Identifying Appropriate Locations for the Accelerated Weathering of Limestone to Reduce CO2 Emissions
Abstract
:1. Introduction
2. Theoretical Assessment of AWL to Reduce CO2 Emissions
3. Factors Influencing CO2 Outgassing and Consequences for Putative Discharge Sites
4. Appropriate Locations for AWL
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Angeles Gallego, M.; Timmermann, A.; Friedrich, T.; Zeebe, R.E. Drivers of future seasonal cycle changes in oceanic pCO2. Biogeosciences 2018, 15, 5315–5327. [Google Scholar] [CrossRef] [Green Version]
- UNFCC. The Paris Agreement. 2015. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (accessed on 12 July 2021).
- IPCC. Climate Change 2014: Mitigation of Climate Change. In Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, USA, 2014; p. 1435. [Google Scholar] [CrossRef] [Green Version]
- Walker, J.C.G.; Hays, P.B. A Negative Feedback Mechanism for the Long-Term Stabilization of Earth’s Surface Temperature. J. Geophys. Res. 1981, 86, 9776–9782. [Google Scholar] [CrossRef]
- Berner, R.A.; Lasaga, A.C.; Garrels, R.M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 1983, 283, 641–683. [Google Scholar] [CrossRef]
- Rau, G.H.; Caldeira, K. Enhanced carbonate dissolution: A means of sequestering waste CO2 as ocean bicarbonate. Energy Convers. Manag. 1999, 40, 1803–1813. [Google Scholar] [CrossRef] [Green Version]
- Chou, W.C.; Gong, G.C.; Hsieh, P.S.; Chang, M.H.; Chen, H.Y.; Yang, C.Y.; Syu, R.W. Potential impacts of effluent from accelerated weathering of limestone on seawater carbon chemistry: A case study for the Hoping power plant in northeastern Taiwan. Mar. Chem. 2015, 168, 27–36. [Google Scholar] [CrossRef]
- Haas, S.; Weber, N.; Berry, A.; Erich, E. Limestone powder carbon dioxide scrubber as the technology for Carbon Capture and Usage. Cem. Int. 2014, 3, 34–45. [Google Scholar]
- Rau, G.H. CO2 mitigation via capture and chemical conversion in seawater. Environ. Sci. Tech. 2011, 45, 1088–1092. [Google Scholar] [CrossRef] [PubMed]
- Rau, G.H.; Knauss, K.G.; Langer, W.H.; Caldeira, K. Reducing energy-related CO2 emissions using accelerated weathering of limestone. Energy 2007, 32, 1471–1477. [Google Scholar] [CrossRef]
- Kirchner, J.S.; Berry, A.; Ohnemüller, F.; Schnetger, B.; Erich, E.; Brumsack, H.-J.; Lettmann, K.A. Reducing CO2 emissions of a coal-fired power plant via accelerated weathering of limestone: Carbon capture efficiency and environmental safety. Environ. Sci. Tech. 2020, 54, 4528–4535. [Google Scholar] [CrossRef]
- Caldeira, K.; Rau, G.H. Accelerating carbonate dissolution to sequester carbon dioxide in the ocean: Geochemical implications. Geophys. Res. Lett. 2000, 27, 225–228. [Google Scholar] [CrossRef]
- Kirchner, J.S.; Lettmann, K.A.; Schnetger, B.; Wolff, J.-O.; Brumsack, H.-J. Carbon capture via accelerated weathering of limestone-modeling local impacts on the carbonate chemistry of the southern North Sea. Int. J. Greenh. Gas Control 2020, 92, 102855. [Google Scholar] [CrossRef]
- Hartmann, J.; West, A.J.; Renforth, P.; Köhler, P.; De La Rocha, C.L.; Wolf-Gladrow, D.A.; Dürr, H.H.; Scheffran, J. Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification. Rev. Geophys. 2013, 51, 113–149. [Google Scholar] [CrossRef] [Green Version]
- Hangx, S.J.T.; Spiers, C.J. Coastal spreading of olivine to control atmospheric CO2 concentrations: A critical analysis of viability. Int. J. Greenh. Gas Control 2009, 3, 757–767. [Google Scholar] [CrossRef]
- Subhas, A.V.; Rollins, N.E.; Berelson, W.M.; Dong, S.; Erez, J.; Adkins, J.F. A novel determination of calcite dissolution in seawater. Geochim. Cosmochim. Acta 2015, 170, 51–68. [Google Scholar] [CrossRef]
- Oates, J.A.H. Lime and Limestone: Chemistry and technology, Production and Uses; Wiley-VCH: Weinheim, Germany, 1998; p. 455. [Google Scholar]
- Renforth, P.; Jenkins, B.G.; Kruger, T. Engineering challenges of ocean liming. Energy 2013, 60, 442–452. [Google Scholar] [CrossRef] [Green Version]
- Le Quéré, C.; Andrew, R.M.; Friedlingstein, P.; Sitch, S.; Hauck, J.; Pongratz, J.; Pickers, P.A.; Korsbakken, J.I.; Peters, G.P.; Canadell, J.G.; et al. Global Carbon Budget 2018. Earth Syst. Sci. Data 2018, 10, 2141–2194. [Google Scholar] [CrossRef] [Green Version]
- Felekoglu, B. Utilisation of high volumes of limestone quarry wastes in concrete industry (self-compacting concrete case). Res. Cons. Rec. 2007, 51, 770–791. [Google Scholar] [CrossRef]
- Renforth, P.; Henderson, G. Assessing ocean alkalinity for carbon sequestration. Rev. Geophys. 2017, 55, 636–674. [Google Scholar] [CrossRef]
- ECTA. Guidelines for measuring and managing CO2 emission from freight transport operations. Cefic Rep. 2011, 1, 1–18. [Google Scholar]
- Chen, C.; Liu, H.; Beardsley, R.C. An Unstructured Grid, Finite-Volume, Three-Dimensional, Primitive Equations Ocean Model: Application to Coastal Ocean and Estuaries. J. Atmos. Ocean. Technol. 2003, 20, 159–186. [Google Scholar] [CrossRef]
- Orr, J.C.; Epitalon, J.-M. Improved routines to model the ocean carbonate system: Mocsy 2.0. Geosci. Model Dev. 2015, 8, 485–499. [Google Scholar] [CrossRef] [Green Version]
- Wanninkhof, R. Relationship between wind speed and gas exchange over the ocean. Limnol. Oceanogr. Methods 2014, 12, 351–362. [Google Scholar] [CrossRef]
- Weiss, R.F. Carbon dioxide in water and seawater: The solubility of a non-ideal gas. Mar. Chem. 1974, 2, 203–215. [Google Scholar] [CrossRef]
- Berry, A.; Kirchner, J.S.; Ohnemüller, F.; Weber, N.; Erich, E.; Brumsack, H.-J. ECO2—Entwicklung des Kalksteinmehl-CO2-Waschverfahrens, Praxisoptimierung und Ökologische Bewertung. Project Report. 2018, p. 165. Available online: https://fg-kalk-moertel.de/files/Forschungsbericht_01_2018_18560N_ECO2.pdf (accessed on 1 November 2021). (In German).
- DeVries, T.; Primeau, F. Dynamically and Observationally Constrained Estimates of Water-Mass Distributions and Ages in the Global Ocean. J. Phys. Oceanogr. 2011, 41, 2381–2401. [Google Scholar] [CrossRef] [Green Version]
- Benazzouz, A.; Mordane, S.; Orbi, A.; Chagdali, M.; Hilmi, K.; Atillah, A.; Hervé, D. An improved coastal upwelling index from sea surface temperature using satellite-based approach—The case of the Canary Current upwelling system. Cont. Shelf Res. 2014, 81, 38–54. [Google Scholar] [CrossRef]
- Marchesiello, P.; Estrade, P. Eddy activity and mixing in upwelling systems: A comparative study of Northwest Africa and California. Int. J. Earth Sci. 2009, 98, 299–308. [Google Scholar] [CrossRef]
- González-Dávila, M.; Casiano, J.M.S.; Machín, F. Changes in the partial pressure of carbon dioxide in the Mauritanian-Cap Vert upwelling region between 2005 and 2012. Biogeosciences 2017, 14, 3859–3871. [Google Scholar] [CrossRef] [Green Version]
- Shen, S.G.; Thompson, A.R.; Correa, J.; Fietzek, P.; Ayón, P.; Checkley, D.M. Spatial patterns of Anchoveta (Engraulis ringens) eggs and larvae in relation to pCO2 in the Peruvian upwelling system. Proc. R. Soc. B 2017, 284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borges, A.V.; Delille, B.; Frankignoulle, M. Budgeting sinks and sources of CO2 in the coastal ocean: Diversity of ecosystem counts. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Rosón, G.; Álvarez-Salgado, X.A.; Pérez, F.F. Carbon cycling in a large coastal embayment, affected by wind-driven upwelling: Short-time-scale variability and spatial differences. Mar. Ecol. Prog. Ser. 1999, 176, 215–230. [Google Scholar] [CrossRef] [Green Version]
- Evans, W.; Hales, B.; Strutton, P.G. Seasonal cycle of surface ocean pCO2 on the Oregon shelf. J. Geophys. Res. Oceans 2011, 116, 1–11. [Google Scholar] [CrossRef] [Green Version]
- González-Dávila, M.; Santana-Casiano, J.M.; Ucha, I.R. Seasonal variability of fCO2 in the Angola-Benguela region. Prog. Oceanogr. 2009, 83, 124–133. [Google Scholar] [CrossRef]
- Pond, S.; Pickard, G.L. Introductory Dynamical Oceanography; Elsevier: Oxford, UK, 1989; p. 329. [Google Scholar]
- Frankignoulle, M. Carbon Dioxide Emission from European Estuaries. Science 1998, 282, 434–436. [Google Scholar] [CrossRef] [Green Version]
- Declaration of the Carbon Neutrality Coalition. 2018. Available online: www.carbon-neutrality.global (accessed on 6 March 2019).
- Global Coal Plant Tracker. Available online: https://endcoal.org/global-coal-plant-tracker/ (accessed on 4 March 2019).
- Langford, T.E.L. Thermal Discharges And Pollution. Encycl. Ocean Sci. 2001, 2933–2940. [Google Scholar] [CrossRef]
- Hartmann, J.; Moosdorf, N. The new global lithological map database GLiM: A representation of rock properties at the Earth surface. Geochem. Geophys. 2012, 13, 1–37. [Google Scholar] [CrossRef]
- General Bathymetric Chart of the Oceans: One Minute Grid. Available online: https://www.gebco.net/data_and_products/gridded_bathymetry_data/gebco_one_minute_grid/ (accessed on 18 August 2021).
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef] [Green Version]
- CemNet. Available online: https://www.cemnet.com/global-cement-report/ (accessed on 29 September 2021).
Process | Energy Demand in MJ·t−1 | Emission of CO2 or CO2eq in kg·t−1 |
---|---|---|
Extraction processes and comminution 1 | 108 a | 15 a |
Transport method (data per km) | ||
Road | 1.3 b | 0.062 c |
Rail freight | 0.2 b | 0.022 c |
Inland waterways | 0.2 b | 0.031c |
Pumping for AWL 2 | 5 | 1.14 |
Theoretical CO2 sequestration | −440 | |
Net CO2 sequestration (100 km transport on road) | −418 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirchner, J.S.; Lettmann, K.A.; Schnetger, B.; Wolff, J.-O.; Brumsack, H.-J. Identifying Appropriate Locations for the Accelerated Weathering of Limestone to Reduce CO2 Emissions. Minerals 2021, 11, 1261. https://doi.org/10.3390/min11111261
Kirchner JS, Lettmann KA, Schnetger B, Wolff J-O, Brumsack H-J. Identifying Appropriate Locations for the Accelerated Weathering of Limestone to Reduce CO2 Emissions. Minerals. 2021; 11(11):1261. https://doi.org/10.3390/min11111261
Chicago/Turabian StyleKirchner, Julia S., Karsten A. Lettmann, Bernhard Schnetger, Jörg-Olaf Wolff, and Hans-Jürgen Brumsack. 2021. "Identifying Appropriate Locations for the Accelerated Weathering of Limestone to Reduce CO2 Emissions" Minerals 11, no. 11: 1261. https://doi.org/10.3390/min11111261
APA StyleKirchner, J. S., Lettmann, K. A., Schnetger, B., Wolff, J.-O., & Brumsack, H.-J. (2021). Identifying Appropriate Locations for the Accelerated Weathering of Limestone to Reduce CO2 Emissions. Minerals, 11(11), 1261. https://doi.org/10.3390/min11111261