The Influence of Zeolitic By-Product Containing Ammonium Ions on Properties of Hardened Cement Paste
Abstract
1. Introduction
2. Methods and Materials
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Panesar, D.K. Supplementary cementing materials. In Developments in the Formulation and Reinforcement of Concrete, 2nd ed.; Mindess, S., Ed.; Woodhead Publishing: Cambridge, UK, 2019; pp. 55–85. [Google Scholar]
- Rahla, K.M.; Mateus, R.; Bragança, L. Comparative sustainability assessment of binary blended concretes using Supplementary Cementitious Materials (SCMs) and Ordinary Portland Cement (OPC). J. Clean. Prod. 2019, 220, 445–459. [Google Scholar] [CrossRef]
- Zhao, Y.; Qiu, J.; Xing, J.; Sun, X. Recycling of quarry dust for supplementary cementitious materials in low carbon cement. Constr. Build. Mater. 2020, 237, 117608. [Google Scholar] [CrossRef]
- Lu, T.; Li, Z.; Huang, H. Effect of supplementary materials on the autogenous shrinkage of cement paste. Materials 2020, 13, 3367. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Ye, G.; De Schutter, G. Investigation on the potential utilization of zeolite as an internal curing agent for autogenous shrinkage mitigation and the effect of modification. Constr. Build. Mater. 2019, 198, 669–676. [Google Scholar] [CrossRef]
- Thang, N.C.; Tuan, N.V.; Yang, K.H.; Phung, Q.T. Effect of zeolite on shrinkage and crack resistance of high-performance cement-based concrete. Materials 2020, 13, 3773. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.Z.; Wang, X.Y. Effect of pre-wetted zeolite sands on the autogenous shrinkage and strength of ultra-high-performance concrete. Materials 2020, 13, 2356. [Google Scholar] [CrossRef] [PubMed]
- Nagrockiene, D.; Girskas, G. Research into the properties of concrete modified with natural zeolite addition. Constr. Build. Mater. 2016, 113, 964–969. [Google Scholar] [CrossRef]
- Rahhal, V.F.; Pavlík, Z.; Tironi, A.; Castellano, C.C.; Trezza, M.A.; Černý, R.; Irassar, E.F. Effect of cement composition on the early hydration of blended cements with natural zeolite. J. Therm. Analys. Calorim. 2017, 128, 721–733. [Google Scholar] [CrossRef]
- Lilkov, V.; Rostovsky, I.; Petrov, O. Physical and mechanical characteristics of cement mortars and concretes with addition of clinoptilolite from Beli Plast deposit (Bulgaria), silica fume and fly ash. Clay Miner. 2011, 46, 213–223. [Google Scholar] [CrossRef]
- Lilkov, V.; Petrov, O.; Petkova, V.; Petrova, N.; Tzvetanova, Y. Study of the pozzolanic activity and hydration products of cement pastes with addition of natural zeolites. Clay Miner. 2011, 46, 241–250. [Google Scholar] [CrossRef]
- Girskas, G.; Skripkiūnas, G.; Šahmenko, G.; Korjakins, A. Durability of concrete containing synthetic zeolite from aluminum fluoride production waste as a supplementary cementitious material. Constr. Build. Mater. 2016, 117, 99–106. [Google Scholar] [CrossRef]
- Da, Y.; He, T.; Wang, M.; Shi, C.; Xu, R.; Yang, R. The effect of spent petroleum catalyst powders on the multiple properties in blended cement. Constr. Build. Mater. 2020, 231, 117203. [Google Scholar] [CrossRef]
- Allahverdi, A.; Shahrbabaki, M.N.; Ghezelasheghi, M.; Mahinroosta, M. Sulfate resistance of RFCC spent catalyst-blended Portland cement. Boletín Soc. Española Cerámica Vidr. 2019, 58, 103–114. [Google Scholar] [CrossRef]
- Su, N.; Fang, H.Y.; Chen, Z.H.; Liu, F.S. Reuse of waste catalysts from petrochemical industries for cement substitution. Cem. Concr. Res. 2000, 30, 1773–1783. [Google Scholar] [CrossRef]
- Fu, H.; Li, Y.; Yu, Z.; Shen, J.; Li, J.; Zhang, M.; Ding, T.; Xu, L.; Lee, S.S. Ammonium removal using a calcined natural zeolite modified with sodium nitrate. J. Haz. Mater. 2020, 393, 122481. [Google Scholar] [CrossRef] [PubMed]
- Sang, W.; Mei, L.; Hao, S.; Li, D.; Li, X.; Zhang, Q.; Jin, X.; Li, C. Na@La modified zeolite particles for simultaneous removal of ammonia nitrogen and phosphate from rejected water: Performance and mechanism. Water Sci. Technol. 2020, 82, 2975–2989. [Google Scholar] [CrossRef]
- Han, B.; Butterly, C.; Zhang, W.; He, J.Z.; Chen, D. Adsorbent materials for ammonium and ammonia removal: A review. J. Clean. Product. 2020, 283, 124611. [Google Scholar] [CrossRef]
- Kotoulas, A.; Agathou, D.; Triantaphyllidou, I.E.; Tatoulis, T.I.; Akratos, C.S.; Tekerlekopoulou, A.G.; Vayenas, D.V. Zeolite as a potential medium for ammonium recovery and second cheese whey treatment. Water 2019, 11, 136. [Google Scholar] [CrossRef]
- Qin, L.; Gao, X.; Li, Q. Influences of coal fly ash containing ammonium salts on properties of cement paste. J. Environ. Manag. 2019, 249, 109374. [Google Scholar] [CrossRef]
- Lea, F.M. The action of ammonium salts on concrete. Magaz. Concr. Res. 1965, 17, 115–116. [Google Scholar] [CrossRef]
- Myrdal, R. Accelerating Admixtures for Concrete. State of the Art; COIN—Concrete Innovation Centre: Trondheim, Norway, 2007.
- Frybort, S.; Mauritz, R.; Teischinger, A.; Müller, U. Determination of the bond strength of treated wood strands embedded in a cement matrix by means of a pull-out test. Eur. J. Wood Wood Prod. 2009, 68, 407–414. [Google Scholar] [CrossRef][Green Version]
- Frybort, S.; Mauritz, R.; Teischinger, A.; Müller, U. Cement bonded composites—A mechanical review. BioResources. 2008, 3, 602–626. [Google Scholar]
- Bruker. X-ray S8 Tiger WD Series 2 Technical Details. Available online: https://www.bruker.com/products/x-ray-diffraction-and-elemental-analysis/x-ray-fluorescence/s8-tiger.html (accessed on 14 December 2020).
- Bruker. D8 Advance Diffractometer (Bruker AXS) Technical Details. Available online: https://www.bruker.com/products/x-ray-diffraction-and-elemental-analysis/x-ray-diffraction/d8-advance.html (accessed on 14 December 2020).
- CILAS. 1090 Particle Size Analyzer. Available online: https://www.pharmaceuticalonline.com/doc/cilas-1090-particle-size-analyzer-0002 (accessed on 14 December 2020).
- Zeiss. EVO MA and LS Series Scanning Electron Microscopes for Materials Analysis and Life Science; Carl Zeiss SMT: Oberkochen, Germany, 2008; Available online: https://www.scribd.com/document/391914988/EVO-Series-UserGuide (accessed on 1 January 2008).
- Vaičiukynienė, D.; Mikelionienė, A.; Baltušnikas, A.; Kantautas, A.; Radzevičius, A. Removal of ammonium ion from aqueous solutions by using unmodified and H2O2-modified zeolitic waste. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Velázquez, S.; Monzó, J.; Borrachero, M.V.; Soriano, L.; Payá, J. Evaluation of the pozzolanic activity of spent FCC catalyst/fly ash mixtures in Portland cement pastes. Thermochim. Acta. 2016, 632, 29–36. [Google Scholar] [CrossRef]
- García de Lomas, M.; de Rojas, M.S.; Frías, M. Pozzolanic reaction of a spent fluid catalytic cracking catalyst in FCC-cement mortars. J. Therm. Analys. Calorimetr. 2007, 90, 443–447. [Google Scholar] [CrossRef]
- Lin, L.; Lei, Z.; Wang, L.; Liu, X.; Zhang, Y.; Wan, C.; Lee, D.J.; Tay, J.H. Adsorption mechanisms of high levels of ammonium onto natural and NaCl-modifed zeolites. Separ. Purif. Technol. 2013, 103, 15–20. [Google Scholar] [CrossRef]
- Sadiku, N.A.; Sanusi, A. Wood pre-treatment influence on the hydration of Portland cement in combination with some tropical wood species. Pro Ligno 2014, 10, 3–10. [Google Scholar]
- Perraki, T.; Kakali, G.; Kontoleon, F. The effect of natural zeolites on the early hydration of Portland cement. Micropor. Mesopor. Mater. 2003, 61, 205–212. [Google Scholar] [CrossRef]
- Perraki, T.; Kontori, E.; Tsivilis, S.; Kakali, G. The effect of zeolite on the properties and hydration of blended cements. Cem. Concr. Comp. 2010, 32, 128–133. [Google Scholar] [CrossRef]
- Vaičiukynienė, D.; Pundienė, I.; Kantautas, A.; Augonis, A.; Janavičius, E.; Vaičiukynas, V.; Alobeid, J. Synergistic effect of dry sludge from waste wash water of concrete plants and zeolitic by-product on the properties of ternary blended ordinary Portland cements. J. Clean. Prod. 2020, 244, 118493. [Google Scholar] [CrossRef]
- Vaičiukynienė, D.; Grinys, A.; Vaitkevičius, V.; Kantautas, A. Purified waste fcc catalyst as a cement replacement material. Ceram. Silikáty. 2015, 59, 103–108. [Google Scholar]
- Cao, Y.; Guo, L.; Chen, B.; Fei, X. Modeling early age hydration kinetics and the hydrated phase of cement paste blended with chloride and sulfate. Constr. Build. Mater. 2020, 261, 120537. [Google Scholar] [CrossRef]
- Lothenbach, B.; Scrivener, K.; Hooton, R.D. Supplementary cementitious materials. Cem. Concr. Res. 2011, 41, 1244–1256. [Google Scholar] [CrossRef]
- Díaz, J.E.; de Gutierrez, R.M.; Torres, J. Blended cement containing fluid catalytic cracking catalyst residue (FCC): Hydration and paste microstructure. Rev. Ing. Constr. 2013, 28, 141–154. [Google Scholar]
- Kocak, Y.; Tascı, E.; Kaya, U. The effect of using natural zeolite on the properties and hydration characteristics of blended cements. Constr. Build. Mater. 2013, 47, 720–727. [Google Scholar] [CrossRef]
- Jose, A.; Nivitha, M.R.; Krishnan, J.M.; Robinson, R.G. Characterization of cement stabilized pond ash using FTIR spectroscopy. Constr. Build. Mater. 2020, 263, 120136. [Google Scholar] [CrossRef]
Parameter | Portland Cement CEM I 52.5R | Zeolitic By-Product |
---|---|---|
SiO2 | 21.00 | 35.4 |
Al2O3 | 3.90 | 48.77 |
Fe2O3 | 2.90 | 1.02 |
La2O3 | - | 1.63 |
TiO2 | - | 3.57 |
MgO | 2.70 | 0.44 |
CaO | 66.00 | 0.37 |
Na2O | - | 0.312 |
SO3 | 3.40 | 0.07 |
P2O5 | - | 0.08 |
K2O | - | - |
Cl | 0.06 | 2.57 |
Other | - | 5.77 |
Bulk density, kg/m3 | 1236 | 864 |
Specific density, kg/m3 | 3122 | 2679 |
Surface area (by Blaine), m2/g | 350.0 | 142.1 |
Samples | Ordinary Portland Cement (wt %) | Zeolitic By-Product with Ammonium Chloride (wt %) | Water-to-Solid Materials Ratio (W/S) |
---|---|---|---|
Reference | 100 | 0 | 0.36 |
S0.5 | 99.5 | 0.5 | 0.36 |
S1 | 99.0 | 1.0 | 0.36 |
S3 | 97.0 | 3.0 | 0.36 |
S5 | 95.0 | 5.0 | 0.36 |
S10 | 90.0 | 10.0 | 0.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaičiukynienė, D.; Mikelionienė, A.; Kantautas, A.; Radzevičius, A.; Bajare, D. The Influence of Zeolitic By-Product Containing Ammonium Ions on Properties of Hardened Cement Paste. Minerals 2021, 11, 123. https://doi.org/10.3390/min11020123
Vaičiukynienė D, Mikelionienė A, Kantautas A, Radzevičius A, Bajare D. The Influence of Zeolitic By-Product Containing Ammonium Ions on Properties of Hardened Cement Paste. Minerals. 2021; 11(2):123. https://doi.org/10.3390/min11020123
Chicago/Turabian StyleVaičiukynienė, Danutė, Agnė Mikelionienė, Aras Kantautas, Algirdas Radzevičius, and Diana Bajare. 2021. "The Influence of Zeolitic By-Product Containing Ammonium Ions on Properties of Hardened Cement Paste" Minerals 11, no. 2: 123. https://doi.org/10.3390/min11020123
APA StyleVaičiukynienė, D., Mikelionienė, A., Kantautas, A., Radzevičius, A., & Bajare, D. (2021). The Influence of Zeolitic By-Product Containing Ammonium Ions on Properties of Hardened Cement Paste. Minerals, 11(2), 123. https://doi.org/10.3390/min11020123