 2002–2004 | 0.08 | 0.04–0.12 | [97] | |
Myeongbong mine | Au, Ag | 2005 | 5 | 0.41 | 0.24–0.72 | [89] |
Jukjeon mine | Au, Ag | 2007 | 11 | 0.221 | [86] | |
Yeongdae mine | Au, Ag | 1988 | 50 | 0.110 | 0.029–0.193 | [98] |
2003 | 63 | 0.126 | 0.043–0.286 | [98] | ||
2013 | 10 | 0.218 | 0.162–0.280 | [98] | ||
Sambo mine | Pb, Zn | 2014 | 10 | 0.247 | 0.104–0.774 | [91] |
Munmyeong mine | Au, Ag | 2014 | 10 | 0.217 | 0.124–0.442 | [91] |
Dalsung mine | Cu, W | 2014 | 10 | 0.314 | 0.212–0.454 | [91] |
Yaro mine | Au | 2019 | 6 | 0.03 | [82] | |
Non-contaminated sites | 2013 | 100 | 0.11 | 0.03–0.33 | [99] |
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fukagawa, N.K.; Ziska, L.H. Rice: Importance for Global Nutrition. J. Nutr. Sci. Vitaminol. 2019, 65, S2–S3. [Google Scholar] [CrossRef] [Green Version]
- Signes-Pastor, A.J.; Carey, M.; Meharg, A.A. Inorganic arsenic in rice-based products for infants and young children. Food Chem. 2016, 191, 128–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO. FAO Rice Market Monitor 2018; FAO: Rome, Italy, 2018. [Google Scholar]
- Zhuang, P.; Mcbride, M.; Xia, H.; Li, N.; Li, Z.A. Health Risk from Heavy Metals via Consumption of Food Crops in the Vicinity of Dabaoshan Mine, South China. Sci. Total Environ. 2009, 407, 1551–1561. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Wang, X.; Wu, X.; Yin, Y.; Ma, L.Q. Using rice as a remediating plant to deplete bioavailable arsenic from paddy soils. Environ. Int. 2020, 141, 105799. [Google Scholar] [CrossRef] [PubMed]
- Majumder, S.; Banik, P. Geographical variation of arsenic distribution in paddy soil, rice and rice-based products: A meta-analytic approach and implications to human health. J. Environ. Manag. 2019, 233, 184–199. [Google Scholar] [CrossRef]
- Fan, Y.; Zhu, T.; Li, M.T.; He, J.; Huang, R. Heavy metal contamination in Soil and Brown Rice and Human Health Risk Assessment near Three Mining Areas in Central China. J. Healthc. Eng. 2017, 3, 1–9. [Google Scholar] [CrossRef]
- Li, X.; Xie, K.; Yue, B.; Gong, Y.; Shao, Y.; Shang, X.; Wu, Y. Inorganic arsenic contamination of rice from Chinese major rice-producing areas and exposure assessment in Chinese population. Sci. China Chem. 2015, 58, 1898–1905. [Google Scholar] [CrossRef]
- Cai, L.M.; Xu, Z.C.; Qi, J.Y.; Feng, Z.Z.; Xiang, T.S. Assessment of exposure to heavy metals and health risks among residents near Tonglushan mine in Hubei, China. Chemosphere 2015, 127, 127–135. [Google Scholar] [CrossRef]
- Farooki, M. China’s Mineral Sector and the Belt & Road Initiative; Strategic Dialogue on Sustainable Raw Materials for Europe: Beijing, China, 2018. [Google Scholar]
- Yi, T.; Xiang, P. An Emergy analysis of paddy farming in Hunan Province, China: A new perspective on sustainable development of agriculture. J. Integr. Agric. 2016, 15, 2426–2436. [Google Scholar] [CrossRef] [Green Version]
- Song, D.; Zhuang, D.; Jiang, D.; Fu, J.; Wang, Q. Integrated Health Risk Assessment of Heavy Metals in Suxian County, South China. Int. J. Environ. Res. Public Health 2015, 12, 7100–7117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Probst, A.; Liao, B. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Sci. Total Environ. 2005, 399, 153–166. [Google Scholar] [CrossRef] [Green Version]
- Codex Alimentarius Commission. Report of the 10th Session of the Codex Commitee on Contaminants in Foods (REP16/CF); Codex Alimentarius Commission: Rome, Italy, 2016. [Google Scholar]
- Tang, J.; Liao, Y.; Yang, Z.; Chai, L.; Yang, W. Characterization of arsenic serious-contaminated soils from Shimen realgar mine area, the Asian largest realgar deposit in China. J. Soils Sediments 2016, 16, 1519–1528. [Google Scholar] [CrossRef]
- Li, L.; Zeng, X.; Bai, L.; Li, S. Soil arsenic content and its health risk assessment for agricultural products in the region surrounding Shimen arsenic sulphide mine. Chin. J. Appl. Ecol. 2010, 21, 2946–2951. (In Chinese) [Google Scholar]
- Li, J.H.; Dong, F.; Lu, Y.; Yan, Q.; Shim, H. Mechanisms controlling arsenic uptake in rice grown in Mining Impacted Regions in South China. PLoS ONE 2014, 9, e108300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Yu, H.; Liu, C.; Li, F.; Xu, X.; Wang, Q. Arsenic availability in rice from a mining area: Is amorphous iron oxide-bound arsenic a source or sink? Environ. Pollut. 2015, 199, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Lei, M.; Zeng, M.; Wang, L.; Williams, P.N.; Sun, G. Arsenic, lead, and cadmium pollution in rice from Hunan markets and contaminated areas and their health risk assessment. Acta Sci. Circumstantiae 2010, 30, 2314–2320. (In Chinese) [Google Scholar]
- Zeng, F.; Wei, W.; Li, M.; Huang, R.; Yang, F.; Duan, Y. Heavy Metal Contamination in Rice-Producing Soils of Hunan Province, China and Potential Health Risks. Int. J. Environ. Res. Public Health 2015, 12, 15584–15593. [Google Scholar] [CrossRef]
- Wu, F.; Fu, Z.; Liu, B.; Mo, C.; Chen, B.; Corns, W.; Liao, H. Health risk associated with dietary co-exposure to high levels of antimony and arsenic in the world’s largest antimony mine area. Sci. Total Environ. 2011, 409, 3344–3351. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, X. Environmental geochemistry study of arsenic in Western Hunan mining area, P.R. China. Environ. Geochem. Health 2005, 27, 313–320. [Google Scholar] [CrossRef]
- Zhu, Y.; Sun, G.; Lei, M.; Teng, M.; Liu, Y.; Chen, N.; Wang, L.; Carey, A.M.; Deacon, C.; Raab, A.; et al. High Percentage Inorganic Arsenic Content of Mining Impacted and Nonimpacted Chinese Rice. Environ. Sci. Technol. 2008, 42, 5008–5013. [Google Scholar] [CrossRef]
- Liu, C.; Luo, C.; Gao, Y.; Li, F.; Lin, L.; Wu, C.; Li, X. Arsenic contamination and potential health risk implications at an abandoned tungsten mine, southern China. Environ. Pollut. 2010, 158, 820–826. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Ding, X.; Li, F.; Wang, X.; Zhang, S.; Yi, J.; Liu, C.; Xu, X.; Wang, Q. The availabilities of arsenic and cadmium in rice paddy fields from a mining area: The role of soil extractable and plant silicon. Environ. Pollut. 2016, 215, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Yi, X.; Dang, Z.; Wang, Q.; Luo, H.; Tang, J. Heavy Metal Contamination and Health Risk Assessment in the Vicinity of a Tailing Pond in Guangdong, China. Int. J. Environ. Res. Public Health 2017, 14, 1557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Dong, F.; Deacon, C.; Chen, H.; Raab, A.; Meharg, A.A. Arsenic accumulation and phosphorus status in two rice (Oryza sativa L.) cultivars surveyed from fields in South China. Environ. Pollut. 2010, 158, 1536–1541. [Google Scholar] [CrossRef] [PubMed]
- Hemavathi, M.; Prabakaran, K. ARIMA Model for Forecasting of Area, Production and Productivity of Rice and Its Growth Status in Thanjavur District of Tamil Nadu, India. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, B.; Chadha, R. Non-Fuel Minerals and Mining: Enhancing Mineral Exploration in India. Available online: https://www.brookings.edu/wp-content/uploads/2020/04/Enhancing-Mineral-Exploration-in-India.pdf (accessed on 20 July 2020).
- Tata Energy Research Institute Overview of Mining and Mineral Industry in India New Delhi; Centre for Environmental Studies: New Delhi, India, 2001.
- Porter GeoConsultancy Singhbhum Copper Belt—Chapri, Mosaboni, Pathargarh, Kendadih, Surda, Rakha, Dhobani, Jaduguda. Available online: http://www.portergeo.com.au/database/mineinfo.asp?mineid=mn460 (accessed on 20 August 2020).
- Giri, S.; Singh, A.K. Human health risk assessment due to dietary intake of heavy metals through rice in the mining areas of Singhbhum Copper Belt, India. Environ. Sci. Pollut. Res. 2017, 24, 14945–14956. [Google Scholar] [CrossRef]
- Indian Ministry of Agriculture and Farmers Welfare Agricultural Statistics at a Glance 2018. Available online: http://agricoop.gov.in/sites/default/files/agristatglance2018.pdf. (accessed on 18 July 2020).
- Das, A. Ground Water Arsenic Contamination–A Study of Major Arsenic Affected Districts of West Bengal. Int. J. Sci. Res. 2015, 4, 2993–2996. [Google Scholar]
- Shrestha, R.; Kafle, B.; Gurung, A.; Regmi, D. Arsenic in groundwater, soil and rice grain of Nepal. Int. J. Agric. Environ. Biores. 2017, 2. [Google Scholar]
- Bhattacharya, P.; Samal, A.C.; Majumdar, J.; Santra, S.C. Accumulation of arsenic and its distribution in rice plant (Oryza sativa L.) in Gangetic West Bengal, India. Paddy Water Environ. 2010, 8, 63–70. [Google Scholar] [CrossRef]
- FAPDA Country Fact Sheet on Food and Agriculture Policy Trends: Bangladesh. 2016. Available online: http://www.fao.org/3/a-i5890e.pdf (accessed on 8 January 2021).
- Yolanda, F.S. The Mineral Industry of Bangladesh. In U.S. Geological Survey Mineral Yearbook 2016; Bureau of Mines: Washington, DC, USA, 2020. [Google Scholar]
- Rashid, H.O.; Shanto, M.A.S.; Roy, D.R.R.; Hossain, M.S.; Islam, M.S.; Hoque, M.M.M.; Urbi, Z. Impact of coal mining on soil, water and agricultural crop production: A cross-sectional study on Barapukuria coal mine industry, Dinajpur, Bangladesh. J. Environ. Sci. Res. 2014, 1, 1–6. [Google Scholar]
- Halim, M.A.; Majumder, R.K.; Zaman, M.N.; Hossain, S.; Rasul, M.G.; Sasaki, K. Mobility and impact of trace metals in Barapukuria coal mining area, Northwest Bangladesh. Arab. J. Geosci. 2013, 6, 4593–4605. [Google Scholar] [CrossRef]
- Bhuiyan, M.A.H.; Bodrud-Doza, M.; Rakib, M.A.; Saha, B.B.; Islam, S.M.D.-U. Appraisal of pollution scenario, sources and public health risk of harmful metals in mine water of Barapukuria coal mine industry in Bangladesh. Environ. Sci. Pollut. Res. 2021. [Google Scholar] [CrossRef] [PubMed]
- Halim, M.A.; Majumder, R.K.; Zaman, M.N. Paddy soil heavy metal contamination and uptake in rice plants from the adjacent area of Barapukuria coal mine, northwest Bangladesh. Arab. J. Geosci. 2015, 8, 3391–3401. [Google Scholar] [CrossRef]
- Islam, S.; Rahman, M.M.; Islam, M.R.; Naidu, R. Geographical variation and age-related dietary exposure to arsenic in rice from Bangladesh. Sci. Total Environ. 2017, 601–602, 122–131. [Google Scholar] [CrossRef]
- Mukherjee, A.; Sengupta, M.K.; Hossain, M.A.; Ahamed, S.; Das, B.; Nayak, B.; Lodh, D.; Rahman, M.M.; Chakraborti, D. Arsenic contamination in groundwater: A global perspective with emphasis on the Asian scenario. J. Health Popul. Nutr. 2006, 24, 142–163. [Google Scholar]
- OECD/FAO. OECD-FAO Agricultural Outlook”, OECD Agriculture Statistics (Database); FAO: Rome, Italy, 2018. [Google Scholar]
- Buteyn, S.D. The Mineral Industry of Thailand. In U.S. Geological Survey Mineral Yearbook 2015; USGS: Bangkok, Thailand, 2018. [Google Scholar]
- Tran, Q.B.; Lohitnavy, M.; Phenrat, T. Assessing potential hydrogen cyanide exposure from cyanide-contaminated mine tailing management pratices in Thailand’s gold mining. J. Environ. Manag. 2019, 249, 109357. [Google Scholar] [CrossRef]
- Corporate Europe Observatory, the Transnational Institute and Friends of the Earth Europe/International. Destructive Mining Trumps Local Health and Environment. 10 Stories of How the Rich and Powerful Hijacked Justice. Available online: https://www.tni.org/files/kingsgate-vs-thailand.pdf (accessed on 17 February 2021).
- Kim, K.W.; Chanpiwat, P.; Hoang, T.H.; Phan, K.; Sthiannopkao, S. Arsenic geochemistry of groundwater in Southeast Asia. Front. Med. 2011, 5, 420–433. [Google Scholar] [CrossRef]
- Codex Alimentarius Commission. Report of the 8th Session of the Codex Commitee on Contaminants in Foods (REP14/CF); Codex: Geneva, Switzerland, 2014. [Google Scholar]
- Chanpiwat, P.; Hensawang, S.; Suwatvitayakorn, P.; Ponsin, M. Risk assessment of bioaccessible arsenic and cadmium exposure through rice consumption in local residents of the Mae Tao Sub-district, Northwestern Thailand. Environ. Geochem. Health 2019, 41, 343–356. [Google Scholar] [CrossRef]
- Kosolsaksakul, P.; Farmer, J.G.; Oliver, I.W.; Graham, M.C. Geochemical associations and availability of cadmium (Cd) in a paddy field system, northwestern Thailand. Environ. Pollut. 2014, 187, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Suwatvitayakorn, P.; Ko, M.S.; Kim, K.W.; Chanpiwat, P. Human health risk assessment of cadmium exposure through rice consumption in cadmium-contaminated areas of the Mae Tao sub-district, Tak, Thailand. Environ. Geochem. Health 2020, 42, 2331–2334. [Google Scholar] [CrossRef]
- Neeratanaphan, L.; Intamat, S.; Khammanichanh, A.; Sriuttha, M. Arsenic quantity on sticky rice (Oryza Sativa) of gold mining area. Koch Cha Sarn J. Sci. 2015, 37, 11–25. [Google Scholar]
- Phimol, P.; Visuthismajarn, P.; Lin, C.; Rukkur, S. Assessment of arsenic concentrations and estimated daily intake of arsenic from rice (Oryza sativa) in Ron Phibun District, Southern Thailand. Int. J. Environ. Sci. Dev. 2017, 8, 517–520. [Google Scholar] [CrossRef] [Green Version]
- Ruangwises, S.; Saipan, P.; Tengjaroenkul, B.; Ruangwises, N. Total and inorganic arsenic in rice and rice bran purchased in Thailand. J. Food Prot. 2012, 75, 771–774. [Google Scholar] [CrossRef]
- Chutima, K. Leaching of Heavy Metals in Waste Rocks from Phu Tub Fah Gold Mine, Changwat Loei. Master’s Thesis, Chulalongkorn University, Bangkok, Thailand, 2014. [Google Scholar]
- Thanawattanawong, C. The Effects of Symbolism on a Social Movement: The Wang Sapung Gold Mining Conflict in Loei Province, Thailand. Soc. Sci. Asia 2019, 5, 81–92. [Google Scholar]
- Fuller, C.; Hurley, S.; Leung, M.; Winfield, L. Voices from the Margin: Economic, Social and Cultural Rights in the Northeast Thailand: Na Nong Bong; IDEA Publishing: London, UK, 2009. [Google Scholar]
- Lacambra, C.; Molloy, D.; Lacambra, J.; Leroux, I.; Klossner, L.; Talari, M.; Cabrera, M.M.; Persson, S.; Downing, T.E.; Downing, E.; et al. Factsheet Resilience Solutions for the Rice Sector in Vietnam. Available online: https://publications.iadb.org/en/factsheet-resilience-solutions-for-the-rice-sector-in-vietnam (accessed on 15 August 2020).
- Nguyen, N.K. Mineral Resources Potential of Vietnam and Current State of Mining Activity. Appl. Environ. Res. 2014, 36, 37–46. [Google Scholar]
- Hahn, C. Review of Arsenic Contamination and Human Exposure through Water and Food in Rural Areas in Vietnam. Ph.D. Thesis, Dresden University of Technology, Dresden, Germany, 2016. [Google Scholar]
- Chu, K.N.; Nguyen, N.V.; Nguyen, B.D.; Le, S.T.; Tanaka, S.; Kang, Y.; Sakurai, K.; Iwasaki, K. Arsenic and Heavy Metal Concentrations in Agricultural Soils Around Tin and Tungsten Mines in the Dai Tu district, N. Vietnam. Water Air Soil Pollut. 2009, 197, 75–89. [Google Scholar]
- Nguyen, T.P.M.; Nguyen, T.P.T.; Bui, T.H.; Nguyen, T.H. Concentration of arsenic in groundwater, vegetables, human hair and nails in mining site in the Northern Thai Nguyen province, Vietnam: Human exposure and risks assessment. Hum. Ecol. Risk Assess. Int. J. 2019, 25, 602–613. [Google Scholar] [CrossRef]
- Ko, M.S.; Nguyen, H.T.; Kim, Y.G.; Bui, L.M.; Chanpiwat, P.; Nguyen, H.T.; Nguyen, H.A.; Le, T.H.; Nguyen, B.Q.; Nguyen, A.V.; et al. Assessment and source identification of As and Cd contamination in soil and plants in the vicinity of the Nui Phao Mine, Vietnam. Environ. Geochem. Health 2020, 42, 4193–4201. [Google Scholar] [CrossRef]
- Nguyen, T.P.; Ruppert, H.; Pasold, T.; Sauer, B. Paddy soil geochemistry, uptake of trace elements by rice grains (Oryza sativa) and resulting health risks in the Mekong River Delta, Vietnam. Environ. Geochem. Health 2019, 42, 2377–2397. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.S.; Dinh, V.C.; Nguyen, T.A.H.; Kim, K.W. Heavy metals and arsenic concentrations in water, agricultural soil, and rice in Ngan Son district, Bac Kan province, Vietnam. Vietnamese J. Food Control 2020, 3, 270–282. [Google Scholar]
- Viet Nam News. Bắc Kạn Province Struggles to Control Illegal Mining. Available online: https://vietnamnews.vn/environment/449075/bac-kan-province-struggles-to-control-illegal-mining.html (accessed on 10 February 2021).
- Plaza-Toledo, M. The Mineral Industry of Indonesia. In U.S. Geological Survey Mineral Yearbook 2016; USGS: Drive Reston, VA, USA, 2020. [Google Scholar]
- Novirsa, R.; Dinh, Q.P.; Ishibashi, Y.; Wispriyono, B.; Fukushima, S.; Arizono, K. The evaluation of mercury contamination in upland rice paddy field around artisanal small-scale gold mining area, Lebaksitu, Indonesia. J. Environ. Saf. 2019, 10, 119–125. [Google Scholar]
- Nakazawa, K.; Nagafuchi, O.; Kawakami, T.; Inoue, T.; Yokota, K.; Serikawa, Y.; Cyio, B.; Elvince, R. Human health risk assessment of mercury vapor around artisanal small-scale gold mining area, Palu city, Central Sulawesi, Indonesia. Ecotoxicol. Environ. Saf. 2016, 124, 155–162. [Google Scholar] [CrossRef]
- Male, Y.T.; Reichelt-Brushett, A.J.; Pocock, M.; Nanlohy, A. Recent mercury contamination from artisanal gold mining on Buru Island, Indonesia—Potential future risks to environmental health and food safety. Mar. Pollut. Bull. 2013, 77, 428–433. [Google Scholar] [CrossRef]
- Novirsa, R.; Dinh, Q.P.; Jeong, H.; Addai-Arhin, S.; Nugraha, W.C.; Hirota, N.; Wispriyono, B.; Ishibashi, Y.; Arizono, K. The dietary intake of mercury from rice and human health risk in artisanal small-scale gold mining area, Indonesia. Fundam. Toxicol. Sci. 2020, 7, 215–225. [Google Scholar] [CrossRef]
- Sakakibara, M.; Sera, K. Mercury in Soil and Forage Plants from Artisanal and Small-Scale Gold Mining in the Bombana Area, Indonesia. Toxics 2020, 8, 15. [Google Scholar] [CrossRef] [Green Version]
- Bentley, K.; Soebandrio, A. Dietary exposure assessment for arsenic and mercury following submarine tailings placement in Ratatotok Sub-district, North Sulawesi, Indonesia. Environ. Pollut. 2017, 227, 552–559. [Google Scholar] [CrossRef]
- Abbas, H.H.; Sakakibara, M.; Sera, K.; Arma, L.H. Mercury Exposure and Health Problems in Urban Artisanal Gold Mining (UAGM) in Makassar, South Sulawesi, Indonesia. Geosciences 2017, 7, 44. [Google Scholar] [CrossRef] [Green Version]
- Sari, N.; Wispriyono, B.; Novirsa, R.; Simanjuntak, J.; Fukushima, S.; Arizono, K.; Kusnoputranto, H. Risk assessment and community health profile among residents living in Artisanal and Small-scale Gold Mining site in Ciguha, Gunung Pongkor, Bogor. J. Environ. Saf. 2019, 10, 127–136. [Google Scholar]
- Rahman, A.; Hananto, M.; Laelasari, E.; Adi, H.K.; Widodo, S.; Lasut, D. Health risk estimates from exposure to minerals in artisanal gold mining site in Gunung Pongkor, Bogor, Indonesia. In Full Paper Proceeding of International Trend in Multidisciplinary Academic Research 2014; Global Illuminators: Barcelona, Spain, 2014; Volume 1, pp. 467–490. ISBN 978-969-9948-24-4. [Google Scholar]
- Zahra Food Intake Analysis and Estimated to Health Risk of People Living in Artisanal Gold Mining Gunung Pongkor, Bogor Regency, West Java Province. J. Ekol. Kesehat. 2016, 15, 150–159. (In Indonesian)
- Codex Alimentarius Commission. Proposed Draft Maximum Levels for Arsenic in Rice. CX/CF 12/6/8-Add.1; Codex Alimentarius Commission: Maastricht, The Netherlands, 2012. [Google Scholar]
- Shi, L. The Mineral Industry of the Republic of Korea. In Area Reports—International—Asia and the Pacific: U.S. Geological Survey Minerals Yearbook; Bureau of Mines: Washington, DC, USA, 2009; Volume 3, pp. 141–146. [Google Scholar]
- Kim, M.-S.; Park, M.J.; Yang, J.H.; Lee, S.-H. Human Health Risk Assessment for Toxic Trace Elements in the Yaro Mine and Reclamation Options. Int. J. Environ. Res. Public Health 2019, 16, 5077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, H.-S.; Lee, J.-S.; Chon, H.-T.; Sager, M. Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au–Ag mine in Korea. J. Geochemical Explor. 2008, 96, 223–230. [Google Scholar] [CrossRef]
- Ji, K.; Kim, J.; Lee, M.; Park, S.; Kwon, H.-J.; Cheong, H.-K.; Jang, J.-Y.; Kim, D.-S.; Yu, S.; Young Wook, K.; et al. Assessment of exposure to heavy metals and health risks among residents near abandoned metal mines in Goseong, Korea. Environ. Pollut. 2013, 178, 322–328. [Google Scholar] [CrossRef]
- Lee, J.S.; Chon, H.T.; Myung, C.J. Toxic Risk Assessment and Environmental Contamination of Heavy Metals around Abandoned Metal Mine Sites in Korea. Key Eng. Mater. 2005, 277–279, 542–547. [Google Scholar] [CrossRef]
- Park, J.H.; Choi, K.K. Risk assessment of Abandoned Jukjeon metal mine in South Korea following the Korean Guidelines. Hum. Ecol. Risk Assess. 2013, 19, 754–766. [Google Scholar] [CrossRef]
- Jung, M.C. Background levels and daily intake of As, Cd, Cu, Pb and Zn in white rice produced in Korea. Econ. Environ. Geol. 2003, 36, 357–363. [Google Scholar]
- Barcelos, D.A.; Pontes, F.V.; da Silva, F.A.N.; Castro, D.C.; dos Anjos, N.O.; Castihos, Z.C. Gold mining tailing: Environmental availability of metals and human health risk assessment. J. Hazard. Mater. 2020, 397, 122721. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Lee, S.W.; Chon, H.T.; Kim, K.W. Evaluation of human exposure to arsenic due to rice ingestion in the vicinity of abandoned Myungbong Au-Ag mine site, Korea. J. Geochemical Explor. 2008, 96, 231–235. [Google Scholar] [CrossRef]
- Kwon, J.C.; Park, H.J.; Jung, M.C. Correlation of Arsenic and Heavy Metals in Paddy Soils and Rice Crops around the Munmyung Au-Ag Mines. Econ. Environ. Geol. 2015, 48, 337–349. (In Korean) [Google Scholar] [CrossRef]
- Kwon, J.C.; Nejad, Z.D.; Jung, M.C. Arsenic and heavy metals in paddy soil and polished rice contaminated by mining activities in Korea. Catena 2017, 148, 92–100. [Google Scholar] [CrossRef]
- Kim, S.H.; Chon, H.T. Contamination of heavy metals in stream sediments in the vicinity of the Sambo Pb-Zn-Barite mine. J. Korean Inst. Min. Geol. 1993, 26, 217–226. (In Korean) [Google Scholar]
- Yoon, K.W.; Jung, M.C.; Kim, J.W.; Jeon, S.W.; Han, S.H.; Lee, J.S.; Ji, W.H.; Kwon, O.H. Environmental assessment of water quality affected by mine drainage from tailings dam in the Sambo Pb-Zn Mine. J. Korean Soc. Miner. Energy Resour. Eng. 2020, 57, 12–23. [Google Scholar] [CrossRef]
- Chon, H.T.; Ahn, J.S.; Jung, M.C. Heavy metal contamination around the abandoned Au-Ag and base metal mine sites in Korea. Econ. Environ. Geol. 2005, 38, 101–111. [Google Scholar]
- Lee, J.S.; Chon, H.T. Exposure assessment of heavy metals on abandoned metal mine areas by ingestion of soil, crop plant and groundwater. J. Phys. IV 2003, 107, 757–760. [Google Scholar] [CrossRef]
- Chung, E.H.; Lee, J.S.; Chon, H.T.; Sager, M. Environmental contamination and bioaccessibility of arsenic and metals around the Dongjeong Au-Ag-Cu mine, Korea. Geochem. Explor. Environ. Anal. 2005, 5, 69–74. [Google Scholar] [CrossRef]
- Na, E.S.; Lee, Y.J.; Ko, K.Y.; Chung, D.Y.; Lee, K.S. Risk Assessment for Heavy Metals in Soil, Ground Water, Rice Grain nearby Abandoned Mine Areas. Korean J. Environ. Agric. 2013, 32, 245–251. [Google Scholar] [CrossRef]
- Kwon, J.C.; Jeong, S.H.; Jung, M.C.; Kim, T.S. Seasonal Variation and Correlation between Soil and Crop Plant of Arsenic and Heavy Metal Concentrations in Paddy Fields around the Yeongdae Au-Ag Mine, Korea. J. Korean Soc. Miner. Energy Resour. Eng. 2013, 50, 212–226. [Google Scholar] [CrossRef]
- Kim, D.Y.; Kim, J.Y.; Kim, K.H.; Kim, K.R.; Kim, H.S.; Kim, J.G.; Kim, W.I. Arsenic species in husked and polished rice grains grown at the non-contaminated paddy soils in Korea. J. Appl. Biol. Chem. 2018, 61, 391–395. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoang, A.T.P.; Prinpreecha, N.; Kim, K.-W. Influence of Mining Activities on Arsenic Concentration in Rice in Asia: A Review. Minerals 2021, 11, 472. https://doi.org/10.3390/min11050472
Hoang ATP, Prinpreecha N, Kim K-W. Influence of Mining Activities on Arsenic Concentration in Rice in Asia: A Review. Minerals. 2021; 11(5):472. https://doi.org/10.3390/min11050472
Chicago/Turabian StyleHoang, Anh T. P., Nouvarat Prinpreecha, and Kyoung-Woong Kim. 2021. "Influence of Mining Activities on Arsenic Concentration in Rice in Asia: A Review" Minerals 11, no. 5: 472. https://doi.org/10.3390/min11050472