Purification and Phase Evolution Mechanism of Titanium Oxycarbide (TiCxOy) Produced by the Thermal Reduction of Ilmenite
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Effect of Carbon Molar Ratio on the Carbothermal Reduction
3.1.1. Phase Analysis of the Reduced Products
3.1.2. XPS Analysis of the Reduction Products
3.2. Effects of Temperature and Time on the Carbothermal Reduction
3.3. Discussion on the Reduction Mechanism
3.4. Purification Experiments
3.4.1. Flotation and Magnetic Separation
3.4.2. Acid Dissolution in Removing of Impurities
3.4.3. Removal of Fe by Iron-Bath
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cui, C.X.; Hu, B.M.; Zhao, L.C.; Liu, S.J. Titanium alloy production technology, market prospects and industry development. Mater. Des. 2011, 32, 1684–1691. [Google Scholar] [CrossRef]
- Sun, H.Y.; Wang, J.S.; Dong, X.J.; Xue, Q.G. A literature review of titanium slag metallurgical processes. Metal. Int. 2012, 17, 49–56. [Google Scholar]
- Li, F.Q.; Mo, J.H.; Li, J.J.; Zhou, H.Y.; Huang, L. Study on the driver plate for electromagnetic forming of titanium alloy Ti-6Al-4V. Int. J. Adv. Manuf. Technol. 2013, 69, 127–137. [Google Scholar] [CrossRef]
- Zhai, J.H.; Chen, P.; Wang, H.B.; Hu, Y.H.; Sun, W. Flotability improvement of ilmenite using attrition-scrubbing as a pretreatment method. Minerals 2017, 7, 13. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.S.; Meng, Q.Y.; Yuan, Z.T.; Ma, L.Q.; Xu, Y.K. Study on the flotation behavior and mechanism of ilmenite and titanaugite with sodium oleate. Miner. Eng. 2020, 152, 1–9. [Google Scholar] [CrossRef]
- Mehdilo, A.; Irannajad, M.; Rezai, B. Effect of chemical composition and crystal chemistry on the zeta potential of ilmenite. Colloids Surf. A Physicochem. Eng. Asp. 2013, 428, 111–119. [Google Scholar] [CrossRef]
- Boyer, R.R.; Briggs, R.D. The use of β titanium alloys in the aerospace industry. J. Mater. Eng. Perform. 2005, 14, 681–685. [Google Scholar] [CrossRef]
- Ding, J.H.; Zhang, Y.; Li, L.X.; Li, H.M. Metallogenic geological characteristics and titanium resources potential in China. Geol. China 2020, 47, 627–644. [Google Scholar]
- Kumar, J.; Khamba, J.S.; Mohapatra, S.K. Investigating and modeling tool-wear rate in the ultrasonic machining of titanium. Int. J. Adv. Manuf. Technol. 2009, 41, 1107–1117. [Google Scholar] [CrossRef]
- Zhang, W.S.; Zhu, Z.W.; Cheng, C.Y. A literature review of titanium metallurgical processes. Hydrometallurgy 2011, 108, 177–188. [Google Scholar] [CrossRef]
- Perks, C.; Mudd, G. Titanium, zirconium resources and production: A state of the art literature review. Ore Geol. Rev. 2019, 107, 629–646. [Google Scholar] [CrossRef]
- EPoulsen, E.R.; Hall, J.A. Extractive Metallurgy of Titanium: A review of the state of the art and evolving production techniques. JOM 1983, 35, 60–65. [Google Scholar] [CrossRef]
- Kroll, W.; Fink, C.G.; Summers, D.B. The production of ductile titanium. Trans. Electrochem. Soc. 1940, 78, 35–649. [Google Scholar] [CrossRef]
- Hayes, F.H.; Bomberger, H.B.; Froes, F.H.; Kaufman, L.; Burte, H.M. Advances in titanium extraction metallurgy. JOM 1984, 36, 70–76. [Google Scholar] [CrossRef]
- Chen, G.Z.; Fray, D.J.; Farthing, T.W. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nat. Cell Biol. 2000, 407, 361–364. [Google Scholar] [CrossRef]
- Fray, D.J. Emerging molten salt technologies for metals production. JOM 2001, 53, 27–31. [Google Scholar] [CrossRef]
- Mohandas, K.S.; Fray, D.J. FFC cambridge process and removal of oxygen from metal-oxygen systems by molten salt electrolysis: An overview. Trans. Indian Inst. Met. 2004, 57, 579–592. Available online: http://www.igcar.gov.in/transiim/2004/vol57-6overview.pdf (accessed on 21 January 2021).
- Fray, D.J.; Farthing, T.W.; Chen, Z. Removal of Oxygen from Metal Oxides and Solid Solutions by Electrolysis in a Fused Salt. Australian Patent WO9964638, 1999. Available online: https://www.lens.org/images/patent/AU/4277099/B2/20030403/AU_758931_B2.pdf (accessed on 21 January 2021).
- Ono, K.; Suzuki, R.O. A new concept for producing ti sponge: Calciothermic reduction. JOM 2002, 54, 59–61. [Google Scholar] [CrossRef]
- Gordo, E.; Chen, G.Z.; Fray, D.J. Toward optimisation of electrolytic reduction of solid chromium oxide to chromium powder in molten chloride salts. Electrochim. Acta 2004, 49, 2195–2208. [Google Scholar] [CrossRef]
- Okabe, T.H.; Waseda, Y. Producing titanium through an electronically mediated reaction. JOM 1997, 49, 28–32. [Google Scholar] [CrossRef]
- Okabe, T.H.; Oda, T.; Mitsuda, Y. Titanium powder production by preform reduction process (PRP). J. Alloys Compd. 2004, 364, 156–163. [Google Scholar] [CrossRef]
- Zhu, H.M.; Jiao, S.Q.; Gu, X.F. Method for Producing Pure Titanium by Electrolysis of Titanium Monoxide/Titanium Carbide Soluble Solid Solution Anode. China Patent 200510011684, 2005. Available online: https://www.zhangqiaokeyan.com/patent-detail/06120426166.html (accessed on 21 January 2021).
- Jiao, S.; Zhu, H. Electrolysis of Ti2CO solid solution prepared by TiC and TiO2. J. Alloys Compd. 2007, 438, 243–246. [Google Scholar] [CrossRef]
- Jiao, S.; Zhu, H. Novel metallurgical process for titanium production. J. Mater. Res. 2006, 21, 2172–2175. [Google Scholar] [CrossRef]
- Wang, Q.; Song, J.; Wu, J.; Jiao, S.; Hou, J.; Zhu, H. A new consumable anode material of titanium oxycarbonitride for the USTB titanium process. Phys. Chem. Chem. Phys. 2014, 16, 8086–8091. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Jiang, B.; Cao, Z.; Huang, K.; Zhu, H. Preparation of titanium oxycarbide from various titanium raw materials: Part I. Carbothermal reduction. Rare Met. 2010, 29, 547–551. [Google Scholar] [CrossRef]
- Jiang, B.; Xiao, J.; Huang, K.; Hou, J.; Jiao, S.; Zhu, H. Experimental and first-principles study of Ti-C-O system: Interplay of thermodynamic and structural properties. J. Am. Ceram. Soc. 2017, 100, 2253–2265. [Google Scholar] [CrossRef]
- Cao, Z.; Xie, W.; Jung, I.-H.; Du, G.; Qiao, Z. Critical evaluation and thermodynamic optimization of the Ti-C-O system and its applications to carbothermic TiO2 reduction process. Met. Mater. Trans. A 2015, 46, 1782–1801. [Google Scholar] [CrossRef]
- Lefort, P.; Maître, A.; Tristant, P. Influence of the grain size on the reactivity of TiO2/C mixtures. J. Alloys Compd. 2000, 302, 287–298. [Google Scholar] [CrossRef]
- Dewan, M.A.; Zhang, G.; Ostrovski, O. Carbothermal reduction of titania in different gas atmospheres. Met. Mater. Trans. A. 2008, 40, 62–69. [Google Scholar] [CrossRef] [Green Version]
- Dewan, M.A.R.; Zhang, G.; Ostrovski, O. Carbothermal reduction of ilmenite concentrates and synthetic rutile in different gas atmospheres. Miner. Process. Extr. Met. 2011, 120, 111–117. [Google Scholar] [CrossRef]
- Gou, H.-P.; Zhang, G.-H.; Chou, K.-C. Phase evolution during the carbothermic reduction process of ilmenite concentrate. Met. Mater. Trans. A 2014, 46, 48–56. [Google Scholar] [CrossRef]
- Gou, H.-P.; Zhang, G.-H.; Hu, X.-J.; Chou, K.-C. Kinetic study on carbothermic reduction of ilmenite with activated carbon. Trans. Nonferrous Met. Soc. China 2017, 27, 1856–1861. [Google Scholar] [CrossRef]
- Woo, Y.-C.; Kang, H.-J.; Kim, D.J. Formation of TiC particle during carbothermal reduction of TiO2. J. Eur. Ceram. Soc. 2007, 27, 719–722. [Google Scholar] [CrossRef]
- Xiao, J.; Jiang, B.; Huang, K.; Jiao, S.; Zhu, H. Selective reduction of TiO2-SiO2 in the carbothermal reduction of titanium raw materials for preparation of titanium oxycarbide. In Proceedings of the 7th International Symposium on High-Temperature Metallurgical Processing, Downtown Nashville, TN, USA, 14–18 February 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 419–425. [Google Scholar] [CrossRef]
- Chen, X.; Deng, J.; Yu, R.; Chen, J.; Hu, P.; Xing, X. A simple oxidation route to prepare pseudobrookite from Panzhihua raw ilmenite. J. Am. Ceram. Soc. 2010, 93, 2968–2971. [Google Scholar] [CrossRef]
- Nayak, D.; Ray, N.; Dash, N.; Rath, S.S.; Pati, S.; De, P.S. Induration aspects of low-grade ilmenite pellets: Optimization of oxidation parameters and characterization for direct reduction application. Powder Technol. 2021, 380, 408–420. [Google Scholar] [CrossRef]
- Mojisola, T.; Ramakokovhu, M.; Raethel, J.; Olubambi, P.; Matizamhuka, W. In-situ processing and characterization of Fe–TiCN composite produced via enhanced carbonitrothermic reduction of low grade ilmenite concentrate. Mater. Today Commun. 2019, 20, 1–7. [Google Scholar] [CrossRef]
- Lv, W.; Bai, C.; Lv, X.; Hu, K.; Lv, X.; Xiang, J.-Y.; Song, B. Carbothermic reduction of ilmenite concentrate in semi-molten state by adding sodium sulfate. Powder Technol. 2018, 340, 354–361. [Google Scholar] [CrossRef]
- Lv, X.; Lv, X.; Xiang, J.-Y.; Wang, J.; Lv, X.; Bai, C.; Song, B. Effect of pre-oxidation on the carbothermic reduction of ilmenite concentrate powder. Int. J. Miner. Process. 2017, 169, 176–184. [Google Scholar] [CrossRef]
- Lv, X.; Huang, R.; Wu, Q.; Xu, B.; Zhang, J. Non-isothermal reduction kinetics during vacuum carbothermal reduction of ilmenite concentrate. Vacuum 2019, 160, 139–145. [Google Scholar] [CrossRef]
- Zhang, G.; Gou, H.; Wu, K.; Chou, K. Carbothermic reduction of panzhihua ilmenite in vacuum. Vacuum 2017, 143, 199–208. [Google Scholar] [CrossRef]
- Gupta, A.K.; Aula, M.; Negre, E.; Viljanen, J.; Pauna, H.; Mäkelä, P.; Toivonen, J.; Huttula, M.; Fabritius, T. Analysis of ilmenite slag using laser-induced breakdown spectroscopy. Minerals 2020, 10, 855. [Google Scholar] [CrossRef]
- Lv, W.; Lv, X.; Xiang, J.-Y.; Hu, K.; Zhao, S.; Dang, J.; Han, K.; Song, B. Effect of preoxidation on the reduction of ilmenite concentrate powder by hydrogen. Int. J. Hydrogen Energy 2019, 44, 4031–4040. [Google Scholar] [CrossRef]
- Yuan, S.; Zhou, W.; Han, Y.; Li, Y. Efficient enrichment of low-grade refractory rhodochrosite by preconcentration-neutral suspension roasting-magnetic separation process. Powder Technol. 2020, 361, 529–539. [Google Scholar] [CrossRef]
- He, C.L. Study on Microwave Absorption Characteristics of Typical Metallurgical Raw Material and Its Application. Ph.D. Thesis, Guangxi University, Nanning, China, 2016. [Google Scholar]
- Gao, K.; Wang, Z.; Jia, Q.; Zhang, B.; Zhang, J. The utilization of carbon dioxide to prepare TiCxOy films with low friction and high anti-corrosion properties. Coatings 2020, 10, 533. [Google Scholar] [CrossRef]
- Shanyan, H. Preparation of Titanium Oxycarbide TiCxOy and Its Structure Reseach. Ph.D. Thesis, University of Science & Technology Beijing, Beijing, China, 2010. [Google Scholar]
- Oghenevweta, J.E.; Wexler, D.; Calka, A. Study of reaction sequences during MSR synthesis of TiC by controlled ball milling of titanium and graphite. Mater. Charact. 2018, 140, 299–311. [Google Scholar] [CrossRef]
- Zhao, Z.; Diemant, T.; Rosenthal, D.; Christmann, K.; Bansmann, J.; Rauscher, H.; Behm, R.J. Au/TiO2/Ru(0001) model catalysts and their interaction with CO. Surf. Sci. 2006, 600, 4992–5003. [Google Scholar] [CrossRef]
- Xin, Z.; Lei, M.; Jian-Gang, W.; Hui-Min, Z. Investigation on ultrathin titanium oxide films synthesized by surface sol–gel method. Optik 2016, 127, 2780–2783. [Google Scholar] [CrossRef]
- Felten, A.; Suarez-Martinez, I.; Ke, X.; Van Tendeloo, G.; Ghijsen, J.; Pireaux, J.-J.; Drube, W.; Bittencourt, C.; Ewels, C.P. The role of oxygen at the interface between titanium and carbon nanotubes. ChemPhysChem 2009, 10, 1799–1804. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Xia, L. Structural characterization of TiCx films prepared by plasma based ion implantation. Thin Solid Film. 2001, 396, 16–22. [Google Scholar] [CrossRef]
- Parra, E.R.; Jose, P.; Arango, A.; Benavides, V.J. XPS Structure Analysis of TiN/TiC Bilayers Produced by Pulsed Vacuum Arc discharge. Dyna 2010, 163, 64–74. Available online: https://www.researchgate.net/publication/49598678 (accessed on 21 January 2021).
Chemical Composition | TFe | Fe2O3 | SiO2 | TiO2 | MnO | MgO | Al2O3 | CaO |
Content | 21.3 | 45.74 | 3.46 | 44.18 | 1.06 | 2.14 | 1.07 | 1.07 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
n(Ti):n(C) | 1:0.25 | 1:0.5 | 1:0.75 | 1:1 | 1:1.25 | 1:1.5 | 1:1.75 | 1:.2 | 1:2.5 | 1:3 |
Mass/% | 10.51 | 11.81 | 13.07 | 14.29 | 15.47 | 16.63 | 17.75 | 18.84 | 20.94 | 22.92 |
11 | 12 | 13 | 14 | 15 | ||||||
n(Ti):n(C) | 1:3.5 | 1:4 | 1:5 | 1:6 | 1:7 | |||||
Mass/% | 24.81 | 26.61 | 29.95 | 32.99 | 35.77 |
Particle Size | −0.074 μm + 50 μm | −50 μm + 38 μm | −38 μm | |
---|---|---|---|---|
Product | ||||
Flotation Foam (Carbon-Bearing Part) | 0 | 0 | 8.01 | |
Flotation Tailings (TiCxOy, Fe) | 100 | 100 | 91.99 | |
Magnetic Separation (Non-Magnetic) | 0.6 | 0 | 34.99 | |
Magnetic Separation (Magnetism) | 99.4 | 100 | 57 |
Element | Ca | Fe | Mg | Al | Si | Total Impurity |
---|---|---|---|---|---|---|
Before Acid Dissolution | 5.03 | 3.65 | 1.05 | 1.90 | 0.75 | 12.37 |
Acid Dissolution: HNO3 | 1.12 | 2.11 | 1.08 | 1.79 | 0.26 | 6.36 |
Acid Dissolution: HCl | 1.05 | 0.27 | 1.16 | 1.77 | 0.32 | 4.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, C.; Zheng, C.; Dai, W.; Fujita, T.; Zhao, J.; Ma, S.; Li, X.; Wei, Y.; Yang, J.; Wei, Z. Purification and Phase Evolution Mechanism of Titanium Oxycarbide (TiCxOy) Produced by the Thermal Reduction of Ilmenite. Minerals 2021, 11, 104. https://doi.org/10.3390/min11020104
He C, Zheng C, Dai W, Fujita T, Zhao J, Ma S, Li X, Wei Y, Yang J, Wei Z. Purification and Phase Evolution Mechanism of Titanium Oxycarbide (TiCxOy) Produced by the Thermal Reduction of Ilmenite. Minerals. 2021; 11(2):104. https://doi.org/10.3390/min11020104
Chicago/Turabian StyleHe, Chunlin, Chunhui Zheng, Wei Dai, Toyohisa Fujita, Jian Zhao, Shaojian Ma, Xinsheng Li, Yuezhou Wei, Jinlin Yang, and Zongwu Wei. 2021. "Purification and Phase Evolution Mechanism of Titanium Oxycarbide (TiCxOy) Produced by the Thermal Reduction of Ilmenite" Minerals 11, no. 2: 104. https://doi.org/10.3390/min11020104
APA StyleHe, C., Zheng, C., Dai, W., Fujita, T., Zhao, J., Ma, S., Li, X., Wei, Y., Yang, J., & Wei, Z. (2021). Purification and Phase Evolution Mechanism of Titanium Oxycarbide (TiCxOy) Produced by the Thermal Reduction of Ilmenite. Minerals, 11(2), 104. https://doi.org/10.3390/min11020104