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Abstract: There has been little research on the metal isotopic composition of adakitic rock. The
main objective of our investigation was to obtain more knowledge on the iron isotopic composition
of adakitic rocks and provide new evidence for the genesis of Shangcheng pluton from an iron
isotope perspective. The Dabie orogen is divided into eastern and western areas by the Shangcheng-
Macheng fault, and the Shangcheng pluton is located in the western Dabie orogen area. The iron
isotopic composition of these rocks ranges from 0.08‰ to 0.20‰ (2SD, n = 3). The δ56Fe values
of two rocks from the SGD (Sigudun) unit are relatively low (0.11 ± 0.03‰ and 0.08 ± 0.04‰),
while the δ56Fe values of the other samples are basically consistent (0.18–0.2‰). Evidence from
elemental geochemical characteristics and petrogenesis defines the Shangcheng pluton as adakitic
rocks. Our investigation on the elemental and isotopic compositions hints that the enrichment of
heavy iron isotopes cannot be explained by weathering/alteration and fluid exsolution. Fractional
crystallization of magnetite may account for the enrichment of light iron isotopes in two rocks from
the SGD unit, while the fractional iron isotope trend in the other five samples can be explained by
∆56Fecrystal-melt = ~0.035‰. Two investigated rocks from SGD units may have been derived from the
partial melting of amphibolite, while the other five samples may have been derived from the partial
melting of eclogite containing 10–15% garnet.

Keywords: Dabie orogen; adakitic rocks; iron isotopes; source rock mineralogy

1. Introduction

Recent theoretical developments have revealed that the fractionation of iron isotopes
occurs during magmatic processes. Partial melting, fractional crystallization, and fluid
exsolution can all be responsible for the enrichment of heavy iron isotopes [1–13]. Never-
theless, factors besides magmatic processes can also cause significant fractionation of iron
isotopes. Due to the different mineral compositions of the source rock, the δ56Fe value of
melt generated by the molten lower crust in the eastern Dabie orogen ranges from 0.120‰
to 0.196‰, according to simulations and observations, contributing to the heterogeneity
of δ56Fe after crystallization [14]. Redox conditions also account for the fractionation of
iron isotopes. Li et al. [15] reported that the δ56Fe content of the Archaean BIF deposit is
1.5–2.6‰, due to a low degree of Fe (II) oxidation along with very low oxidation rates,
resulting in the enrichment of heavy iron isotopes. On the contrary, Fe3+ released from pri-
mary minerals will form secondary minerals under an oxidative environment, preventing
a loss of Fe and a change in the iron isotopic composition [16,17].

A popular explanation of adakites is that they originated from partial melting of
subducted slab, which endows them with a unique geochemical composition compared
with general granitic rocks (Al2O3 ≥ 15%, Sr > 300 ppm, Y < 20 ppm, unobvious Eu anomaly,
etc.) [18]. It should be noted that there are genetic differences between adakite and adakitic
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rocks. The genesis of adakitic rocks generally involves four methods: (1) partial melting
of the lower crust; (2) partial melting of the delaminated crust; (3) differentiation of mafic
magma under high pressure; and (4) mixed magma [19]. The above four types of adakitic
rocks have been confirmed or reported [20–25].

Previous studies on adakitic rocks have been mainly based on the geochemical charac-
teristics of major and trace elements. However, few studies have been conducted on its
metal isotopes. In this study, the iron isotopic composition and elemental content of seven
adakitic rocks from the Shangcheng pluton were measured. Considering the complexity
of iron isotopic fractionation, the effects of weathering/alteration and fluid exsolution
on isotopic fractionation are first discussed by assessing the elemental and iron isotopic
features. Then, the contributions to isotopic enrichment of fractional crystallization and the
mineral composition of the source rock are evaluated by modelling, and evidence on the
elemental and isotopic connection is revealed. The main objective of our investigation is to
obtain more knowledge on the iron isotopic composition of adakitic rocks and gain new
evidence on the genesis of the Shangcheng pluton from an iron isotope perspective.

2. Geological Setting

The Dabie orogen is located at the Central China Orogenic, which is in the eastern
part of the Qinling-Tongbai orogen (see Figure 1) [26]. It formed when the South China
block subducted beneath the North China block during the Triassic and resulted in volcanic
activity during the Cretaceous [27–35]. A large volume of intrusive intermediate-acid
magma provides us a good chance to research the iron isotope composition of adakitic rocks.
The Shangcheng-Macheng fault divides the Dabie orogen into eastern and western areas
(Figure 1), and the Shangcheng pluton is located in the western area of the Dabie orogen.

Figure 1. Geological map of the western Dabie orogen (modified after [36,37]).
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The Shangcheng pluton contains the Guishan Formation, Nanwan flysch Unit, Yangx-
iaozhuang Formation, and Xiaojiamiao Formation, and it is covered by late Cretaceous
Jingangtai volcanic rocks [27]. Previous studies have divided the Shangcheng pluton into
Sigudun (128–137 Ma), Shiguwa (130–139 Ma), and Loufangwan (133–141 Ma) intrusive
units, according to their textures, mineral compositions, and contact relationships [38–41]
(Figure 2). We named these the SGD unit (Sigudun), SGW unit (Shiguwa), and LFW
unit (Loufangwan).

Figure 2. Simplified geological map of the Shangcheng pluton (modified after [38]).

A porphyritic texture can be observed in SGD unit samples, and the phenocryst is
dominated by potassium feldspar, which accounts for about 20% of the total content. The
matrix is dominated by plagioclase (35%) and quartz (25%). Biotite (5–10%) and amphibole
(5%) can be seen under single polarizer (3a), as can accessory minerals, such as apatite
and magnetite (Figure 3a–c). A porphyritic-like structure can be observed in samples
from the SGW unit, and potassium feldspar dominates the phenocrysts (20%). The matrix
includes plagioclase (30%), quartz (30%), biotite (5%), and hornblende (Figure 3d–f). Some
plagioclase has a ring structure (Figure 3e). Large potassic feldspar crystals (Figure 3h,i) can
be seen locally in samples from the LFW unit. Quartz, plagioclase, and biotite are encapsu-
lated in the potassic feldspar phenocrysts (Figure 3g,h). The matrix is dominated by quartz
(30%) and plagioclase (30%), with small amounts of biotite (5%), apatite, and magnetite. 
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Shangcheng pluton. (a,d) are samples of the SGD unit and SGW unit viewed under a single polar
microscope. They include apatite, hornblende, biotite, magnetite, and other mineral particles; (b,e,h)
are specimen photographs of the SGD unit, SGW unit, and LFW unit, respectively. A xenolith with a
diameter of about 1 cm can be seen in the SGW unit; (c) shows the main rock-forming minerals, which
are potassium feldspar, plagioclase, and quartz under crossed polar; (f) is a sample from the SGW
unit, showing the ring structure of plagioclase; (g) is from the LFW unit and shows rock-forming
minerals, such as quartz and potassium feldspar; (i) is a microscopic photo of giant potassium
feldspar particles, which are wrapped in biotite, plagioclase, and quatrtz. Kfs—potassium feldspar;
Pl—plagioclase; Qtz—quartz; Am—amphibole; Bt—biotite; Mag-magnetite; Ap—apatite.

3. Analytical Method

Twenty-three samples were collected from the Shangcheng pluton, and seven samples
were selected for this study by excluding the altered samples (SGD unit: SGD-2-1, SGD-2-3,
SGD-3-1; SGW unit: SGW-1-2; LFW unit: LFW-1-1, LFW-1-2, LFW-2-1).

Major element analyses of whole rock were conducted on XRF (Primus II, Rigaku,
Japan) at the Wuhan Samplesolution Analytical Technology Co., Ltd., Wuhan, China, and
the analysis error was less than 1% (except P2O5). Trace element analyses of whole rock
were conducted with an Agilent 7700e ICP-MS at the Wuhan SampleSolution Analytical
Technology Co., Ltd., Wuhan, China. For the specific process followed, see [42].

Iron isotope analyses of samples were conducted at the State Key Laboratory of
Geological Processes and Mineral Resources, China University of Geosciences, Wuhan,
China. Detailed descriptions of sample digestion, chemical evaporation, and other chemical
procedures are given in [43]. Iron isotopic measurements were performed on a Nu Plasma
1700 MC-ICP-MS using the sample-standard bracketing (SSB) method. Dissolved IRMM-
014 Fe isotope standard with 5 µg g−1 Fe was used as the bracketing standard, and the
internal precision was better than 15 × 10−6 (relative standard error) for the 56Fe/54Fe
ratio. Iron isotopic compositions were reported using the standard per mil (‰) notation of
δ56Fe for the 56Fe/54Fe ratio and δ57Fe for the 57Fe/54Fe ratio, where:

δ56Fe = [(56Fe/54Fesample)/(56Fe/54FeIRMM-014) − 1] × 1000 (1)

δ57Fe = [(57Fe/54Fesample)/(57Fe/54FeIRMM-014) − 1] × 1000 (2)

4. Results
4.1. Elemental Composition

The major and trace element compositions for these rocks are summarized in Tables 1 and 2.
Samples from the Shangcheng pluton were generally found to be metaluminous, but one
(LFW-1-2) was weakly peraluminous.

Table 1. Major element compositions of of Shangcheng adakitic rocks.

Composition
(wt.%) SGW-1-2 SGD-2-1 SGD-2-3 SGD-3-1 LFW-1-1 LFW-1-2 LFW-2-1 GBW07103

SiO2 67.64 68.43 69.65 67.29 70.87 71.30 71.89 73.01
TiO2 0.49 0.40 0.37 0.52 0.33 0.30 0.28 0.30

Al2O3 15.54 15.38 15.25 15.23 14.76 14.96 14.45 13.45
TFe2O3 2.85 2.80 2.15 3.65 1.97 1.83 1.73 2.18
MnO 0.04 0.06 0.02 0.06 0.03 0.03 0.03 0.06
MgO 0.96 1.21 0.71 1.58 0.59 0.53 0.49 0.41
CaO 2.40 2.75 2.03 3.03 1.56 1.17 1.47 1.58

Na2O 4.69 4.14 4.73 4.07 4.53 4.49 4.51 3.07
K2O 3.78 4.16 4.04 3.94 4.27 4.70 4.15 4.97
P2O5 0.20 0.14 0.15 0.19 0.12 0.11 0.10 0.09
LOI 0.97 0.43 0.31 0.40 0.27 0.65 0.32 0.78
Mg# 40.21 46.33 39.74 46.33 37.30 36.85 36.34

Fe3+/∑Fe 38.85 37.16 38.85 37.60 42.31 40.19 39.39
(Na + K)/(Mg + Ca) 1.73 1.40 2.21 1.15 2.80 3.58 3.03

A/CNK 0.96 0.94 0.96 0.92 0.99 1.02 0.99
A/NK 1.31 1.36 1.25 1.39 1.22 1.20 1.21



Minerals 2021, 11, 1356 5 of 14

Table 2. Trace element compositions of Shangcheng adakitic rocks.

Composition
(ppm) SGW-1-2 SGD-2-1 SGD-2-3 SGD-3-1 LFW-1-1 LFW-1-2 LFW-2-1

Li 11.64 24.40 8.78 17.15 29.47 18.20 27.05
Be 1.68 2.05 1.95 1.92 3.09 2.58 2.86
Sc 4.12 5.19 3.08 7.12 2.58 2.77 2.87
V 43.71 46.87 32.10 59.63 24.49 23.29 20.83
Cr 5.57 16.84 3.43 19.42 5.26 4.25 3.58
Co 5.17 6.47 2.35 8.55 3.05 2.71 2.67
Ni 3.73 7.18 2.86 9.13 3.43 2.86 2.69
Cu 2.44 6.71 2.21 3.02 1.69 1.45 1.60
Zn 58.30 48.21 28.06 46.59 50.89 47.44 46.06
Ga 22.49 19.30 22.27 20.04 22.98 23.53 23.51
Rb 68.16 110.99 85.33 102.02 119.62 131.36 133.38
Sr 1000 873 1195 702 698 546 613
Y 8.93 11.73 7.59 14.05 6.99 7.11 6.37
Zr 209 123 171 165 172 170 155
Nb 8.28 9.27 7.25 10.35 8.87 9.59 8.46
Sn 1.01 0.89 0.92 0.90 0.97 1.07 0.93
Cs 0.52 2.27 0.80 1.46 4.51 2.68 2.28
Ba 1956 1815 2102 1454 1649 1661 1326
Hf 5.19 3.52 4.60 4.45 4.84 4.64 4.52
Ta 0.48 0.66 0.43 0.71 0.59 0.67 0.59
Tl 0.38 0.61 0.49 0.54 0.75 0.84 0.82
Pb 21.30 29.91 26.83 24.29 31.92 31.79 35.16
Th 8.80 11.24 8.45 11.56 11.74 10.87 12.13
U 1.54 2.88 1.91 2.22 2.00 2.24 3.40
La 57.82 32.22 44.82 40.57 49.07 40.44 37.74
Ce 98.37 61.43 80.33 75.01 85.89 74.12 67.33
Pr 10.37 6.67 8.58 8.29 9.06 7.86 6.98
Nd 37.08 24.57 29.69 30.93 31.27 27.51 24.90
Sm 5.54 3.82 4.54 4.84 4.48 4.19 3.74
Eu 1.56 1.16 1.17 1.33 1.19 1.04 0.94
Gd 3.59 2.93 2.87 3.63 2.87 2.69 2.22
Tb 0.40 0.40 0.33 0.47 0.31 0.29 0.25
Dy 2.00 2.14 1.53 2.70 1.48 1.34 1.23
Ho 0.31 0.38 0.24 0.47 0.23 0.21 0.20
Er 0.70 1.07 0.61 1.27 0.54 0.51 0.50
Tm 0.09 0.15 0.08 0.18 0.08 0.07 0.07
Yb 0.59 0.99 0.52 1.26 0.46 0.44 0.43
Lu 0.08 0.16 0.07 0.19 0.07 0.07 0.07

REE 218.52 138.09 175.37 171.14 187.01 160.80 146.61
LREE/HREE 27.14 15.82 27.10 15.83 29.90 27.53 28.44

Eu 1.00 1.02 0.93 0.93 0.95 0.89 0.92
(La/Yb)n 70.03 23.30 61.35 23.13 75.70 66.14 62.26
(Dy/Yb)n 2.26 1.44 1.95 1.44 2.13 2.05 1.9

CIA 48.97 48.49 49.02 48.02 49.72 50.60 49.76
Ba/Th 222.19 161.50 248.79 125.82 140.45 152.84 109.31
Nb/U 5.38 3.22 3.80 4.66 4.44 4.29 2.49
Rb/La 1.18 3.44 1.90 2.51 2.44 3.25 3.53
Zr/Hf 40.26 34.82 37.26 37.11 35.52 36.55 34.33
Th/U 5.73 3.90 4.43 5.20 5.88 4.86 3.57
Nb/Ta 17.11 14.06 16.91 14.54 14.96 14.42 14.42
Sr/Y 111.98 74.39 157.45 49.95 99.83 76.79 96.28
(Yb)n 3.48 5.84 3.08 7.40 2.73 2.58 2.56

The samples from the Shangcheng pluton had high concentrations of SiO2 (67.29~71.89%),
Al2O3 (14.45~15.54%), and Na2O (4.07~4.73%), along with low concentrations of Fe2O3

T

(1.73~3.65%) and P2O5(0.10~0.20%). The A/CNK (Al2O3/ (CaO + Na2O + K2O) mole ratio)
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of the samples ranged from 0.92 to1.02. The Mg# values ((Mg/Mg + Fe) mole ratio) ranged
from 36.34 to 46.33.

The total REE content of the Shangcheng pluton ranged from 138.09 to 218.5 ppm,
exhibiting LREE enrichment and unobvious Eu anomalies (δEu = 0.89–1.02) on chondrite-
normalized REE patterns (Figure 4a). On the primitive mantle-normalized trace element
spider diagram (Figure 4b), it was observed that the samples were depleted of high-field-
strength elements, such as P, Ti, Nb and Ta, while they were enriched in large ion lithophile
elements, such as Pb, K, Ba.

Figure 4. Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element spider diagram (b). Chon-
drite and mantle-normalized values were taken from [44,45].

4.2. Iron Isotopic Composition

All seven samples had δ56Fe concentrations ranging from 0.08‰ to 0.20‰ (2SD, n = 3)
(Table 3). The δ56Fe values of one sample (SGD-2-1 and SGD-3-1) were relatively low
(0.11 ± 0.03‰ and 0.08 ± 0.04‰), while the δ56Fe values of the other samples were in
accordance (0.18–0.2‰). On the whole, the δ56Fe content of the samples was in accordance
with the trend of iron isotopic fractionation in granite.

Table 3. Iron isotope compositions of representative samples.

Samples δ56Fe vs. IRMM014 δ57Fe vs. IRMM014 n
Ave./‰ 2SD/‰ Ave./‰ 2SD/‰

SGW-1-2 0.18 0.01 0.25 0.04 3
SGD-2-1 0.11 0.03 0.18 0.06 3
SGD-2-3 0.17 0.02 0.22 0.04 3
SGD-3-1 0.08 0.04 0.12 0.09 3
LFW-1-1 0.18 0.04 0.27 0.07 4
LFW-1-2 0.19 0.02 0.30 0.03 3
LFW-2-1 0.20 0.04 0.29 0.07 2
BHVO-2 0.11 0.02 0.18 0.06 2
BCR-2 0.10 0.02 0.16 0.06 3

5. Discussion
5.1. Petrogenesis of Shangcheng Pluton

After combining the mineralogy and elemental composition characteristics (Figure 5a,b),
we propose that the Shangcheng pluton mainly includes two kinds of rocks: biotite mon-
zonite and quartz monzonite.

A previous study [38] showed that the rock type of the Shangcheng pluton is high-K
calc-alkaline I type granite, which originated from low-degree partial melting of eclogite
or amphibolite in the presence of garnet. In this study, the Y-Sr/Y diagram (Figure 5c)
shows that SGD-2-1 and SGD-3-1 may have a conjoint background. In the (Yb)n-(La/Yb)n
diagram (Figure 5d), two points are also present at the junction. Those two anomalies will
be discussed in a later chapter.
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Figure 5. (a) A/CNK vs. ANK, (b) SiO2 vs. Na2O + K2O [46,47], (c) Y vs. Sr/Y [18], (d) (Yb)n vs.
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The Sr/Y-(La/Yb)n (Figure 6a) and MgO-SiO2 diagrams (Figure 6b) indicate that
the investigated rocks used in this study may have originated from both thickened and
delaminated lower crust through low-degree partial melting. All samples in this study are
basically consistent with the compositional definition of adakite [18], with SiO2 ≥ 56 (wt.%),
Al2O3 ≥ 15 (wt.%), MgO ≤ 3 (wt.%), Sr > 400 ppm, Sr/Y > 20, and no obvious Eu
anomalies. Previous studies [38–41] have reached a consistent conclusion on the genesis of
the Shangcheng pluton, which is that it was derived from the partial melting of mafic rocks
in the lower crust. The Shangcheng pluton can be considered adakitic instead of adakite
rocks, based on the genetic differences between them.

Figure 6. (a) Sr/Y vs. (La/Yb)n [21], (b) SiO2 vs. MgO [49]. Curves 1, 2, and 3 in Figure 6a show
batch partial melting with residual phases of 30% garnet + 69% clinopyroxene + 1% rutile (1), 15%
garnet + 84.5% clinopyroxene + 0.5% rutile, (2), and 5% garnet + 94.9% clinopyroxene + 0.1% rutile
(3). Segments on curves indicate 5% increments in the melt fraction.
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5.2. Geological Information on the Iron Isotopic Composition
5.2.1. Weathering and Alteration

A slight alteration was presented in potassic feldspar, plagioclase, amphibole, and
biotite, according to mineralogy observations (Figure 3c,e,f). This was found to be strongly
connected to weathering and environmental alterations occurring after the magmatic
process. Fe3+ is enriched in heavy iron isotopes due to its stronger bond strength, while
Fe2+ is enriched in light iron isotopes as a result of its larger ionic radius and weaker bond
strength [50–52]. Fe2+ is released from primary minerals under the influence of weathering
and migrates with light iron isotopes. On the contrary, under strong oxidative conditions,
the release of Fe3+ from primary minerals leads to the formation of secondary minerals,
preventing the loss of Fe and fractionation of the iron isotope composition [17].

CIA (Chemical index of alteration, CIA = Al2O3/(Al2O3 + Na2O + K2O + CaO), as
a mole ratio, [53]) has been utilized to indicate the influence of the weathering degree on
samples [54–56]. The δ56Fe of the samples did not significantly change with increased
weathering (Figure 7a,b). Ba and U, as fluid mobile elements, are found preferentially in
fluid under weathering conditions, resulting in a decrease in Ba/Th and an increase in
Nb/U. The evolving trend exhibited in the Ba/Th vs. δ56Fe and Nb/U vs. δ56Fe diagrams
shows no connection between two indices (Figure 7c,d). The above results illustrate
negligible effects of weathering and alteration on the δ56Fe content of samples.
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5.2.2. Fluid Exsolution

The solubility of water decreases with magmatic upwelling and a decrease in pressure,
resulting in the exsolution of Fe2+-enriched fluids. The fluid carries away light iron isotopes
and contributes to the enrichment of heavy iron isotopes in the residual magma [3,11,12].
The Zr/Hf of igneous rocks generally ranges from 26 to 46, but Zr is more likely to be
enriched in F-bearing fluids than Hf [13], and same applies to Nb and Ta. Therefore, the
exsolution of fluid causes Zr/Hf < 26 and Nb/Ta < 5 [13,57]. Both Rb and La and Th and U
are incompatible pairs that are not significantly affected by magmatic processes. However,
fluid exsolution will reduce the Rb/La value and increase the Th/U value due to the higher
fluid mobility of Rb and U compared with that of La and Th [14,58].

A correlation was not observed between δ56Fe and the four indices in this study
(Figure 8a–d). On the Th/U vs. δ56Fe diagram (Figure 8c), the Th/U of the samples
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remains within the average Th/U value of the lower crust (~5.9 [14]) nearby. In addition,
Du et al. [13] proposed that the control of iron isotope fractionation by fluid exudation is
weak (<0.07‰). Therefore, fluid exsolution may not be the mechanism controlling the iron
isotopic composition of the Shangcheng pluton.

Figure 8. (a) Rb/La vs. δ56Fe, (b) Zr/Hf vs. δ56Fe, (c) Th/U vs. δ56Fe, (d) Nb/Ta vs. δ56Fe. Data
were taken from [12–14,56,58].

5.2.3. Fractional Crystallization and Mineralogy of the Source Rock

He et al. [14] reported the iron isotopic compositions of non-adakitic rock, low-Mg
adakitic rock, and high-Mg Adak from the east Dabie orogen in Costa Rica/Panama, Central
America and simulated the variation range of δ56Fe melt-residual during the partial melting
of low-Mg adakite. The (Dy/Yb)n vs. δ56Fe diagram (Figure 9b) shows most samples
plotted on the gray area, which may indicate the partial melting of eclogite containing
10~15% garnet, as the (Dy/Yb)n of melt = 1.9~2.3, δ56Fe melt-residual = 0.067~0.089‰, and
δ56Fe melt = 0.138~0.155‰, according to previous simulation results [14]. This is similar
to what can be observed on the (Yb)n vs. (La/Yb)n diagram, which displays an origin
from melted amphibolite containing 10% garnet (Figure 9a or Figure 5d). It is notable that
SGD-2-1 and SGD-3-1 may stem from the partial melting of eclogite containing 5% garnet
or amphibolite, as shown in the (Dy/Yb)n vs. δ56Fe (Figure 9b) and (Yb)n vs. (La/Yb)n
diagrams (Figure 9a or Figure 5d). The differences between the two samples from SGD
and the other five samples suggest that the mineralogy of source rocks has had an effect on
the fractionation of iron isotopes in the Shangcheng pluton.

In terms of the other five samples, the elemental results indicate that they may have
been generated from the partial melting of amphibolite containing 10% garnet, while the
iron isotope results suggest the partial melting from eclogite containing 10~15% garnet as
the origin. We conclude that the latter origin is more likely. Firstly, previous studies have
demonstrated that there were two periods of major magmatic processes in the Dabie orogen
during the Mesozoic. Rock produced in the first period are aged 145–130 Ma and have the
geochemical characteristics of adakitic rocks [33,59,60], while rock produced in the second
period is aged 130~110 Ma and has the characteristics of ordinary granite [61–63]. The
thinning of the lower crust is considered to have occurred 130 Ma ago [21,64]. According
to the reported data [38–41], the age of SGD unit ranges from 128 Ma to 137 Ma, while the
ages of the SGW unit (130–139 Ma) and the LFW unit (133–141 Ma) are both older than
130 Ma. Secondly, from the perspective of (Dy/Yb)n, amphibole favours Dy over Yb. Thus,
the (Dy/Yb)n should be lower if it was melted from amphibolite [21]. This may suggest
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that SGD-2-1 and SGD-3-1 were derived from the partial melting of amphibolite when the
lower crust thinned with the removal of the eclogite source, while the other five samples
may have been derived from the partial melting of eclogite containing 10~15% garnet, as
the lower crust is still thickened with the existence of eclogite.
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Figure 9. (a) (Yb)n vs. (La/Yb)n [48], (b) (Dy/Yb)n vs. δ56Fe. The percentage denotes the content of
garnet within the assumed source rock, and the blue dotted line is based on the simulative results
from [14].

The δ56Fe of the samples increased with an increasing Fe3+/∑Fe and decreasing Mg#
(Figure 10a,b), suggesting that the crystallization fractionation may have an effect on the
iron isotopic composition of the sample. In the SiO2 vs. δ56Fe diagram (Figure 10c), the
crystallization trend is similar to what is displayed by reported data. δ56Fecrystal-melt can be
simulated using the Rayleigh fractionation equation.

δ56Femelt = δ56Femelt(0) − ∆56Fecrystal-melt × ln(fFe) (3)

where δ56Femelt(0) represents the δ56Fe value of the initial melt, and fFe represents the Fe
fraction in the remaining melt (Figure 10d). ∆56Fecrystal-mel = ~0.035‰ may account for the
fractional crystallization of most samples, apart from SGD-2-1 and SGD-3-1.
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Considering the DNb/ DTa = ~1 in magnetite (DNb = 2.2, DTa = ~2.5; [66]), the fractional
crystallization of magnetite may not lead to the variation of Nb/Ta (Figure 11a), but the
concentration of Fe3+ or Fe2O3

T in the residual melt decreases as fractional crystalliza-
tion proceeds, resulting in enrichment with heavy iron isotopes (Figure 11b). Thus, the
fractional trend of iron isotopes in SGD-2-1 and SGD-3-1 may demonstrate the fractional
crystallization of magnetite.

Figure 11. (a) Nb/Ta vs. δ56Fe, (b) Fe2O3
T vs. δ56Fe.

6. Conclusions

Evidence from the elemental geochemical characteristics and petrogenesis suggests
that the Shangcheng pluton contains adakitic rock. Our investigation on the elemental
and isotopic compositions hints that iron isotope enrichment cannot be explained by
weathering/alteration and fluid exsolution. The fractional crystallization of magnetite
accounts for enrichment with light iron isotopes in two rocks from the SGD unit due to
the variation trends of Nb/Ta and Fe2O3

T, while the fractional trend of iron isotopes in
the other five samples can be explained by ∆56Fecrystal-melt = ~0.035‰. Considering that
one SGD unit sample was found to have evolved similarly to the SGW and LFW unit
samples, it can be concluded that the other two SGD unit rocks are more likely to have
been derived from the partial melting of amphibolite, while the other five samples may
have been derived from the partial melting of eclogite containing 10–15% garnet.
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