Revisiting the Intermediate Sediment Repository Concept Applied to the Provenance of Zircon
Abstract
:1. Introduction
1.1. Zircon
1.2. The Intermediate Sediment Repository (ISR) Concept
2. Study Area
2.1. Geomorphology and Geology
2.2. Potential Sediment Sources
3. Statistical Analysis of U–Pb Zircon Ages
3.1. Kernel Density Estimator
3.2. K–S Test and Cumulative Age Distribution
3.3. Multidimensional Scaling
4. Provenance of the Sines Holocene Beach Sand
4.1. Distal and Local Provenance
4.2. Recycling of a Protosource: First- and Second-Order Zircon
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vavra, G. On the kinematics of zircon growth and its petrogenetic significance: A cathodoluminescence study. Contrib. Miner. Petrol. 1990, 106, 90–99. [Google Scholar] [CrossRef]
- Hanchar, J.; Miller, C. Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images: Implications for interpretation of complex crustal histories. Chem. Geol. 1993, 110, 1–13. [Google Scholar] [CrossRef]
- Vavra, G.; Gebauer, D.; Schmid, R.; Compston, W. Multiple zircon growth and recrystallization during polyphase Late Car-boniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps): An ion microprobe (SHRIMP) study. Contrib. Mineral. Petrol. 1996, 122, 337–358. [Google Scholar] [CrossRef]
- Corfu, F.; Hanchar, J.M.; Hoskin, P.W.; Kinny, P. Atlas of Zircon Textures. Rev. Miner. Geochem. 2003, 53, 469–500. [Google Scholar] [CrossRef]
- Charlier, B.L.A.; Wilson, C.J.N.; Lowenstern, J.B.; Blake, S.; Van Calsteren, P.W.; Davidson, J.P. Magma Generation at a Large, Hyperactive Silicic Volcano (Taupo, New Zealand) Revealed by U–Th and U–Pb Systematics in Zircons. J. Petrol. 2004, 46, 3–32. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.S.; Matzel, J.E.; Miller, C.F.; Burgess, S.D.; Miller, R.B. Zircon growth and recycling during the assembly of large, composite arc plutons. J. Volcanol. Geotherm. Res. 2007, 167, 282–299. [Google Scholar] [CrossRef]
- Fedo, C.M.; Sircombe, K.N.; Rainbird, R.H. Detrital Zircon Analysis of the Sedimentary Record. Rev. Miner. Geochem. 2003, 53, 277–303. [Google Scholar] [CrossRef]
- Gehrels, G.E.; Blakey, R.; Karlstrom, K.E.; Timmons, J.M.; Dickinson, B.; Pecha, M. Detrital zircon U-Pb geochronology of Paleozoic strata in the Grand Canyon, Arizona. Lithosphere 2011, 3, 183–200. [Google Scholar] [CrossRef] [Green Version]
- Sircombe, K.; Hazelton, M.L. Comparison of detrital zircon age distributions by kernel functional estimation. Sediment. Geol. 2004, 171, 91–111. [Google Scholar] [CrossRef]
- Dickinson, W.R. Provenance and sediment dispersal in relation to paleotectonics and paleogeography of sedimentary basins. In New Perspectives in Basin Analysis; Kleinspehn, K.L., Paola, C., Eds.; Springer: New York, NY, USA, 1988; pp. 3–25. [Google Scholar]
- Weltje, G.J.; von Eynatten, H. Quantitative provenance analysis of sediments: Review and outlook. Sediment. Geol. 2004, 171, 1–11. [Google Scholar] [CrossRef]
- Ireland, T.R.; Bradshaw, J.D.; Muir, R.; Weaver, S.; Adams, C. Zircon age distributions in granites, greywackes, and gneisses from the southwest Pacific–Gondwana region. In Abstracts of the Eighth International Conference on Geochronology, Cosmochronology, and Isotope Geology; U.S. Geological Survey: Reston, VA, USA, 1994; Volume 1107, p. 151. [Google Scholar]
- Sircombe, K.N. Tracing provenance through the isotope ages of littoral and sedimentary detrital zircon, eastern Australia. Sediment. Geol. 1999, 124, 47–67. [Google Scholar] [CrossRef]
- Morton, A.; Fanning, M.; Milner, P. Provenance characteristics of Scandinavian basement terrains: Constraints from detrital zircon ages in modern river sediments. Sediment. Geol. 2008, 210, 61–85. [Google Scholar] [CrossRef]
- Thomas, W.A. Detrital-zircon geochronology and sedimentary provenance. Lithosphere 2011, 3, 304–308. [Google Scholar] [CrossRef] [Green Version]
- Pereira, M.F.; Albardeiro, L.; Gama, C.; Chichorro, M.; Hofmann, M.; Linnemann, U. Provenance of Holocene beach sand in the Western Iberian margin: The use of the Kolmogorov-Smirnov test for the deciphering of sediment recycling in a modern coastal system. Sedimentology 2016, 63, 1149–1167. [Google Scholar] [CrossRef]
- Pell, S.D.; Williams, I.S.; Chivas, A.R. The use of protolith zircon-age fingerprints in determining the protosource areas for some Australian dune sands. Sediment. Geol. 1997, 109, 233–260. [Google Scholar] [CrossRef]
- Williams, I.S.; Chappell, B.W.; Chen, Y.D.; Crook, K.A.W. Inherited and detrital zircons—Vital clues to the granite protoliths and early igneous history of southeastern Australia. Trans. R. Soc. Edinb. Earth Sci. 1992, 83, 503. [Google Scholar]
- Sircombe, K.N.; Freeman, M.J. Provenance of detrital zircons on the Western Australian coastline: Implications for the geologic history of the Perth basin and denudation of the Yilgan craton. Geology 1999, 27, 879–882. [Google Scholar] [CrossRef]
- DeGraaff-Surpless, K.; Mahoney, J.B.; Wooden, J.L.; McWilliams, M.O. Lithofacies control in detrital zircon provenance studies: Insights from the Cretaceous Methow basin, southern Canadian Cordillera. GSA Bull. 2003, 115, 899–915. [Google Scholar] [CrossRef]
- Barbeau, D.L.; Davis, J.T.; Murray, K.E.; Valencia, V.; Gehrels, G.E.; Zahid, K.M.; Gombosi, D.J. Detrital-zircon geochronology of the metasedimentary rocks of north-western Graham Land. Antarct. Sci. 2009, 22, 65. [Google Scholar] [CrossRef] [Green Version]
- Vermeesch, P. On the visualization of detrital age distributions. Chem. Geol. 2013, 341, 140–146. [Google Scholar] [CrossRef]
- Vermeesch, P.; Garzanti, E. Making geological sense of ‘Big Data’ in sedimentary provenance analysis. Chem. Geol. 2015, 409, 20–27. [Google Scholar] [CrossRef]
- Vermeesch, P. Dissimilarity measures in detrital geochronology. Earth-Sci. Rev. 2018, 178, 310–321. [Google Scholar] [CrossRef] [Green Version]
- Wissink, G.K.; Wilkinson, B.H.; Hoke, G.D. Pairwise sample comparisons and multidimensional scaling of detrital zircon ages with examples from the North American platform, basin, and passive margin settings. Lithosphere 2018, 10, 478–491. [Google Scholar] [CrossRef] [Green Version]
- Reis, A.H.; Gama, C. Sand size versus beachface slope—An explanation based on the Constructal Law. Geomorphology 2010, 114, 276–283. [Google Scholar] [CrossRef]
- Gama, C. Dinâmica de Sistemas Sedimentares do Litoral Ocidental Português a Sul do Cabo Espichel. Ph.D. Thesis, Universidade de Évora, Évora, Portugal. (unpublished).
- Albardeiro, L.; Pereira, M.F.; Gama, C.; Chichorro, M.; Hoffman, M.; Linnemann, U. Provenance study of Pliocene-Plestocene sands based on ancient detrital zircons (Alvalade Basin, SW Iberian Atlantic coast). Sediment. Geol. 2014, 307, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Pereira, M.F.; Ribeiro, C.; Vilallonga, F.; Chichorro, M.; Drost, K.; Silva, J.B.; Albardeiro, L.; Hofmann, M.; Linnemann, U. Variability over time in the sources of South Portuguese Zone turbidites: Evidence of denudation of different crustal blocks during the assembly of Pangea. Int. J. Earth Sci. 2014, 103, 1453–1470. [Google Scholar] [CrossRef] [Green Version]
- Albardeiro, L. Aplicação da Geocronologia U-Pb em Zircão a Areias e Rochas do Substrato do Litoral do Sudoeste de Portugal: Implicações para a Proveniência, Dinâmica Sedimentar e História Geológica da Região. Ph.D. Thesis, Universidade de Évora, IIFA, Évora, Portugal, 2015; p. 328, (unpublished). [Google Scholar]
- Oliveira, J.T.; Pereira, E.; Ramalho, M.; Antunes, M.T.; Monteiro, J.H. Carta Geológica de Portugal, Notícia explicativa da Folha Sul, Scale 1/500 000; Serviços Geológicos de Portugal: Lisboa, Portugal, 1992. [Google Scholar]
- Inverno, C.M.C.; Manuppella, G.; Zbyszewski, G.; Pais, J.; Ribeiro, M.L. Carta Geológica de Portugal, Notícia explicativa da Folha 42-C (1:50000), Santiago do Cacém; Serviços Geológicos de Portugal: Lisboa, Portugal, 1993. [Google Scholar]
- Pereira, M.F.; Gama, C.; Da Silva, D.; Fuenlabrada, J.M.; Silva, J.B.; Medina, J.M. Isotope geochemistry evidence for Laurussian-type sources of South Portuguese Zone Carboniferous turbidites (Variscan Orogeny). Geol. Soc. Lond. Spec. Publ. 2020, 503, 619–642. [Google Scholar] [CrossRef]
- Pereira, M.F.; Ribeiro, C.; Gama, C.; Drost, K.; Chichorro, M.; Vilallonga, F.; Hofmann, M.; Linnemann, U. Provenance of upper Triassic sandstone, southwest Iberia (Alentejo and Algarve basins): Tracing variability in the sources. Int. J. Earth Sci. 2016, 106, 43–57. [Google Scholar] [CrossRef] [Green Version]
- Pereira, M.F.; Gama, C. Detrital provenance of the Upper Triassic siliciclastic rocks from southwest Iberia: A review. J. Iber. Geol. 2017, 43, 379–393. [Google Scholar] [CrossRef]
- Verati, C.; Rapaille, C.; Féraud, G.; Marzoli, A.; Bertrand, H.; Youbi, N. 40Ar/39Ar ages and duration of the Central Atlantic Magmatic Province volcanism in Morocco and Portugal and its relation to the Triassic–Jurassic boundary. Palaeogeogr. Palaeoclim. Palaeoecol. 2007, 244, 308–325. [Google Scholar] [CrossRef]
- Miranda, R.; Valadares, V.; Terrinha, P.; Mata, J.; Azevedo, M.; Gaspar, M.; Kulberg, J.; Ribeiro, C. Age constrains on the Late Cretaceous alkaline magmatism on the West Iberian Margin. Cretac. Res. 2009, 30, 575–586. [Google Scholar] [CrossRef] [Green Version]
- Pais, J.; Cunha, P.P.; Pereira, D.I.; Legoinha, P.; Dias, R.; Moura, D.; Da Silveira, A.B.; Rocha, R.B.; Delgado, J.G. The Paleogene and Neogene of Western Iberia (Portugal): A Cenozoic Record in the European Atlantic Domain; Springer: Berlin, Germany, 2011; pp. 1–138. [Google Scholar] [CrossRef]
- Rodrigues, B.; Chew, D.; Jorge, R.; Fernandes, P.; Veiga-Pires, C.; Oliveira, J.T. Detrital zircon geochronology of the Carboniferous Baixo Alentejo Flysch Group (South Portugal); Constraints on the provenance and geodynamic evolution of the South Portuguese Zone. J. Geol. Soc. 2015, 172, 294–308. [Google Scholar] [CrossRef] [Green Version]
- Dinis, P.A.; Fernandes, P.; Jorge, R.C.G.S.; Rodrigues, B.; Chew, D.M.; Tassinari, C.G. The transition from Pangea amalgama-tion to fragmentation: Constraints from detrital zircon geochronology on West Iberia paleogeography and sediment sources. Sediment. Geol. 2018, 375, 172–187. [Google Scholar] [CrossRef] [Green Version]
- Frei, D.; Gerdes, A. Precise and accurate in situ U–Pb dating of zircon with high sample throughput by automated LA-SF-ICP-MS. Chem. Geol. 2009, 261, 261–270. [Google Scholar] [CrossRef]
- Vermeesch, P. Multi-sample comparison of detrital age distributions. Chem. Geol. 2012, 341, 190–194. [Google Scholar] [CrossRef]
- Guynn, J.; Gehrels, G. Comparison of Detrital Zircon Age Distributions Using the K-S Test. Arizona LaserChron Center. 2010. Available online: https://laserchron.org/ (accessed on 15 October 2020).
- El Houicha, M.; Pereira, M.F.; Jouhari, A.; Gama, C.; Ennih, N.; Fekkak, A.; Ezzouhairi, H.; El Attari, A.; Silva, J.B. Recycling of the Proterozoic crystalline basement in the Coastal Block (Moroccan Meseta): New insights for understanding the geodynamic evolution of the northern peri-Gondwanan realm. Precambrian Res. 2018, 306, 129–154. [Google Scholar] [CrossRef]
- Pereira, M.F.; El Houicha, M.; Chichorro, M.; Armstrong, R.; Jouhari, A.; El Attari, A.; Ennih, N.; Silva, J. Evidence of a Paleoproterozoic basement in the Moroccan Variscan Belt (Rehamna Massif, Western Meseta). Precambrian Res. 2015, 268, 61–73. [Google Scholar] [CrossRef]
- Pereira, M.F.; Chichorro, M.; Williams, I.S.; Silva, J.B. Zircon U–Pb geochronology of paragneisses and biotite granites from the SW Iberian Massif (Portugal): Evidence for a paleogeographic link between the Ossa-Morena Ediacaran basins and the West African craton. In The Boundaries of the West African Craton; Liégeois, J.P., Nasser, E., Eds.; Geological Society of London: London, UK, 2008; pp. 385–408. [Google Scholar]
- Du, X.; Gama, C.; Liu, J.T.; Baptista, P. Sediment Sources and Transport Pathway Identification Based on Grain-Size Distributions on the SW Coast of Portugal. Terr. Atmos. Ocean. Sci. 2015, 26, 397. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, T.; Schwartz, R.; Weislogel, A. Orogenic Recycling of Detrital Zircons Characterizes Age Distributions of North American Cordilleran Strata. Tectonics 2019, 38, 4320–4334. [Google Scholar] [CrossRef]
Carboniferous Metagreywacke | Triassic Sandstone | Pliocene-Pleistocene Sand | Holocene Sand | Cretaceous Syenite | |
---|---|---|---|---|---|
Cretaceous | _ | _ | 72–95 | 73–95 | 74–87 |
113 | |||||
Paleozoic | 312–402 | 296 | 277–293 | 301–376 | _ |
426 | 312 | 297–401 | 476–531 | ||
454 | 327–405 | 413–457 | |||
465–538 | 463–541 | 477–539 | |||
Neoproterozoic | 548–992 | 547–964 | 542–973 | 553–979 | 623 |
Mesoproterozoic | 1011–1407 | 1037–1538 | 1010–1085 | _ | |
1546 | |||||
Paleoproterozoic | 1716–2450 | 1617–2475 | 1813–2191 | 1922–2274 | _ |
Archean | 2518–2863 | 2504–2755 | 2504–2874 | 2664–3024 | _ |
3461 |
PR DZ | p-Values Using Error in the CDF | |||
---|---|---|---|---|
Carboniferous ISR | Triassic ISR | Pliocene-Pleistocene ISR | Holocene Sand | |
Carboniferous ISR | 0.893 | 0.891 | 0.977 | |
Triassic ISR | 0.068 | 0.443 | 0.965 | |
Pliocene-Pleistocene ISR | 0.071 | 0.098 | 0.818 | |
Holocene Sand | 0.077 | 0.077 | 0.100 | |
D-values Using Error in the CDF | ||||
PZ DZ | p-values Using Error in the CDF | |||
Carboniferous ISR | Triassic ISR | Pliocene-Pleistocene ISR | Holocene Sand | |
Carboniferous ISR | x | 0.012 | 0.149 | 0.035 |
Triassic ISR | 0.277 | 0.000 | 0.000 | |
Pliocene-Pleistocene ISR | 0.163 | 0.382 | 0.834 | |
Holocene Sand | 0.241 | 0.434 | 0.079 | x |
D-values Using Error in the CDF | ||||
PZ+PR DZ | p-values Using Error in the CDF | |||
Carboniferous ISR | Triassic ISR | Pliocene-Pleistocene ISR | Holocene Sand | |
Carboniferous ISR | 0.344 | 0.000 | 0.000 | |
Triassic ISR | 0.091 | 0.000 | 0.000 | |
Pliocene-Pleistocene ISR | 0.326 | 0.367 | 0.816 | |
Holocene Sand | 0.318 | 0.369 | 0.063 | |
D-values Using Error in the CDF | ||||
Cretaceous DZ | p-values Using Error in the CDF | |||
Pliocene-Pleistocene ISR | Holocene | |||
Pliocene-Pleistocene ISR | 0.196 | |||
Holocene | 0.171 | |||
D-values Using Error in the CDF |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, M.F.; Gama, C. Revisiting the Intermediate Sediment Repository Concept Applied to the Provenance of Zircon. Minerals 2021, 11, 233. https://doi.org/10.3390/min11030233
Pereira MF, Gama C. Revisiting the Intermediate Sediment Repository Concept Applied to the Provenance of Zircon. Minerals. 2021; 11(3):233. https://doi.org/10.3390/min11030233
Chicago/Turabian StylePereira, Manuel Francisco, and Cristina Gama. 2021. "Revisiting the Intermediate Sediment Repository Concept Applied to the Provenance of Zircon" Minerals 11, no. 3: 233. https://doi.org/10.3390/min11030233
APA StylePereira, M. F., & Gama, C. (2021). Revisiting the Intermediate Sediment Repository Concept Applied to the Provenance of Zircon. Minerals, 11(3), 233. https://doi.org/10.3390/min11030233