Iron Isotope Composition of Adakitic Rocks: The Shangcheng Pluton, Western Dabie Orogen, Central China
Abstract
:1. Introduction
2. Geological Setting
3. Analytical Method
4. Results
4.1. Elemental Composition
4.2. Iron Isotopic Composition
5. Discussion
5.1. Petrogenesis of Shangcheng Pluton
5.2. Geological Information on the Iron Isotopic Composition
5.2.1. Weathering and Alteration
5.2.2. Fluid Exsolution
5.2.3. Fractional Crystallization and Mineralogy of the Source Rock
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Williams, H.M.; Peslier, A.H.; McCammon, C.; Halliday, A.N.; Levasseur, S.; Teutsch, N.; Burg, J.P. Systematic Iron Isotope Variations in Mantle Rocks and Minerals: The Effects of Partial Melting and Oxygen Fugacity. Earth Planet. Sci. Lett. 2005, 235, 435–452. [Google Scholar] [CrossRef]
- Weyer, S.; Ionov, D.A. Partial Melting and Melt Percolation in the Mantle: The Message from Fe Isotopes. Earth Planet. Sci. Lett. 2007, 259, 119–133. [Google Scholar] [CrossRef]
- Telus, M.; Dauphas, N.; Moynier, F.; Tissot, F.; Teng, F.Z.; Nabelek, P.; Craddock, P.R.; Groat, L.A. Iron, Zinc, Magnesium and Uranium Isotopic Fractionation During Continental Crust Differentiation: The Tale from Migmatites, Granitoids, and Pegmatites. Geochim. Cosmochim. Acta 2012, 97, 247–265. [Google Scholar] [CrossRef]
- Xu, L.J.; He, Y.; Wang, S.J.; Wu, H.; Li, S. Iron Isotop-E Fractionation During Crustal Anatexis: Constraint-S from Migmatites from the Dabie Orogen, Central China. Lithos 2017, 284, 171–179. [Google Scholar] [CrossRef]
- Schuessler, J.A.; Schoenberg, R.; Sigmarsson, O. Iron and Lithium Isotope Systematics of the Hekla Volcano, Iceland: Evidence for Fe Isotope Fractionation During Magma Differentiation. Chem. Geol. 2009, 258, 78–91. [Google Scholar] [CrossRef]
- Teng, F.Z.; Dauphas, N.; Helz, R.T.; Huang, S. Diffusion-driven Magnesium and Iron Isotope Fractionat-ion in Hawaiian Olivine. Earth Planet. Sci. Lett. 2011, 308, 317–324. [Google Scholar] [CrossRef]
- Sossi, P.A.; Foden, J.D.; Halverson, G.P. Redox-Controlled Iron Isotope Fractionation During Magmatic Differentiation: An Example from the Red Hill Intrusion, S. Tasmania. Contrib. Mineral. Petrol. 2012, 164, 757–772. [Google Scholar] [CrossRef]
- Collinet, M.; Charlier, B.; Namur, O.; Oeser, M.; Médard, E.; Weyer, S. Crystallization History of Enriched Shergottites from Feand Mg Isotope Fractionation in Olivine Megacrysts. Geochim. Cosmochim. Acta 2017, 207, 277–297. [Google Scholar] [CrossRef]
- Du, D.H.; Wang, X.L.; Yang, T.; Chen, X.; Li, J.Y.; Li, W. Origin of Heavy Fe Isotope Compositions in High-Siica Igneous Rocks: A Rhyolite Perspective. Geochim. Cosmochim. Acta 2017, 218, 58–72. [Google Scholar] [CrossRef]
- Chen, Y.H.; Niu, Y.L.; Duan, M.; Gong, H.M.; Guo, P.Y. Fractional Crystallization Causes the Iron Isotope Contrast Between Mid-Ocean Ridge Basalts and Abyssal Peridotites. Commun. Earth Environ. 2021, 2, 65. [Google Scholar] [CrossRef]
- Poitrasson, F.; Freydier, R. Heavy Iron Isotope Composition of Granites Determined by High Resolution MC-ICP-MS. Chem. Geol. 2005, 222, 132–147. [Google Scholar] [CrossRef]
- Heimann, A.; Beard, L.B.; Johnson, C.M. The Role of Volatile Exsolution and Sub-solidus Fluid/Rock Interactions in Producing High 56Fe/54Fe Ratios in Siliceous Igneous Rocks. Geochim. Cosmochim. Acta 2008, 72, 4379–4396. [Google Scholar] [CrossRef]
- Du, D.H.; Li, W.Q.; Wang, X.L.; Shu, X.J.; Yang, T.; Sun, T. Fe Isotopic Fractionation During the Magmatic-Hydrothermal Stage of Granitic Magmatism. Lithos 2019, 350, 105265. [Google Scholar] [CrossRef]
- He, Y.S.; Wu, H.J.; Ke, S.; Liu, S.A.; Wang, Q. Iron Isotopic Compositions of Adakitic and Non-Adakitic Graniti-C Magmas: Magma Compositional Control and Subtle Residual Garnet Effect. Geochim. CosmochImica Acta 2017, 203, 89–103. [Google Scholar] [CrossRef]
- Li, W.Q.; Czaja, A.D.; Van Kranendonk, M.J.; Beard, B.L.; Roden, E.E.; Johnson, C.M. An anoxic, Fe(II)-Rich, U-Poor ocean 3.46 billion years ago. Geochim. Cosmochim. Acta 2013, 120, 65–79. [Google Scholar] [CrossRef]
- Poitrasson, F.; Viers, J.; Martin, F.; Braun, J.J. Limited Iron Isotope Variations in Recent Lateritic Soils from Nsimi, Cameroon: Implications for the Global Fe Geochemical cycle. Chem. Geol. 2008, 253, 54–63. [Google Scholar] [CrossRef]
- Liu, S.A.; Teng, F.Z.; Li, S.G.; Wei, G.J.; Ma, J.L. Copper and Iron Isotope Fractionation during Weathering and Pedogenesis: Insights from Saprolite Profiles. Geochim. Cosmochim. Acta 2014, 146, 59–75. [Google Scholar] [CrossRef]
- Defant, M.J.; Drummond, M.S. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature 1990, 347, 662–665. [Google Scholar] [CrossRef]
- Xu, J.F.; Wu, J.Q.; Wang, Q.; Chen, J.L.; Cao, K. Research Advances of Adakites and Adakitic Rocks in China. Bull. Mineral. Geochem. 2014, 33, 6–13. [Google Scholar]
- Jiang, J.S.; Hu, P.; Xiang, W.S.; Wang, J.X.; Lei, Y.J.; Zhao, K.; Zeng, G.P.; Wu, F.F.; Xiang, P. Geochronology, geochemistry and its implication for regional tectonic evolution of adakite-like rock in the Burearea, western Ethiopia. Acta Geol. Sin. 2021, 95, 1260–1267. [Google Scholar]
- He, Y.S.; Li, S.G.; Hoefs, J.; Huang, F.; Liu, S.A.; Hou, Z.H. Post-Collisional Granitoids from the Dabie Orogen: New Evidence for Partial Melting of a Thickened Continental Crust. Geochim. Cosmochim. Acta 2011, 75, 3815–3838. [Google Scholar] [CrossRef]
- Chen, B.; Jahn, B.M.; Suzuki, K. Petrological and Nd-Sr-Os Isotopic Constraints on The Origin of High-Mg Adakitic Rocks from The North China Craton: Tectonic Implications. Geology 2013, 41, 91–94. [Google Scholar] [CrossRef]
- Gao, S.; Rudnick, R.; Yuan, H.L.; Liu, X.M.; Xu, W.L.; Ling, W.L.; Ayers, J.; Wang, X.C.; Wang, Q.H. Recycling Lower Continental Crust in the North China Craton. Nature 2004, 432, 892–897. [Google Scholar]
- Guo, F.; Nakamuru, E.; Fan, W.; Kobayoshi, K.; Li, C.W. Generation of Palaeocene Adakitic Andesites by Magma Mixing; Yanji Area, NE China. J. Petrol. 2007, 48, 661–692. [Google Scholar] [CrossRef]
- Chung, S.L.; Liu, D.; Ji, J.Q.; Chu, M.F.; Lee, H.Y.; Wen, D.J.; Lo, C.H.; Lee, T.Y.; Qian, Q.; Zhang, Q. Adakites from Continental Collision Zones: Melting of Thickened Lower Crust Beneath Southern Tibet. Geology 2003, 31, 1021–1024. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.C.; Yang, Y.; Jiang, W.J.; Yuan, L. Diverse Partial Melting during Continental Rifting, Subduction-Exhumation and Mountain-Root Collapse in the Dabie Orogen, Central China. Earth Sci. 2019, 44, 4195–4202. [Google Scholar]
- Zhao, Z.F.; Dai, F.Q.; Chen, Q. Continental Slab-Mantle Interaction: Geochemical Evidence from Post-Collisional Andesitic Rocks in the Dabie Orogen. Earth Sci. 2019, 44, 4119–4127. [Google Scholar]
- Zheng, Y.F.; Wang, Z.R.; Li, S.G. Oxygen Isotope Equilibrium Ultrahigh-Pressure Metamorphic Minerals and Its Constraints on Sm-Nd and Rb-Sr Chronometers. Geol. Soc. Lond. Spec. Publ. 2003, 220, 93–117. [Google Scholar] [CrossRef]
- Li, S.G.; Jagoutz, E.; Lo, C.H.; Chen, Y.Z.; Li, Q.L.; Xiao, Y.L. Sm/Nd, Rb/Sr, and 40Ar/39Ar Isotopic Systematics of the Ult-Rahigh-Pressure Metamorphic Rocks in the Dabie-Sulu Orogenic Belt, Central China: A Retrospective View. Int. Geol. Rev. 1999, 41, 1114–1124. [Google Scholar]
- Zhao, Z.F.; Zheng, Y.F.; Wei, C.S.; Wu, Y.B. Post-collisional Granitoids from the Dabie Orogen in China: Zircon U–Pb Age, Element and O Isotope Evidence for Recycling of Subducted Continental Crust. Lithos 2007, 93, 248–272. [Google Scholar] [CrossRef]
- Zheng, Y.F. Research Progress on UHP Metamorphism and Continental Collision: A Case Study of Dabie Sulu Orogenic Belt. Chin. Sci. Bull. 2008, 53, 2129–2152. [Google Scholar]
- Suo, S.T.; Zhong, Z.Q.; Zhou, H.W.; You, Z.D.; Zhang, L. Two Fresh Types of Eclogites in the Dabie-Sulu UHP Metamorphic Belt, China: Implications for the Deep Subduction and Earliest Stages of Exhumation of the Continental Crust. J. Earth Sci. 2012, 23, 775–785. [Google Scholar] [CrossRef]
- Xu, H.; Ma, C.; Zhang, J.; Ye, K. Early Cretaceous Low-Mg adakitic granites from the Dabie orogen, eastern China: Petrogenesis and implications for destruction of the over-thickened lower continental crust. Gondwana Res. 2013, 23, 190–207. [Google Scholar] [CrossRef]
- Liu, S.X.; Xu, H. Geochemistry, Zircon U-Pb Age and Hf Isotope of the Huilanshan Granitoids in the North Dabie Terrane: Implications for SynCollapse Magmatism of Orogen. J. Earth Sci. 2019, 30, 636–646. [Google Scholar] [CrossRef]
- Niu, P.P.; Jiang, S.Y. Petrogenesis of the Late Mesozoic Qijinfeng Granite Complex in the Tongbai Orogen: Geochronological, Geochemical and Sr-Nd-Pb-Hf Isotope Evidence. Lithos 2020, 356, 105290. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Fu, B.; Gong, B.; Li, L. Stable iso-Tope geochemistry of ultrahigh pressure metamorphi-C rocks from the Dabie–Sulu orogen in China: Implications for geodynamics and fluid regime. Earth-Sci. Rev. 2003, 62, 105–161. [Google Scholar] [CrossRef]
- Liu, X.C.; Jahn, B.M.; Liu, D.Y.; Dong, S.W.; Li, S.Z. SHRIMP U-Pb Zircon Dating of a Metagabbro and Eclogites from Western Dabieshan (Hong’an Block), China, and Its Tectonic Implications. Tectonophysics 2004, 394, 171–192. [Google Scholar]
- Gao, X.Y.; Zhao, T.P.; Shi, X.B.; Zhang, Z.H.; Bao, Z.W. Geochemisty and petrogenesis of the early cretaceous Shangcheng and Daquandian granites in the north Dabie mountains. Geochimica 2013, 42, 307–339. [Google Scholar]
- Liu, W.B.; Liu, Z.H.; Zhang, S.J. Geological and geochemical features of Shangcheng granite body and its genetic implication, Henan. Geol. Miner. Resour. South China 2004, 4, 17–23. [Google Scholar]
- Huang, D.F.; Lu, X.X.; Luo, Z.H.; Song, Y.W.; Lv, G.Y. Zircon SHRIMP U-Pb Age, Geochemical Characteristics and Geological Implications of Shangcheng Pluton in the Northern Margin of Dabie Mountain. Earth Sci. 2019, 44, 3829–3844. [Google Scholar]
- Yang, C.Y. Geochemical Feature and Petrogensis of Shangcheng Pluton and Xinxian Pluton, Dabie Orogenic Belt, China. Master’s Thesis, University of Science and Technology, Hefei, China, 2020. [Google Scholar]
- Liu, Y.S.; Hu, Z.C.; Gao, S.; Günther, F.; Xu, J.; Gao, C.G.; Chen, H.H. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Lei, Y.T.; Li, M.; Wang, Z.C.; Zhu, Y.T.; Hu, Z.C.; Liu, Y.S.; Chai, X.N. High resolution iron isotopic measurement using large geometry Multi-Collector Inductively Coupled Plasma Mass Spectrometer. At. Spectrosc. 2021, in press. [Google Scholar]
- Sun, S.S.; McDonough, W.F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In Magmatism in the Oceanic Basalts; Saunder, A.D., Norry, M.J., Eds.; Geological Society London Special Publications: London, UK, 1989; pp. 313–345. [Google Scholar]
- McDonough, W.F.; Sun, S.S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Irvine, T.N.; Baragar, W. A Guide to the Chemical Classification of the Common Volcanic Rocks. Can. J. Earth Sci. 1971, 8, 523–548. [Google Scholar] [CrossRef]
- Middlemost, E. Naming materials in the magma/igneous rock system. Earth Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Qin, J.F.; Lai, S.C.; Diwu, C.R.; Ju, Y.J.; Li, Y.F. Magma mixing origin for the post-collisional adakitic monzogranite of the Triassic Yangba pluton, Northwestern margin of the South China block: Geochemistry, Sr–Nd isotopic, zircon U–Pb dating and Hf isotopic evidences. Contrib. Mineral. Petrol. 2010, 159, 389–409. [Google Scholar] [CrossRef]
- Xue, H.M. Geochronology, geochemistry and stratospheric interactions of Late Mesozoic granitoids near the boundary between Anhui and Zhejiang provinces in the eastern segment of the Jiangnan orogenic belt. Acta Petrol. Sin. 2021, 37, 433–461. [Google Scholar]
- Wu, H.J.; He, Y.S.; Bao, L.; Zhu, C.W.; Li, S.G. Mineral Composition Control on Inter-mineral Iron Isotopic Fractionation in Granitoids. Geochim. Et Cosmochim. Acta 2017, 198, 208–217. [Google Scholar] [CrossRef]
- Dauphas, N.; Roskosz, M.; Alp, E.; Neuville, D.R.; Hu, M.Y.; Sio, C.K.; Tissot, F.L.H.; Zhao, J.; Tissandier, L.; Médard, E.; et al. Magma redox and structural controls on iron isotope variations in Earth’s mantle and crust. Earth Planet. Sci. Lett. 2014, 398, 127–140. [Google Scholar] [CrossRef] [Green Version]
- Schauble, E.A. Applying Stable Isotope Fractionation Theory to New Systems. Geochemistry of Non-traditional Stable Isotopes. Geochem. Non Tradit. Stable Isot. 2004, 55, 65–111. [Google Scholar]
- Nesbitt, H.W.; Young, G.M. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature 1982, 299, 715–717. [Google Scholar] [CrossRef]
- Li, C.; Yang, S. Is Chemical Index of Alteration (CIA) a Reliable Proxy for Chemical Weathering in Global Drainage Basins? Am. J. Sci. 2010, 310, 111–127. [Google Scholar] [CrossRef]
- Goldberg, K.; Humayun., M. The Applicability of the Chemical Index of Alteration as a Paleoclimatic Indicator: An Example from The Permian of The ParanÁ Basin, Brazil. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 293, 175–183. [Google Scholar] [CrossRef]
- Li, R.Y. Evolution of the Archean Continental Crust and Link to the Great Oxidation Event traced by Mg, Fe isotopes. Ph.D. Thesis, China University of Geoscience Beijing, Beijing, China, 2020. [Google Scholar]
- Bea, A.F.; Montero, P.; Ortega, M. A LA-ICP-MS Evaluation of Zr Reservoirs in Common Crustal Rocks: Implications for Zr and Hf Geochemistry, and Zircon-Forming Processes. Can. Mineral. 2006, 44, 693–714. [Google Scholar] [CrossRef]
- Xia, Y.; Li, S.Q.; Huang, F. Iron and Zinc Isotope Fractionation During Magmatism in the Continental Crust: Evidence from Bimodal Volcanic Rocks from Hailar Basin, NE China. Geochim. Cosmochim. Acta 2017, 213, 35–46. [Google Scholar]
- Wang, Q.; Wyman, D.A.; Xu, J.F.; Jian, P.; Zhao, Z.H.; Li, C.F.; Xu, W.; Ma, J.L.; He, B. Early Cretaceous adakitic granites in the Northern Dabie Complex, central China: Implications for partial melting and delamination of thickened lower crust. Geochim. Cosmochim. Acta 2007, 71, 2609–2636. [Google Scholar] [CrossRef]
- Huang, F.; Li, S.; Feng, D.; He, Y.S.; Chen, F.K. High-Mg adakitic rocks in the Dabie orogen, central China: Implications for foundering mechanism of lower continental crust. Chem. Geol. 2008, 255, 1–13. [Google Scholar] [CrossRef]
- Jahn, B.M.; Wu, Y.B.; Lo, C.H.; Tsai, C.H. Crust–mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr–Nd isotopic evidence from post-Collisional mafic–Ultramafic intrusions of the northern Dabie complex, central China. Chem. Geol. 1999, 157, 119–146. [Google Scholar] [CrossRef]
- Wang, Y.J.; Fan, W.M.; Peng, T.P.; Zhang, H.F.; Guo, F. Nature of the Mesozoic lithospheric mantle and tectonic decoupling beneath the Dabie Orogen, Central China: Evidence from 40Ar/ 39Ar geochronology, elemental and Sr–Nd–Pb isotopic compositions of early Cretaceous mafic igneous rocks. Chem. Geol. 2005, 220, 165–189. [Google Scholar] [CrossRef]
- Zhao, Z.F.; Zheng, Y.F.; Wei, C.S.; Wu, Y.B.; Chen, F.K.; Jahn, B.M. Zircon U–Pb age, element and C–O isotope geochemistry of post-Collisional mafic-ultramafic rocks from the Dabie orogen in east-Central China. Lithos 2005, 83, 1–28. [Google Scholar] [CrossRef]
- Chen, W.; Xu, Z.W.; Li, H.C.; Yang, X.N.; Yang, J.Q.; Wang, H.; Wang, S.H. Petrogenesis and Origin of the Xinxian Granitic Batholith in Henan Province and Its Implication for the Tectonic Evolution of the Western Dabie Area. Acta Geol. Sin. 2013, 87, 1510–1524. [Google Scholar]
- Foden, J.; Sossi, P.A.; Wawryk, C.M. Fe isotopes and the contrasting petrogenesis of A-, I-and S-type granite. Lithos 2015, 212–215, 32–44. [Google Scholar]
- Nash, W.P.; Crecraft, H.R. Partition Coefficients for Trace Elements in Silicic Magmas. Geochim. Cosmochim. Acta 1985, 49, 2309–2322. [Google Scholar] [CrossRef]
Composition (wt.%) | SGW-1-2 | SGD-2-1 | SGD-2-3 | SGD-3-1 | LFW-1-1 | LFW-1-2 | LFW-2-1 | GBW07103 |
---|---|---|---|---|---|---|---|---|
SiO2 | 67.64 | 68.43 | 69.65 | 67.29 | 70.87 | 71.30 | 71.89 | 73.01 |
TiO2 | 0.49 | 0.40 | 0.37 | 0.52 | 0.33 | 0.30 | 0.28 | 0.30 |
Al2O3 | 15.54 | 15.38 | 15.25 | 15.23 | 14.76 | 14.96 | 14.45 | 13.45 |
TFe2O3 | 2.85 | 2.80 | 2.15 | 3.65 | 1.97 | 1.83 | 1.73 | 2.18 |
MnO | 0.04 | 0.06 | 0.02 | 0.06 | 0.03 | 0.03 | 0.03 | 0.06 |
MgO | 0.96 | 1.21 | 0.71 | 1.58 | 0.59 | 0.53 | 0.49 | 0.41 |
CaO | 2.40 | 2.75 | 2.03 | 3.03 | 1.56 | 1.17 | 1.47 | 1.58 |
Na2O | 4.69 | 4.14 | 4.73 | 4.07 | 4.53 | 4.49 | 4.51 | 3.07 |
K2O | 3.78 | 4.16 | 4.04 | 3.94 | 4.27 | 4.70 | 4.15 | 4.97 |
P2O5 | 0.20 | 0.14 | 0.15 | 0.19 | 0.12 | 0.11 | 0.10 | 0.09 |
LOI | 0.97 | 0.43 | 0.31 | 0.40 | 0.27 | 0.65 | 0.32 | 0.78 |
Mg# | 40.21 | 46.33 | 39.74 | 46.33 | 37.30 | 36.85 | 36.34 | |
Fe3+/∑Fe | 38.85 | 37.16 | 38.85 | 37.60 | 42.31 | 40.19 | 39.39 | |
(Na + K)/(Mg + Ca) | 1.73 | 1.40 | 2.21 | 1.15 | 2.80 | 3.58 | 3.03 | |
A/CNK | 0.96 | 0.94 | 0.96 | 0.92 | 0.99 | 1.02 | 0.99 | |
A/NK | 1.31 | 1.36 | 1.25 | 1.39 | 1.22 | 1.20 | 1.21 |
Composition (ppm) | SGW-1-2 | SGD-2-1 | SGD-2-3 | SGD-3-1 | LFW-1-1 | LFW-1-2 | LFW-2-1 |
---|---|---|---|---|---|---|---|
Li | 11.64 | 24.40 | 8.78 | 17.15 | 29.47 | 18.20 | 27.05 |
Be | 1.68 | 2.05 | 1.95 | 1.92 | 3.09 | 2.58 | 2.86 |
Sc | 4.12 | 5.19 | 3.08 | 7.12 | 2.58 | 2.77 | 2.87 |
V | 43.71 | 46.87 | 32.10 | 59.63 | 24.49 | 23.29 | 20.83 |
Cr | 5.57 | 16.84 | 3.43 | 19.42 | 5.26 | 4.25 | 3.58 |
Co | 5.17 | 6.47 | 2.35 | 8.55 | 3.05 | 2.71 | 2.67 |
Ni | 3.73 | 7.18 | 2.86 | 9.13 | 3.43 | 2.86 | 2.69 |
Cu | 2.44 | 6.71 | 2.21 | 3.02 | 1.69 | 1.45 | 1.60 |
Zn | 58.30 | 48.21 | 28.06 | 46.59 | 50.89 | 47.44 | 46.06 |
Ga | 22.49 | 19.30 | 22.27 | 20.04 | 22.98 | 23.53 | 23.51 |
Rb | 68.16 | 110.99 | 85.33 | 102.02 | 119.62 | 131.36 | 133.38 |
Sr | 1000 | 873 | 1195 | 702 | 698 | 546 | 613 |
Y | 8.93 | 11.73 | 7.59 | 14.05 | 6.99 | 7.11 | 6.37 |
Zr | 209 | 123 | 171 | 165 | 172 | 170 | 155 |
Nb | 8.28 | 9.27 | 7.25 | 10.35 | 8.87 | 9.59 | 8.46 |
Sn | 1.01 | 0.89 | 0.92 | 0.90 | 0.97 | 1.07 | 0.93 |
Cs | 0.52 | 2.27 | 0.80 | 1.46 | 4.51 | 2.68 | 2.28 |
Ba | 1956 | 1815 | 2102 | 1454 | 1649 | 1661 | 1326 |
Hf | 5.19 | 3.52 | 4.60 | 4.45 | 4.84 | 4.64 | 4.52 |
Ta | 0.48 | 0.66 | 0.43 | 0.71 | 0.59 | 0.67 | 0.59 |
Tl | 0.38 | 0.61 | 0.49 | 0.54 | 0.75 | 0.84 | 0.82 |
Pb | 21.30 | 29.91 | 26.83 | 24.29 | 31.92 | 31.79 | 35.16 |
Th | 8.80 | 11.24 | 8.45 | 11.56 | 11.74 | 10.87 | 12.13 |
U | 1.54 | 2.88 | 1.91 | 2.22 | 2.00 | 2.24 | 3.40 |
La | 57.82 | 32.22 | 44.82 | 40.57 | 49.07 | 40.44 | 37.74 |
Ce | 98.37 | 61.43 | 80.33 | 75.01 | 85.89 | 74.12 | 67.33 |
Pr | 10.37 | 6.67 | 8.58 | 8.29 | 9.06 | 7.86 | 6.98 |
Nd | 37.08 | 24.57 | 29.69 | 30.93 | 31.27 | 27.51 | 24.90 |
Sm | 5.54 | 3.82 | 4.54 | 4.84 | 4.48 | 4.19 | 3.74 |
Eu | 1.56 | 1.16 | 1.17 | 1.33 | 1.19 | 1.04 | 0.94 |
Gd | 3.59 | 2.93 | 2.87 | 3.63 | 2.87 | 2.69 | 2.22 |
Tb | 0.40 | 0.40 | 0.33 | 0.47 | 0.31 | 0.29 | 0.25 |
Dy | 2.00 | 2.14 | 1.53 | 2.70 | 1.48 | 1.34 | 1.23 |
Ho | 0.31 | 0.38 | 0.24 | 0.47 | 0.23 | 0.21 | 0.20 |
Er | 0.70 | 1.07 | 0.61 | 1.27 | 0.54 | 0.51 | 0.50 |
Tm | 0.09 | 0.15 | 0.08 | 0.18 | 0.08 | 0.07 | 0.07 |
Yb | 0.59 | 0.99 | 0.52 | 1.26 | 0.46 | 0.44 | 0.43 |
Lu | 0.08 | 0.16 | 0.07 | 0.19 | 0.07 | 0.07 | 0.07 |
REE | 218.52 | 138.09 | 175.37 | 171.14 | 187.01 | 160.80 | 146.61 |
LREE/HREE | 27.14 | 15.82 | 27.10 | 15.83 | 29.90 | 27.53 | 28.44 |
Eu | 1.00 | 1.02 | 0.93 | 0.93 | 0.95 | 0.89 | 0.92 |
(La/Yb)n | 70.03 | 23.30 | 61.35 | 23.13 | 75.70 | 66.14 | 62.26 |
(Dy/Yb)n | 2.26 | 1.44 | 1.95 | 1.44 | 2.13 | 2.05 | 1.9 |
CIA | 48.97 | 48.49 | 49.02 | 48.02 | 49.72 | 50.60 | 49.76 |
Ba/Th | 222.19 | 161.50 | 248.79 | 125.82 | 140.45 | 152.84 | 109.31 |
Nb/U | 5.38 | 3.22 | 3.80 | 4.66 | 4.44 | 4.29 | 2.49 |
Rb/La | 1.18 | 3.44 | 1.90 | 2.51 | 2.44 | 3.25 | 3.53 |
Zr/Hf | 40.26 | 34.82 | 37.26 | 37.11 | 35.52 | 36.55 | 34.33 |
Th/U | 5.73 | 3.90 | 4.43 | 5.20 | 5.88 | 4.86 | 3.57 |
Nb/Ta | 17.11 | 14.06 | 16.91 | 14.54 | 14.96 | 14.42 | 14.42 |
Sr/Y | 111.98 | 74.39 | 157.45 | 49.95 | 99.83 | 76.79 | 96.28 |
(Yb)n | 3.48 | 5.84 | 3.08 | 7.40 | 2.73 | 2.58 | 2.56 |
Samples | δ56Fe vs. IRMM014 | δ57Fe vs. IRMM014 | n | ||
---|---|---|---|---|---|
Ave./‰ | 2SD/‰ | Ave./‰ | 2SD/‰ | ||
SGW-1-2 | 0.18 | 0.01 | 0.25 | 0.04 | 3 |
SGD-2-1 | 0.11 | 0.03 | 0.18 | 0.06 | 3 |
SGD-2-3 | 0.17 | 0.02 | 0.22 | 0.04 | 3 |
SGD-3-1 | 0.08 | 0.04 | 0.12 | 0.09 | 3 |
LFW-1-1 | 0.18 | 0.04 | 0.27 | 0.07 | 4 |
LFW-1-2 | 0.19 | 0.02 | 0.30 | 0.03 | 3 |
LFW-2-1 | 0.20 | 0.04 | 0.29 | 0.07 | 2 |
BHVO-2 | 0.11 | 0.02 | 0.18 | 0.06 | 2 |
BCR-2 | 0.10 | 0.02 | 0.16 | 0.06 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, C.; Hu, C.; Li, M.; Li, W. Iron Isotope Composition of Adakitic Rocks: The Shangcheng Pluton, Western Dabie Orogen, Central China. Minerals 2021, 11, 1356. https://doi.org/10.3390/min11121356
Deng C, Hu C, Li M, Li W. Iron Isotope Composition of Adakitic Rocks: The Shangcheng Pluton, Western Dabie Orogen, Central China. Minerals. 2021; 11(12):1356. https://doi.org/10.3390/min11121356
Chicago/Turabian StyleDeng, Chenglai, Changqing Hu, Ming Li, and Wu Li. 2021. "Iron Isotope Composition of Adakitic Rocks: The Shangcheng Pluton, Western Dabie Orogen, Central China" Minerals 11, no. 12: 1356. https://doi.org/10.3390/min11121356
APA StyleDeng, C., Hu, C., Li, M., & Li, W. (2021). Iron Isotope Composition of Adakitic Rocks: The Shangcheng Pluton, Western Dabie Orogen, Central China. Minerals, 11(12), 1356. https://doi.org/10.3390/min11121356