Potential of Tailing Deposits in Chile for the Sequestration of Carbon Dioxide Produced by Power Plants Using Ex-Situ Mineral Carbonation
Abstract
:1. Introduction
1.1. Mineral Carbonation
1.2. Sources and Capture of Carbon Dioxide
2. Methodology
3. Collected Information
3.1. Inventory of Tailing Deposits
3.2. Inventory of Thermoelectric Power Plants
4. Selection of Sites for MC
5. Results and Discussion
6. Sensitivity Analysis
7. Final Comments
8. Conclusions
- Mineral carbonation is a feasible solution for tackling the problem of the deposition of tailings produced by the large copper industry developed in the north of Chile, as well as a strategy to mitigate the CO2 emissions produced by many power plants that supply electric energy to the mining industry.
- According to the proposed methodology, the region of Antofagasta is considered the best location for the installation of a future mineral carbonation plant as close to 3600 Mt of mine tailings are found in five large active deposits of tailings, which together have the potential to sequester between 66.0 to 98.6 Mt of CO2. In addition, 19 thermoelectric plants are in operation, which in 2018 produced about 9.4 Mt of CO2 that is available to be sequestered, with a maximum generation potential of 21.9 Mt of CO2eq per year.
- The results obtained when applying the method TOPSIS, in addition to the sensitivity analysis, showed that the mineral carbonation plant should be located close to the deposit of tailings from Mantos Blancos (MB), as it is located the shortest distance from the CO2 source and at a lower altitude. The MB deposit has the highest concentration of Cu and REE, which generates the highest amount of income potential per ton of tailing (124.35 USD/t of tailings).
- The recovery of valuable species, such as Cu, TiO2, and REE, must occur during the pretreatment stage of the tailings and before the precipitation of carbonates stage.
- The results obtained are preliminary and require technical and economic studies of the tailings selected as the most promising to sequester CO2.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Notation
Symbols | |
α | Alternative |
Closeness coefficient | |
Criteria | |
Normalization value | |
T | Number of operation hours throughout the year [8760/year] |
Anti-ideal value | |
Ideal value | |
Value of the weighted normalized decision matrix | |
Criteria weight | |
wt. % | Percentage by weight |
Decision matrix | |
Abbreviations | |
Cap | Installed capacity of power plants [MW] |
CO2 | Carbon dioxide |
m a.s.l. | Meters above sea level |
NGas | Natural Gas |
NOx | Nitrogen oxides |
SO2 | Sulfur dioxide |
Acronyms | |
ANG1, ANG2 | Angamos thermoelectric power plants |
CC KELAR | Kelar thermoelectric power plant |
CCH1, CCH2 | Cochrane thermoelectric power plants |
CC1, CC2 | Atacama thermoelectric power plants |
CCUS | Carbon, Capture, Use, and Storage |
CNE | Energy National Commision |
CTA | Andina thermoelectric power plant |
CTH | Hornitos thermoelectric power plant |
CTM1, CTM2, CTM3 | Mejillones thermoelectric power plants |
DS | Supreme Decree (from the Spanish “Decreto Supremo”) |
EMF | Emission Factor |
ES | Esperanza tailing deposit |
GHGs | Greenhouse Gases |
GWP | Global Warming Potential |
LS | Laguna Seca tailing deposit |
MB | Mantos Blanco tailing deposit |
MC | Mineral Carbonation |
MCDA | Multi-Criteria Decision Analysis |
MEA | Monoethanolamine |
MSE | Mean Sequestration Efficiency [Mt of CO2/Mt of tailing] |
MT | Mine Tailing |
NTO1, NTO2 | Norgener thermoelectric power plants |
PGE | Power Generation Efficiency [%] |
PM2.5 | Particulate Matter 2.5 [µm] |
REE | Rare earth element |
RI | Risk Index |
SEN | National Electricity System |
SERNAGEOMIN | National Service of Geology and Mining |
SD | Standard Deviation |
SG | Sierra Gorda tailing deposit |
SIC | Interconnected Central System |
SING | Interconnected System of the Great Northern region |
TA | Talabre tailing deposit |
TAL1, TAL2 | Taltal thermoelectric power plants |
TOPSIS | Technique for Order Preference by Similarity to Ideal Solution |
US | United States |
U14, U15, U16 | Tocopilla thermoelectric power plants |
Sup. and sub-indexes | |
eq. | equivalent |
eq.max. | equivalent maximum |
max | maximum |
max.cap | maximum capacity |
min | minimum |
SEQ | sequestered |
Total | Total tonnage |
Val | valuable specie |
2018 | year 2018 |
References
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M.; et al. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- IPCC. Climate Change 2007—The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC; IPCC: Geneva, Switzerland, 2007; p. 996. [Google Scholar]
- Hamilton, J.L.; Wilson, S.A.; Morgan, B.; Turvey, C.C.; Paterson, D.J.; Jowitt, S.M.; McCutcheon, J.; Southam, G. Fate of transition metals during passive carbonation of ultramafic mine tailings via air capture with potential for metal resource recovery. Int. J. Greenh. Gas Control. 2018, 71, 155–167. [Google Scholar] [CrossRef]
- Shrestha, E.; Ahmad, S.; Johnson, W.; Shrestha, P.; Batista, J.R. Carbon footprint of water conveyance versus desalination as alternatives to expand water supply. Desalination 2011, 280, 33–43. [Google Scholar] [CrossRef]
- Olajire, A.A. A review of mineral carbonation technology in sequestration of CO2. J. Pet. Sci. Eng. 2013, 109, 364–392. [Google Scholar] [CrossRef]
- Edenhofer, O.; Pichs-Madruga, R.; Sokona, Y.; Farahani, E.; Kadner, S.; Seyboth, K.; Adler, A.; Baum, I.; Brunner, S.; Eickemeier, P.; et al. Climate Change 2014: Mitigation of Climate Change; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Surridge, A.; Cloete, M. Carbon capture and storage in South Africa. Energy Procedia 2009, 1, 2741–2744. [Google Scholar] [CrossRef] [Green Version]
- Parsons Brinckerhoff and Global CCS Institute. Accelerating the Uptake of CCS: Industrial Use of Captured Carbon Dioxide; Parsons Brinckerhoff and Global CCS Institute: Melbourne, Australia, 2011. [Google Scholar]
- Santos, R.M.; Bodor, M.; Dragomir, P.N.; Vraciu, A.G.; Vlad, M.; Van Gerven, T. Magnesium chloride as a leaching and aragonite-promoting self-regenerative additive for the mineral carbonation of calcium-rich materials. Miner. Eng. 2014, 59, 71–81. [Google Scholar] [CrossRef] [Green Version]
- Sanna, A.; Uibu, M.; Caramanna, G.; Kuusik, R.; Maroto-Valer, M.M. A review of mineral carbonation technologies to sequester CO2. Chem. Soc. Rev. 2014, 43, 8049–8080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seifritz, W. CO2 disposal by means of silicates. Nat. Cell Biol. 1990, 345, 486. [Google Scholar] [CrossRef]
- Rackley, S. Carbon Capture and Storage; Butterworth-Heinemann: Amsterdam, The Netherlands, 2010; ISBN 9781856176361. [Google Scholar]
- Bide, T.P.; Styles, M.T.; Naden, J. An assessment of global resources of rocks as suitable raw materials for carbon capture and storage by mineralisation. Appl. Earth Sci. 2014, 123, 179–195. [Google Scholar] [CrossRef] [Green Version]
- Rahmani, O. CO2 sequestration by indirect mineral carbonation of industrial waste red gypsum. J. CO2 Util. 2018, 27, 374–380. [Google Scholar] [CrossRef]
- Huijgen, W.J.J.; Comans, R.N.J. Carbon Dioxide Sequestration by Mineral Carbonation: Literature Review, ECN-C--03-016; Energy Research Centre of The Netherlands: Petten, The Netherlands, 2003. [Google Scholar]
- Azdarpour, A.; Asadullah, M.; Mohammadian, E.; Hamidi, H.; Junin, R.; Karaei, M.A. A review on carbon dioxide mineral carbonation through pH-swing process. Chem. Eng. J. 2015, 279, 615–630. [Google Scholar] [CrossRef]
- Gras, A.; Beaudoin, G.; Molson, J.; Plante, B. Atmospheric carbon sequestration in ultramafic mining residues and impacts on leachate water chemistry at the Dumont Nickel Project, Quebec, Canada. Chem. Geol. 2020, 546, 119661. [Google Scholar] [CrossRef]
- Hamilton, J.L.; Wilson, S.A.; Morgan, B.; Harrison, A.L.; Turvey, C.C.; Paterson, D.J.; Dipple, G.M.; Southam, G. Accelerating Mineral Carbonation in Ultramafic Mine Tailings via Direct CO2 Reaction and Heap Leaching with Potential for Base Metal Enrichment and Recovery. Econ. Geol. 2020, 115, 303–323. [Google Scholar] [CrossRef]
- Li, J.; Hitch, M.; Power, I.M.; Pan, Y. Integrated Mineral Carbonation of Ultramafic Mine Deposits—A Review. Minerials 2018, 8, 147. [Google Scholar] [CrossRef] [Green Version]
- Hills, C.D.; Tripathi, N.; Carey, P.J. Mineralization Technology for Carbon Capture, Utilization, and Storage. Front. Energy Res. 2020, 8, 8. [Google Scholar] [CrossRef]
- Penner, L.R.; O’Connor, W.K.; Dahlin, D.C.; Gerdemann, S.J.; Rush, G.E. Mineral Carbonation: Energy Costs of Pretreatment Options and Insights Gained from Flow Loop Reaction Studies; International Atomic Energy Agency (IAEA): Vienna, Austria, 2004. [Google Scholar]
- Araya, N.; Kraslawski, A.; Cisternas, L.A. Towards mine tailings valorization: Recovery of critical materials from Chilean mine tailings. J. Clean. Prod. 2020, 263, 121555. [Google Scholar] [CrossRef]
- Araya, N.; Ramírez, Y.; Kraslawski, A.; Cisternas, L.A. Feasibility of re-processing mine tailings to obtain critical raw materials using real options analysis. J. Environ. Manag. 2021, 284, 112060. [Google Scholar] [CrossRef] [PubMed]
- Rajagopal, S.; Ng, K.; Douglas, J. A hierarchical procedure for the conceptual design of solids processes. Comput. Chem. Eng. 1992, 16, 675–689. [Google Scholar] [CrossRef]
- Cisternas, L.A.; Lucay, F.; Gálvez, E.D. Effect of the objective function in the design of concentration plants. Miner. Eng. 2014, 63, 16–24. [Google Scholar] [CrossRef]
- Kularatne, K.; Sissmann, O.; Kohler, E.; Chardin, M.; Noirez, S.; Martinez, I. Simultaneous ex-situ CO2 mineral sequestration and hydrogen production from olivine-bearing mine tailings. Appl. Geochem. 2018, 95, 195–205. [Google Scholar] [CrossRef]
- Sugama, T.; Ecker, L.; Butcher, T. Carbonation of Rock Minerals by Supercritical Carbon Dioxide at 250 °C; Brookhaven National Lab. (BNL): Upton, NY, USA, 2010. [Google Scholar]
- Martín, D.; Aparicio, P.; Galán, E. Mineral carbonation of ceramic brick at low pressure and room temperature. A simulation study for a superficial CO2 store using a common clay as sealing material. Appl. Clay Sci. 2018, 161, 119–126. [Google Scholar] [CrossRef]
- Haug, T.; Munz, I.; Kleiv, R. Importance of dissolution and precipitation kinetics for mineral carbonation. Energy Procedia 2011, 4, 5029–5036. [Google Scholar] [CrossRef] [Green Version]
- Paukert, A.N.; Matter, J.M.; Kelemen, P.B.; Shock, E.L.; Havig, J.R. Reaction path modeling of enhanced in situ CO2 mineralization for carbon sequestration in the peridotite of the Samail Ophiolite, Sultanate of Oman. Chem. Geol. 2012, 330–331, 86–100. [Google Scholar] [CrossRef]
- Murugan, A.; Brown, R.J.C.; Wilmot, R.; Hussain, D.; Bartlett, S.; Brewer, P.J.; Worton, D.R.; Bacquart, T.; Gardiner, T.; Robinson, R.A.; et al. Performing Quality Assurance of Carbon Dioxide for Carbon Capture and Storage. Carbon Res. 2020, 6, 76. [Google Scholar] [CrossRef]
- Olajire, A.A. CO2 capture and separation technologies for end-of-pipe applications—A review. Energy 2010, 35, 2610–2628. [Google Scholar] [CrossRef]
- Pasquier, L.-C.; Mercier, G.; Blais, J.-F.; Cecchi, E.; Kentish, S. Parameters optimization for direct flue gas CO 2 capture and sequestration by aqueous mineral carbonation using activated serpentinite based mining residue. Appl. Geochem. 2014, 50, 66–73. [Google Scholar] [CrossRef]
- Meyer, N.; Vögeli, J.; Becker, M.; Broadhurst, J.; Reid, D.; Franzidis, J.-P. Mineral carbonation of PGM mine tailings for CO2 storage in South Africa: A case study. Miner. Eng. 2014, 59, 45–51. [Google Scholar] [CrossRef]
- Boschi, C.; Bedini, F.; Baneschi, I.; Rielli, A.; Baumgartner, L.; Perchiazzi, N.; Ulyanov, A.; Zanchetta, G.; Dini, A. Spontaneous Serpentine Carbonation Controlled by Underground Dynamic Microclimate at the Montecastelli Copper Mine, Italy. Minerials 2019, 10, 1. [Google Scholar] [CrossRef] [Green Version]
- Andreoli, E. Materials and Processes for Carbon Dioxide Capture and Utilisation. Carbon Res. 2017, 3, 16. [Google Scholar] [CrossRef] [Green Version]
- Ghiat, I.; Al-Ansari, T. A review of carbon capture and utilisation as a CO2 abatement opportunity within the EWF nexus. J. CO2 Util. 2021, 45, 101432. [Google Scholar] [CrossRef]
- Giannoulakis, S.; Volkart, K.; Bauer, C. Life cycle and cost assessment of mineral carbonation for carbon capture and storage in European power generation. Int. J. Greenh. Gas Control. 2014, 21, 140–157. [Google Scholar] [CrossRef]
- Yong, D. Plant location selection based on fuzzy TOPSIS. Int. J. Adv. Manuf. Technol. 2006, 28, 839–844. [Google Scholar] [CrossRef]
- Behzadian, M.; Otaghsara, S.K.; Yazdani, M.; Ignatius, J. A state-of the-art survey of TOPSIS applications. Expert Syst. Appl. 2012, 39, 13051–13069. [Google Scholar] [CrossRef]
- Chu, T.-C.; Lin, Y.-C. An interval arithmetic based fuzzy TOPSIS model. Expert Syst. Appl. 2009, 36, 10870–10876. [Google Scholar] [CrossRef]
- Ertuǧrul, I. Fuzzy Group Decision Making for the Selection of Facility Location. Gr. Decis. Negot. 2011, 20, 725–740. [Google Scholar] [CrossRef]
- Wang, Y.-J. Fuzzy multi-criteria decision-making based on positive and negative extreme solutions. Appl. Math. Model. 2011, 35, 1994–2004. [Google Scholar] [CrossRef] [Green Version]
- Safari, M.; Kakaei, R.; Ataei, M.; Karamoozian, M. Using fuzzy TOPSIS method for mineral processing plant site selection: Case study: Sangan iron ore mine (phase 2). Arab. J. Geosci. 2012, 5, 1011–1019. [Google Scholar] [CrossRef]
- Araya, N.; Lucay, F.A.; Cisternas, L.A.; Gálvez, E.D. Design of Desalinated Water Distribution Networks: Complex Topography, Energy Production, and Parallel Pipelines. Ind. Eng. Chem. Res. 2018, 57, 9879–9888. [Google Scholar] [CrossRef]
- Juan Ocaranza, A. Cochilco Anuario de Estadisticas del Cobre y Otros Minerales 1999–2018; The Chilean Copper Commission: Santiago, Chile, 2019.
- González, C.C. Cochilco Inversión en la Minería Chilena. Cartera de Proyectos 2017–2026; The Chilean Copper Commission: Santiago, Chile, 2017.
- SERNAGEOMIN. Datos Públicos Depósito de Relaves. 2019. Available online: https://www.sernageomin.cl/datos-publicos-deposito-de-relaves (accessed on 3 November 2019).
- Park, J.; Yang, M.; Kim, S.; Lee, M.; Wang, S. Estimates of scCO2 Storage and Sealing Capacity of the Janggi Basin in Korea Based on Laboratory Scale Experiments. Minerials 2019, 9, 515. [Google Scholar] [CrossRef] [Green Version]
- Lam, E.J.; Montofré, I.L.; Álvarez, F.A.; Gaete, N.F.; Poblete, D.A.; Rojas, R.J. Methodology to Prioritize Chilean Tailings Selection, According to Their Potential Risks. Int. J. Environ. Res. Public Health 2020, 17, 3948. [Google Scholar] [CrossRef]
- Vogeli, J.; Reid, D.; Becker, M.; Broadhurst, J.; Franzidis, J.-P. Investigation of the potential for mineral carbonation of PGM tailings in South Africa. Miner. Eng. 2011, 24, 1348–1356. [Google Scholar] [CrossRef]
- Lam, E.J.; Zetola, V.; Ramírez, Y.; Montofré, Í.L.; Pereira, F. Making Paving Stones from Copper Mine Tailings as Aggregates. Int. J. Environ. Res. Public Health 2020, 17, 2448. [Google Scholar] [CrossRef] [Green Version]
- Tripodi, E.E.M.; Rueda, J.A.G.; Céspedes, C.A.; Vega, J.D.; Gomez, C.C. Characterization and geostatistical modelling of contaminants and added value metals from an abandoned Cu–Au tailing dam in Taltal (Chile). J. South Am. Earth Sci. 2019, 93, 183–202. [Google Scholar] [CrossRef]
- Cortés, S.; Soto, E.E.; Ordóñez, J.I. Recovery of Copper from Leached Tailing Solutions by Biosorption. Minerials 2020, 10, 158. [Google Scholar] [CrossRef] [Green Version]
- Drobe, M.; Haubrich, F.; Gajardo, M.; Marbler, H. Processing Tests, Adjusted Cost Models and the Economies of Reprocessing Copper Mine Tailings in Chile. Metals 2021, 11, 103. [Google Scholar] [CrossRef]
- Smuda, J.; Dold, B.; Spangenberg, J.E.; Pfeifer, H.-R. Geochemistry and stable isotope composition of fresh alkaline porphyry copper tailings: Implications on sources and mobility of elements during transport and early stages of deposition. Chem. Geol. 2008, 256, 62–76. [Google Scholar] [CrossRef]
- Dold, B.; Fontboté, L. Element cycling and secondary mineralogy in porphyry copper tailings as a function of climate, primary mineralogy, and mineral processing. J. Geochem. Explor. 2001, 74, 3–55. [Google Scholar] [CrossRef]
- CNE. CNE Reporte Capacidad Instalada Generación Marzo de 2019; Comisión Nacional de Energía: Santiago, Chile, 2019.
- BCN. Decreto Supremo 13, de 2011, Norma de Emisión para Centrales Termoeléctricas. Available online: https://www.bcn.cl/leychile/navegar?idNorma=1026808 (accessed on 10 August 2020).
- Hwang, C.; Yoon, K. Multiple Attributes Decision Making: Methods and Applications; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1981. [Google Scholar]
- SONAMI. Valorización de Relaves de la Mediana Minería. Sociedad Nacional de Minería. Available online: https://www.sonami.cl/v2/wp-content/uploads/2016/03/10.-Valorizacion-de-Relaves-de-la-Mediana-Mineria.pdf (accessed on 15 January 2021).
- Bui, M.; Adjiman, C.S.; Bardow, A.; Anthony, E.J.; Boston, A.; Brown, S.; Fennell, P.S.; Fuss, S.; Galindo, A.; Hackett, L.A.; et al. Carbon capture and storage (CCS): The way forward. Energy Environ. Sci. 2018, 11, 1062–1176. [Google Scholar] [CrossRef] [Green Version]
- McCoy, S.T.; Rubin, E.S. An engineering-economic model of pipeline transport of CO2 with application to carbon capture and storage. Int. J. Greenh. Gas Control. 2008, 2, 219–229. [Google Scholar] [CrossRef]
- Koornneef, J.; Spruijt, M.; Molag, M.; Ramírez, A.; Turkenburg, W.; Faaij, A. Quantitative risk assessment of CO2 transport by pipelines—A review of uncertainties and their impacts. J. Hazard. Mater. 2010, 177, 12–27. [Google Scholar] [CrossRef]
- Karimi, M.; Hillestad, M.; Svendsen, H.F. Capital costs and energy considerations of different alternative stripper configurations for post combustion CO2 capture. Chem. Eng. Res. Des. 2011, 89, 1229–1236. [Google Scholar] [CrossRef]
- Valderrama, J.O.; Campusano, R.; Espindola, C. Minería Chilena: Captura, Transporte, y Almacenamiento de Dióxido de Carbono en Relaves mediante Líquidos Iónicos y Carbonatación Mineral. Inf. Tecnol. 2019, 30, 357–372. [Google Scholar] [CrossRef] [Green Version]
- Mena, S.; Guirado, G. Electrochemical Tuning of CO2 Reactivity in Ionic Liquids Using Different Cathodes: From Oxalate to Carboxylation Products. Carbon Res. 2020, 6, 34. [Google Scholar] [CrossRef]
- Northey, S.; Haque, N.; Mudd, G. Using sustainability reporting to assess the environmental footprint of copper mining. J. Clean. Prod. 2013, 40, 118–128. [Google Scholar] [CrossRef]
- Khoo, Z.-Y.; Ho, E.H.Z.; Li, Y.; Yeo, Z.; Low, J.S.C.; Bu, J.; Chia, L.S.O. Life cycle assessment of a CO2 mineralisation technology for carbon capture and utilisation in Singapore. J. CO2 Util. 2021, 44, 101378. [Google Scholar] [CrossRef]
- Yu, P. Carbon tax/subsidy policy choice and its effects in the presence of interest groups. Energy Policy 2020, 147, 111886. [Google Scholar] [CrossRef]
- Stolaroff, J.K.; Lowry, G.V.; Keith, D.W. Using CaO- and MgO-rich industrial waste streams for carbon sequestration. Energy Convers. Manag. 2005, 46, 687–699. [Google Scholar] [CrossRef]
- Knoope, M.; Guijt, W.; Ramírez, A.; Faaij, A. Improved cost models for optimizing CO2 pipeline configuration for point-to-point pipelines and simple networks. Int. J. Greenh. Gas Control. 2014, 22, 25–46. [Google Scholar] [CrossRef]
- Zhou, Y.; Tol, R.S.J. Evaluating the costs of desalination and water transport. Water Resour. Res. 2005, 41, 1–10. [Google Scholar] [CrossRef]
Mining Size | Amount (N°) | Current Vol. (Mm3) | (%) | Approved Vol. (Mm3) | (%) | Filling (%) |
---|---|---|---|---|---|---|
Small and medium | 77 | 69 | 1.0 | 189 | 1.2 | 36.51 |
Large | 27 | 6639 | 99.0 | 14,939 | 98.8 | 44.44 |
Total | 104 | 6708 | 100.0 | 15,128 | 100.0 | 44.34 |
Descriptive Statistics | Cu | TiO2 | Fe2O3 | CaO | MgO | Na2O | K2O | Al2O3 | SiO2 | Majors |
Mean | 0.098 | 0.565 | 9.570 | 3.326 | 3.159 | 2.645 | 3.424 | 14.497 | 56.949 | 5.332 |
Median | 0.067 | 0.550 | 5.860 | 2.690 | 2.430 | 1.910 | 3.570 | 14.430 | 60.070 | 4.740 |
SD | 0.087 | 0.189 | 8.170 | 2.348 | 1.973 | 2.733 | 1.339 | 3.034 | 9.728 | 3.666 |
Kurtosis | 0.000 | 5.764 | −0.792 | 1.241 | 0.942 | 20.187 | −0.232 | −0.610 | −0.669 | 12.597 |
Skewness | 0.000 | 1.474 | 0.870 | 0.977 | 1.132 | 3.887 | −0.313 | 0.087 | −0.467 | 3.102 |
Min | 0.004 | 0.180 | 1.650 | 0.370 | 0.210 | 0.410 | 0.450 | 8.770 | 32.660 | 1.730 |
Max | 0.367 | 1.400 | 27.530 | 11.020 | 9.260 | 18.350 | 6.010 | 21.450 | 73.570 | 23.870 |
Descriptive Statistics | V | Rb | Zn | Sr | Zr | Ba | Pb | As | REE | Minors |
Mean | 0.013 | 0.010 | 0.027 | 0.025 | 0.027 | 0.058 | 0.021 | 0.009 | 0.016 | 0.036 |
Median | 0.013 | 0.008 | 0.010 | 0.015 | 0.026 | 0.053 | 0.006 | 0.002 | 0.016 | 0.034 |
SD | 0.004 | 0.006 | 0.051 | 0.022 | 0.014 | 0.030 | 0.051 | 0.022 | 0.006 | 0.012 |
Kurtosis | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.002 | 0.001 | 0.000 | 0.000 |
Skewness | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Min | 0.004 | 0.002 | 0.004 | 0.001 | 0.007 | 0.002 | 0.001 | 0.002 | 0.007 | 0.012 |
Max | 0.027 | 0.033 | 0.262 | 0.076 | 0.061 | 0.125 | 0.259 | 0.106 | 0.037 | 0.082 |
Group | Mineral (100 g) | Direct Mineral Carbonation Reaction | CO2max.cap (g of CO2/100 g mineral) |
Oxides | Magnetite | Fe3O4 + CO2 + H2O ➔ FeCO3 + 2FeOOH | 19.0 |
Phyllosilicates | Biotite | KMg2FeAlSi3O10(OH)2 + 3CO2 ➔ 2MgCO3 + FeCO3 + KAlSi3O8 + H2O | 29.4 |
Chlorite | Mg5Al2Si3O10(OH)8 + 5CO2 ➔ 5MgCO3 + Al2O3 + 3SiO2 + 4H2O | 39.6 | |
Montmorrillonite | Na0.33Mg2Si4O10(OH)2H2O + 2CO2 ➔ 2MgCO3 + 0.33NaO3 + 4SiO2 + 2H2O | 23.1 | |
Muscovite | 2KAl2(AlSi3O10)(OH)2 + CO2 ➔ K2CO3 + 3Al2O3 + 6SiO2 + 2H2O | 5.5 | |
Tectosilicates | Orthoclase | 2KAlSi3O8 + CO2 ➔ K2CO3 + Al2O3 + 6SiO2 | 7.9 |
Albite | 2NaAlSi3O8 + CO2 ➔ Na2CO3 + Al2O3 + 6SiO2 | 8.4 | |
Anorthite | CaAl2Si2O8 + CO2 ➔ CaCO3 + Al2O3 + 2SiO2 | 15.8 | |
Other silicates | Titanite | CaTiSiO5 + CO2 ➔ CaCO3 + TiO2 + SiO2 | 22.5 |
Hornblende | Ca2Mg4Al(Si7Al)O22(OH)2 + 6CO2 ➔ 4MgCO3 + 2CaCO3 + Al2O3 + 7SiO2 + H2O | 32.4 |
State of the Plant | Fuel | PM2.5 (mg/Nm3) | SO2 (mg/Nm3) | NOx (mg/Nm3) | Hg (mg/Nm3) |
---|---|---|---|---|---|
Solid | 50 | 400 | 500 | 0.1 | |
In operation | Liquid | 30 | 30 | 200 | - |
Gas | - | - | 50 | - | |
Solid | 30 | 200 | 200 | 0.1 | |
New | Liquid | 30 | 10 | 120 | - |
Gas | - | - | 50 | - |
Total CO2 (Mt) | MSE | % | Income Potential | |||||
---|---|---|---|---|---|---|---|---|
Tailing Deposit | Current Ton (Mt) | CO2min | CO2max | (t of CO2/ t of Tailings) | Cu | TiO2 | REE | (USD/ t of Tailings) |
Mantos Blancos | 131 | 3.22 | 4.59 | 0.030 | 0.193 | 0.500 | 0.024 | 124.35 |
Esperanza | 240 | 8.41 | 12.62 | 0.044 | 0.040 | 0.590 | 0.015 | 97.24 |
Sierra Gorda | 143 | 3.25 | 4.86 | 0.028 | 0.052 | 0.490 | 0.022 | 109.18 |
Talabre | 1793 | 21.85 | 31.96 | 0.015 | 0.230 | 0.180 | 0.011 | 63.08 |
Laguna Seca | 1302 | 28.95 | 44.09 | 0.028 | 0.103 | 0.525 | 0.016 | 99.64 |
El Peñon | 21 | 0.31 | 0.46 | 0.019 | 0.048 | 0.280 | 0.017 | 75.71 |
Total | 3630 | 66.01 | 98.57 |
Ecological Risk Factor (Er) (Dimensionless) | Potential Ecological Risk Index (∑Er) | Contamination Level | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Tailing Deposit | As | Cd | Hg | Pb | Cu | Ni | Zn | Cr | RI | |
Mantos Blancos | 40 | 223 | 5 | 89 | 72 | 10 | 1 | 5 | 444 | Low |
Esperanza | 40 | 33 | 73 | 50 | 15 | 5 | 2 | 3 | 220 | Middle |
Sierra Gorda | 40 | 140 | 11 | 56 | 19 | 5 | 1 | 3 | 276 | High |
Talabre | 1562 | 65 | 143 | 470 | 85 | 9 | 2 | 2 | 2339 | Very high |
Laguna Seca | 40 | 67 | 355 | 65 | 38 | 2 | 5 | 4 | 575 | Extremely high |
El Peñon | 1953 | 327 | 596 | 1615 | 18 | 9 | 25 | 2 | 4545 |
Facility | Location | Source | Capacity (MW) | PGE (%) | ENE2018 (GWh/year2018) | CO2eq.MAX (Mt/year) | CO2.2018 (Mt/year2018) |
---|---|---|---|---|---|---|---|
NTO1 + NTO2 | Tocopilla | Coal | 276.39 | 75.6 | 1831 | 1.48 | 1.12 |
U14–U16 | Tocopilla | Coal/NGas | 631.10 | 36.1 | 1997 | 3.00 | 1.10 |
CTM1–CTM3 | Mejillones | Coal/NGas | 583.29 | 23.4 | 1197 | 2.87 | 0.69 |
CTH | Mejillones | Coal | 177.54 | 60.8 | 945 | 0.95 | 0.58 |
ANG1 + ANG2 | Mejillones | Coal | 558.20 | 75.3 | 3681 | 3.00 | 2.26 |
CCH1 + CCH2 | Mejillones | Coal | 549.72 | 68.0 | 3277 | 2.95 | 2.01 |
CTA | Mejillones | Coal | 177.00 | 65.4 | 1015 | 0.95 | 0.62 |
CC KELAR | Mejillones | NGas | 532.46 | 39.2 | 1829 | 2.29 | 0.90 |
CC1 + CC2 | Mejillones | NGas | 780.60 | 1.9 | 127 | 3.36 | 0.06 |
TAL1 + TAL2 | Taltal | NGas | 240.15 | 2.6 | 55 | 1.03 | 0.03 |
Total | 15,954 | 21.89 | 9.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marín, O.; Valderrama, J.O.; Kraslawski, A.; Cisternas, L.A. Potential of Tailing Deposits in Chile for the Sequestration of Carbon Dioxide Produced by Power Plants Using Ex-Situ Mineral Carbonation. Minerals 2021, 11, 320. https://doi.org/10.3390/min11030320
Marín O, Valderrama JO, Kraslawski A, Cisternas LA. Potential of Tailing Deposits in Chile for the Sequestration of Carbon Dioxide Produced by Power Plants Using Ex-Situ Mineral Carbonation. Minerals. 2021; 11(3):320. https://doi.org/10.3390/min11030320
Chicago/Turabian StyleMarín, Oscar, José O. Valderrama, Andrzej Kraslawski, and Luis A. Cisternas. 2021. "Potential of Tailing Deposits in Chile for the Sequestration of Carbon Dioxide Produced by Power Plants Using Ex-Situ Mineral Carbonation" Minerals 11, no. 3: 320. https://doi.org/10.3390/min11030320
APA StyleMarín, O., Valderrama, J. O., Kraslawski, A., & Cisternas, L. A. (2021). Potential of Tailing Deposits in Chile for the Sequestration of Carbon Dioxide Produced by Power Plants Using Ex-Situ Mineral Carbonation. Minerals, 11(3), 320. https://doi.org/10.3390/min11030320