Anion Composition of Apatite in the Au-Cu Epithermal Deposit of Palai-Islica (Almería, SE Spain) as an Indicator of Hydrothermal Alteration
Abstract
:1. Introduction
2. Geological and Mineralogical Features
3. Textural and Chemical Characteristics of Apatite
4. Discussion
4.1. Origin of Apatite
4.2. Chemistry of Apatite Crystals and Their Evolution
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McConnell, D. Apatite-Its Crystal Chemistry, Mineralogy, Utilization and Geological and Biological Occurrences; Springer: Vienna, Austria; Heidelberg, Germany; New York, NY, USA, 1973; Volume 5, 111p. [Google Scholar]
- Hughes, J.M.; Cameron, M.; Crowley, K.D. Structural variation in natural F, OH and Cl apatites. Am. Mineral. 1989, 74, 870–876. [Google Scholar]
- Banks, N.G. Distribution of copper in biotite and biotite alteration products in intrusive rocks near two Arizona porphyry copper deposits. U.S. Geol. Surv. J. Res. 1974, 2, 195–211. [Google Scholar]
- Nash, W.P. Phosphate minerals in terrestrial igneous and metamorphic rocks. In Phosphate Minerals; Nriagu, J.O., Moore, P.B., Eds.; Springer: Berlin, Germany; Heidelberg, Germany, 1984; pp. 215–241. [Google Scholar] [CrossRef]
- Boudreau, A.E.; McCallum, I.S. Investigations of the Teilwater Complex: Part V. Apatites as indicators of evolving fluid composition. Contrib. Mineral. Petrol. 1989, 102, 138–153. [Google Scholar] [CrossRef]
- Edgar, A.D. Barium- and strontium-enriched apatites in lamproites from West Kimberley, Western Australia. Am. Mineral. 1989, 74, 889–895. [Google Scholar]
- Federico, M.; Peccerillo, A.; Barbieri, M.; Wu, T.W. Mineralogical and geochemical study of granular xenoliths from the Alban Hills volcano, Central Italy: Bearing on evolutionary proceses in potassic magma chambers. Contrib. Mineral. Petrol. 1994, 115, 384–401. [Google Scholar] [CrossRef]
- Sha, L.K.; Chappell, B.W. Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis. Geochim. Cosmochim. Acta 1999, 63, 3861–3881. [Google Scholar] [CrossRef]
- Tepper, J.H.; Kuehner, S.M. Complex zoning in apatite from the Idaho batholith: A record of magma mixing and intracrystalline trace element diffusion. Am. Mineral. 1999, 84, 581–595. [Google Scholar] [CrossRef]
- Belousova, E.A.; Griffin, W.L.; O’Reilly, S.Y.; Fisher, N.I. Apatite as an indicator mineral for mineral exploration: Trace-Element compositions and their relatonship to host rock type. J. Geochim. Explor. 2002, 76, 45–69. [Google Scholar] [CrossRef]
- Piccoli, P.M.; Candela, P.A. Apatite in igneous systems. In Phosphates: Geochemical, Geobiological and Material Importance; Kohn, M.J., Rakovan, J., Hughes, J.M., Eds.; Mineralogical Society of America: Chantilly, VA, USA, 2002; Volume 48, pp. 255–292. [Google Scholar]
- O’Sullivan, G.J.; Chew, D.M. The clastic record of a Wilson Cycle: Evidence from detrial apatite petrochronology of the Grampian-Taconic fore-arc. Earth Planet. Sci. Lett. 2020, 552, 116588. [Google Scholar] [CrossRef]
- O’Sullivan, G.J.; Chew, D.M.; Morton, A.C.; Mark, C.; Henrichs, I.A. An integrated apatite geochronology and geochemistry tool for sedimentary provenance analysis. Geochem. Geophys. Geosyst. 2018, 19, 1309–1326. [Google Scholar] [CrossRef]
- O’Sullivan, G.J.; Chew, D.M.; Kenny, G.; Henrichs, I.A.; Mulligan, D. The trace element composition of apatite and its application to detrital provenance studies. Earth. Rev. 2019, 201, 103044. [Google Scholar] [CrossRef]
- Lu, J.; Chen, W.; Ying, Y.; Jiang, S.; Zhao, K. Apatite texture and trace element chemistry of carbonatite-related REE deposits in China: Implications for petrogenesis. Lithos 2021, 398–399, 106276. [Google Scholar] [CrossRef]
- Knutson, C.; Peacor, D.R.; Kelly, W.C. Luminiscence, color and fission track zoning in apatite crystals of the Panasqueira tin-tungsten deposit, Beira-Baixa, Portugal. Am. Mineral. 1985, 70, 829–837. [Google Scholar]
- Komninou, A.; Sverjensky, D.A. Hydrothermal alteration and the chemistry of ore-forming fluids in an unconformity-type uranium deposit. Geochim. Cosmochim. Acta 1995, 59, 2709–2723. [Google Scholar] [CrossRef]
- Yang, F.; Chen, W.; Kynicky, J.; Ying, Y.; Bai, T. Combined in situ chemical and Sr isotopic compositions and U–Pb ages of the Mushgai Khudag Alkaline Complex: Implications of immiscibility, fractionation, and alteration. Minerals 2021, 11, 450. [Google Scholar] [CrossRef]
- Chew, D.M.; O’Sullivan, G.; Caracciolo, L.; Mark, C.; Tyrrell, S. Sourcing the sand: Accessory mineral fertility, analytical and other biases in detrital U-Pb provenance analysis. Earth Sci. Rev. 2020, 202, 103093. [Google Scholar] [CrossRef]
- Azizuki, M.; Nisidoh, H.; Kudoh, Y.; Watenabe, T.; Kurata, K. Sector growth and symmetry of (F,OH) apatite from the Asio Mine, Japan. Mineral. Mag. 1994, 58, 307–314. [Google Scholar] [CrossRef]
- Mao, M.; Rukhlov, A.S.; Rowins, S.M.; Spence, J.; Coogan, L.A. Apatite Trace Element Compositions: A Robust New Tool for Mineral Exploration. Econ. Geol. 2016, 111, 1187–1222. [Google Scholar] [CrossRef]
- Battistini, D.G.; Toscani, L.; Iaccarino, S.; Villa, I.M. K/Ar ages and the geological setting of calc-alkaline volcanics rocks from Sierra de Gata, SE Spain. N. Jb. Miner. Mh. 1987, 8, 337–383. [Google Scholar]
- Turner, S.P.; Platt, J.P.; George, R.M.M.; Kelley, S.P.; Pearson, D.G.; Nowell, G.M. Magmatism associated with orogenic collapse of the Betic-Alboran domain, SE Spain. J. Petrol. 1999, 40, 1011–1036. [Google Scholar] [CrossRef]
- Scotney, P.; Burgess, R.; Rutter, E.H. 40Ar/39Ar age of the Cabo de Gata volcanic series and displacements on the Carboneras fault zone, SE Spain. J. Geol. Soc. London 2000, 157, 1003–1008. [Google Scholar] [CrossRef]
- López Ruiz, J.; Rodríguez Badiola, E. La región volcánica del SE España. Estudios Geológicos 1980, 36, 5–63. [Google Scholar]
- Arribas, A.; Cunningham, C.G.; Rytuba, J.J.; Rye, R.O.; Kelly, W.C.; Podwysocki, M.H.; McKee, E.H.; Tosdal, R.M. Geology, geochronology, fluid inclusions, and isotope geochemistry of the Rodalquilar gold alunite deposit, Spain. Econ. Geol. 1995, 90, 795–822. [Google Scholar] [CrossRef]
- Pineda Velasco, A. Las mineralizaciones metálicas y su contexto geológico en el área volcánica Neógena del Cabo de Gata (Almería, SE de España). Boletín Geológico Minero 1984, 95, 569–592. [Google Scholar]
- Demoustier, A.; Castroviejo, R.; Charlet, J.M. Clasificación textural del cuarzo epitermal (Au-Ag) de relleno filoniano del área volcánica de Cabo de Gata, Almería. Boletín Geológico y Minero 1998, 109, 449–468. [Google Scholar]
- Morales Ruano, S.; Carrillo Rosúa, F.J.; Fenoll Hach-Alí, P.; de la Fuente Chacón, F.; Contreras López, E. Epithermal Cu-Au mineralization in the Palai-Islica deposit, Almería, southeastern Spain: Fluid inclusion evidence of mixing of fluids as guide to gold mineralization. Can. Mineral. 2000, 38, 553–566. [Google Scholar] [CrossRef] [Green Version]
- Mapa Geológico de España. Escala 1:50,000 Hoja 1046 (24-42); Instituto Geológicoy Minero de España: Madrid, Spain, 1974.
- Huibregtse, P.; van Alebeek, H.; Zaal, M.; Biermann, C. Paleostress analysis of the northern Nijar and southern Vera basins: Constraints for the Neogene displacement hystory of major strike-slip faults in the Betic Cordilleras, SE Spain. Tectonophysics 1998, 300, 79–101. [Google Scholar] [CrossRef]
- Fernández Soler, J.M. El vulcanismo calco-alcalino en el Parque Natural de Cabo de Gata-Nijar (Almería). Estudio volcanológico y petrológico. Ph.D. Thesis, University of Granada, Granada, Spain, 1996; 295p. [Google Scholar]
- Bellon, H.; Bordet, P.; Montenat, C. Chronologie du magmatisme Néogène des Cordillères Bètiques (Espagne mèridionale). Bull. Soc. Géol. France 1983, 25, 205–217. [Google Scholar] [CrossRef]
- Carrillo-Rosúa, J.; Morales-Ruano, S.; Esteban-Arispe, I.; Fenoll Hach-Alí, P. Significance of phyllosilicate mineralogy and mineral chemistry in an epithermal environment. Insights from the Palai-Islica Au-Cu deposit (Almería, SE Spain). Clays Clay Miner. 2009, 57, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Carrillo-Rosúa, F.J.; Morales Ruano, S.; Fenoll Hach-Alí, P. The three generations of gold in the Palai-Islica epithermal deposit, southeastern Spain. Can. Mineral. 2002, 40, 1465–1481. [Google Scholar] [CrossRef] [Green Version]
- Carrillo-Rosúa, F.J.; Morales-Ruano, S.; Fenoll Hach-Ali, P. Iron sulphides at the epithermal gold-copper deposit of Palai-Islica (Almería, SE Spain). Mineral. Mag. 2003, 67, 1059–1080. [Google Scholar] [CrossRef]
- Carrillo-Rosúa, J.; Morales-Ruano, S.; Fenoll Hach-Alí, P. Textural and chemical features of sphalerite from the Palai-Islica deposit (SE Spain): Implications for ore genesis and color. Neues Jahrb. Mineral. Abh. 2008, 185, 63–78. [Google Scholar] [CrossRef]
- Carrillo-Rosúa, J.; Morales-Ruano, S.; Roberts, S.; Morata, D.; Belmar, M. Application of the Mineralogy and Mineral Chemistry of Carbonates as a Genetic Tool in the Hydrothermal Environment. Minerals 2021, 11, 822. [Google Scholar] [CrossRef]
- Carrillo Rosúa, F.J.; Morales Ruano, S.; Boyce, A.J.; Fallick, A.E. High and intermediate sulphidation environment in the same hydrothermal deposit: The example of Au-Cu Palai–Islica deposit, Carboneras (Almería). In Mineral Exploration and Sustainable Development; Eliopoulos, D.G., Ed.; Millpress: Rotterdam, The Netherlands, 2003; pp. 445–448. [Google Scholar]
- Carrillo-Rosúa, J.; Esteban-Arispe, I.; Morales-Ruano, S.; Boyce, A.J.; Velasco, F. Epithermal volcanic-hosted deposits from SE Spain: Always derived from a magmatic sulfur source? Geo-Temas 2016, 16, 379–382. [Google Scholar]
- Pouchou, J.L.; Pichoir, F. Un nouveau modèle de calcul pour la microanalyse quantitative per spectrométrie de rayons X. La Reserche Aèrospatiale 1984, 3, 167–192. [Google Scholar]
- Deer, W.A.; Howie, R.A.; Zussman, J. An Introduction to the Rock Forming Minerals; Longman: Essex, UK, 1996; 540p. [Google Scholar]
- Scott, J.A.J.; Humphreys, M.C.S.; Mather, T.A.; Pyle, D.M.; Stock, M.J. Insights into the behaviour of S, F, and Cl at Santiaguito Volcano, Guatemala, from apatite and glass. Lithos 2015, 232, 375–394. [Google Scholar] [CrossRef] [Green Version]
- Kendall-Langley, L.A.; Kemp, A.I.S.; Hawkesworth, C.J.; EIMF; Roberts, M.P. Quantifying F and Cl concentrations in granitic melts from apatite inclusions in zircon. Contrib. Mineral. Petrol. 2021, 176, 58. [Google Scholar] [CrossRef]
- Candela, P.A. Toward a thermodynamic model for the halogens in magmatic systems: An application to melt-vapor-apatite equilibria. Chem. Geol. 1986, 57, 289–301. [Google Scholar] [CrossRef]
- Esteban-Arispe, I.; Velasco, F.; Boyce, A.J.; Morales-Ruano, S.; Yusta, I.; Carrillo-Rosúa, J. Unconventional non-magmatic sulfur source for the Mazarrón Zn–Pb–Cu–Ag–Fe epithermal deposit (SE Spain). Ore Geol. Rev. 2016, 72, 1102–1115. [Google Scholar] [CrossRef]
- Andersson, S.S.; Wagner, T.; Jonsson, E.; Fusswinkel, T.; Whitehousee, M.J. Apatite as a tracer of the source, chemistry and evolution of ore-forming fluids: The case of the Olserum-Djupedal REE-phosphate mineralisation, SE Sweden. Geochim. Cosmochim. Acta 2019, 255, 163–187. [Google Scholar] [CrossRef]
- Yu, Z.-Q.; Ling, H.-F.; Mavrogenes, J.; Chen, P.-R.; Chen, W.-F.; Fang, Q.-C. Metallogeny of the Zoujiashan uranium deposit in the Mesozoic Xiangshan volcanic-intrusive complex, southeast China: Insights from chemical compositions of hydrothermal apatite and metal elements of individual fluid inclusions. Ore Geol. Rev. 2019, 113, 103085. [Google Scholar] [CrossRef]
- Sharma, R.; Srivastava, P.K. Hydrothermal Fluids of Magmatic Origin. In Modelling of Magmatic and Allied Processes; Kumar, S., Singh, R.N., Eds.; Society of Earth Scientists Series; Springer International Publishing: Cham, Switzerland, 2014; pp. 181–208. [Google Scholar] [CrossRef]
- Kusebauch, C.; John, T.; Whitehouse, M.J.; Klemme, S.; Putnis, A. Distribution of halogens between fluid and apatite during fluid-mediated replacement processes. Geochim. Cosmochim. Acta 2015, 170, 225–246. [Google Scholar] [CrossRef] [Green Version]
Volcanic Host Rocks (n = 9) | Other Volcanic Rocks (n = 28) | Hydrothermal Alteration (n = 80) | Orebody (n = 21) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
wt% | Min | Max | Ave | s.d. (1s) | Min | Max | Ave | s.d. (1s) | Min | Max | Ave | s.d. (1s) | Min | Max | Ave | s.d. (1s) |
P2O5 | 41.44 | 42.87 | 41.90 | 0.46 | 41.11 | 42.73 | 42.23 | 0.35 | 40.20 | 43.28 | 42.24 | 0.58 | 40.08 | 41.89 | 41.00 | 0.57 |
FeO | 0.39 | 0.63 | 0.51 | 0.08 | 0.43 | 1.28 | 0.78 | 0.23 | 0.00 | 0.53 | 0.15 | 0.12 | 0.00 | 0.12 | 0.04 | 0.04 |
MnO | 0.09 | 0.16 | 0.12 | 0.02 | 0.04 | 0.15 | 0.10 | 0.03 | 0.00 | 0.13 | 0.06 | 0.03 | 0.00 | 0.12 | 0.05 | 0.03 |
MgO | 0.12 | 0.20 | 0.15 | 0.03 | 0.08 | 0.33 | 0.18 | 0.07 | 0.00 | 0.42 | 0.03 | 0.06 | 0.00 | 0.05 | 0.00 | 0.01 |
SrO | 0.00 | 0.09 | 0.04 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.17 | 0.04 | 0.04 | 0.00 | 0.08 | 0.02 | 0.02 |
CaO | 53.77 | 54.49 | 54.14 | 0.22 | 52.64 | 54.60 | 53.86 | 0.40 | 52.69 | 56.46 | 55.26 | 0.76 | 53.59 | 55.81 | 54.97 | 0.55 |
F | 0.46 | 0.78 | 0.62 | 0.09 | 0.61 | 2.24 | 1.38 | 0.52 | 0.71 | 4.35 | 2.93 | 0.78 | 3.46 | 4.62 | 4.27 | 0.25 |
Cl | 3.47 | 4.02 | 3.69 | 0.19 | 1.03 | 3.79 | 2.63 | 0.86 | 0.08 | 3.51 | 0.59 | 0.63 | 0.00 | 0.18 | 0.07 | 0.06 |
Total | 99.39 | 101.13 | 100.08 | 0.60 | 98.07 | 102.24 | 101.17 | 0.82 | 94.76 | 103.09 | 100.88 | 1.80 | 97.42 | 100.09 | 98.60 | 0.75 |
% fluorapatite | 12 | 21 | 17 | 3 | 16 | 60 | 37 | 14 | 19 | 100 | 78 | 21 | 94 | 100 | 98 | 1 |
% chloroapatite | 50 | 57 | 53 | 2 | 15 | 54 | 38 | 12 | 1 | 50 | 8 | 9 | 0 | 3 | 1 | 1 |
% hydroxylapatite | 24 | 36 | 30 | 3 | 14 | 33 | 26 | 5 | 0 | 47 | 14 | 15 | 0 | 3 | 0 | 1 |
apfu | ||||||||||||||||
P | 2.99 | 3.04 | 3.01 | 0.01 | 3.00 | 3.04 | 3.02 | 0.01 | 2.97 | 3.02 | 3.00 | 0.01 | 2.95 | 3.02 | 2.98 | 0.02 |
Fe2+ | 0.03 | 0.04 | 0.04 | 0.01 | 0.03 | 0.09 | 0.05 | 0.02 | 0.00 | 0.04 | 0.01 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 |
Mn2+ | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 |
Mg | 0.01 | 0.02 | 0.02 | 0.00 | 0.01 | 0.04 | 0.02 | 0.01 | 0.00 | 0.05 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 |
Sr | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Ca | 4.83 | 4.96 | 4.92 | 0.04 | 4.82 | 4.92 | 4.87 | 0.02 | 4.89 | 5.06 | 4.97 | 0.03 | 4.95 | 5.12 | 5.05 | 0.05 |
F | 0.12 | 0.21 | 0.17 | 0.03 | 0.16 | 0.60 | 0.37 | 0.14 | 0.19 | 1.13 | 0.78 | 0.21 | 0.94 | 1.26 | 1.16 | 0.07 |
Cl | 0.50 | 0.57 | 0.53 | 0.02 | 0.15 | 0.54 | 0.38 | 0.12 | 0.01 | 0.50 | 0.08 | 0.09 | 0.00 | 0.03 | 0.01 | 0.01 |
OH | 0.24 | 0.36 | 0.30 | 0.03 | 0.14 | 0.33 | 0.26 | 0.05 | 0.00 | 0.47 | 0.14 | 0.15 | 0.00 | 0.03 | 0.00 | 0.07 |
Sample/Crystal | S093/1 | S108-1/1 | S108-1/2 | S108-1/3 | S108-1/4 | S109-1/1 | S109-1/2 | S109-1/3 | S189-1/1 | S189-1/2 | S189-1/3 | S189-1/4 | S204/1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Alteration Type | propylitic | sericitic-chloritic | sericitic-chloritic | sericitic-chloritic | sericitic-chloritic | sericitic-chloritic | sericitic-chloritic | sericitic-chloritic | propylitic | propylitic | propylitic | propylitic | sericitic-chloritic |
F | −0.22 | −0.19 | 0.05 | 0.15 | −0.17 | −0.03 | 0.05 | 0.05 | 0.42 | 0.35 | −0.03 | 0.05 | 0.18 |
Cl | 0.04 | 0.00 | −0.05 | −0.04 | 0.01 | 0.00 | 0.02 | 0.00 | −0.03 | −0.03 | −0.01 | 0.03 | −0.14 |
OH | 0.18 | 0.19 | 0.00 | −0.12 | 0.16 | 0.02 | −0.07 | −0.04 | −0.38 | −0.32 | 0.03 | −0.08 | −0.04 |
Fe + Mg + Mn | 0.004 | −0.007 | 0.015 | −0.015 | 0.000 | 0.004 | −0.003 | 0.000 | −0.007 | 0.003 | −0.005 | −0.019 | −0.017 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrillo-Rosúa, J.; Esteban-Arispe, I.; Morales-Ruano, S. Anion Composition of Apatite in the Au-Cu Epithermal Deposit of Palai-Islica (Almería, SE Spain) as an Indicator of Hydrothermal Alteration. Minerals 2021, 11, 1358. https://doi.org/10.3390/min11121358
Carrillo-Rosúa J, Esteban-Arispe I, Morales-Ruano S. Anion Composition of Apatite in the Au-Cu Epithermal Deposit of Palai-Islica (Almería, SE Spain) as an Indicator of Hydrothermal Alteration. Minerals. 2021; 11(12):1358. https://doi.org/10.3390/min11121358
Chicago/Turabian StyleCarrillo-Rosúa, Javier, Iñaki Esteban-Arispe, and Salvador Morales-Ruano. 2021. "Anion Composition of Apatite in the Au-Cu Epithermal Deposit of Palai-Islica (Almería, SE Spain) as an Indicator of Hydrothermal Alteration" Minerals 11, no. 12: 1358. https://doi.org/10.3390/min11121358
APA StyleCarrillo-Rosúa, J., Esteban-Arispe, I., & Morales-Ruano, S. (2021). Anion Composition of Apatite in the Au-Cu Epithermal Deposit of Palai-Islica (Almería, SE Spain) as an Indicator of Hydrothermal Alteration. Minerals, 11(12), 1358. https://doi.org/10.3390/min11121358