Antimony and Nickel Impurities in Blue and Green Copper Pigments
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Copper Pigments Paint Layers
3.1.1. Identification of the Main Components and Common Impurities of Paint Layers
- Upper dining room in the former Cracow Bishops’ Palace in Kielce, near the Miedzianka copper deposit in the HCM.
- Piano nobile of the Ciechanowice Palace (before 1945, Rudelstadt) near the polymetallic deposit in the Rudawy Janowickie (the Sudetes).
- Floral decoration of the vaults in the Chotków church (before 1945, Hertwigswaldau), near the Legnica-Głogów copper deposit.
3.1.2. Antimony and Nickel Impurities Analysis
- Sample K52 from the former Cracow Bishops’ Palace in Kielce.
- Sample G4 from the Ciechanowice Palace.
- Samples Ch33 and Ch35 from the church in Chotków.
3.2. Trace Elements and Impurities in Minerals from Selected Copper Deposits
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siddall, R. Mineral Pigments in Archaeology: Their Analysis and the Range of Available Materials. Minerals 2018, 8, 201. [Google Scholar] [CrossRef] [Green Version]
- Scott, D.A.; Getty Conservation Institute. Copper and Bronze in Art: Corrosion, Colorants, Conservation; Getty Conservation Institute: Los Angeles, CA, USA, 2002. [Google Scholar]
- Scott, D.A. A review of ancient Egyptian pigments and cosmetics. Stud. Conserv. 2016, 61, 185–202. [Google Scholar] [CrossRef]
- Brecoulaki, H.; Fiorin, E.; Vigato, P.A. The funerary klinai of tomb 1 from Amphipolis and a sarcophagus from ancient Tragilos, eastern Macedonia: A physico-chemical investigation on the painting materials. J. Cult. Herit. 2006, 7, 301–311. [Google Scholar] [CrossRef]
- Knipe, P.; Eremin, K.; Walton, M.; Babini, A.; Rayner, G. Materials and techniques of Islamic manuscripts. Herit. Sci. 2018, 6, 55. [Google Scholar] [CrossRef]
- Tomasini, E.; Rodríguez, D.C.; Gómez, B.A.; de Faria, D.L.A.; Landa, C.R.; Siracusano, G.; Maier, M.S. A multi-analytical investigation of the materials and painting technique of a wall painting from the church of Copacabana de Andamarca (Bolivia). Microchem. J. 2016, 128, 172–180. [Google Scholar] [CrossRef]
- Correia, A.M.; Clark, R.J.H.; Ribeiro, M.I.M.; Duarte, M.L.T.S. Pigment study by Raman microscopy of 23 paintings by the Portuguese artist Henrique Pousão (1859–1884). J. Raman Spectrosc. 2007, 38, 1390–1405. [Google Scholar] [CrossRef]
- Daniel, F.; Mounier, A.; Aramendia, J.; Gómez, L.; Castro, K.; Fdez-Ortiz de Vallejuelo, S.; Schlicht, M. Raman and SEM-EDX analyses of the ‘Royal Portal’ of Bordeaux Cathedral for the virtual restitution of the statuary polychromy. J. Raman Spectrosc. 2016, 47, 162–167. [Google Scholar] [CrossRef]
- Akyuz, T.; Akyuz, S.; Gulec, A. Elemental and spectroscopic characterization of plasters from Fatih Mosque-Istanbul (Turkey) by combined micro-Raman, FTIR and EDXRF techniques. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 149, 744–750. [Google Scholar] [CrossRef] [PubMed]
- Spring, M. New insights into the materials of fifteenth- and sixteenth-century Netherlandish paintings in the National Gallery, London. Herit. Sci. 2017, 5. [Google Scholar] [CrossRef] [Green Version]
- Naumova, M.M.; Pisareva, S.A. A note on the use of blue and green copper compounds in paintings. Stud. Conserv. 2013, 39, 277–283. [Google Scholar] [CrossRef]
- Švarcová, S.; Hradil, D.; Hradilová, J.; Kočí, E.; Bezdicka, P. Micro-analytical evidence of origin and degradation of copper pigments found in Bohemian Gothic murals. Anal. Bioanal. Chem. 2009, 395, 2037–2050. [Google Scholar] [CrossRef]
- Buzgar, N.; Buzatu, A.; Apopei, A.-I.; Cotiugă, V. In situ Raman spectroscopy at the Voroneţ Monastery (16th century, Romania): New results for green and blue pigments. Vib. Spectrosc. 2014, 72, 142–148. [Google Scholar] [CrossRef]
- Aceto, M.; Gatti, G.; Agostino, A.; Fenoglio, G.; Giordano, V.; Varetto, M.; Castagneri, G. The mural paintings of Ala di Stura (Piedmont, Italy): A hidden treasure investigated. J. Raman Spectrosc. 2012, 43, 1754–1760. [Google Scholar] [CrossRef]
- Alejandre, F.J.; Márquez, G. Copper-zinc hydroxychlorides: Origin and occurrence as paint pigments in Arcos de la Frontera’s Chapel of Mercy (Spain). Eur. J. Mineral. 2006, 18, 403–409. [Google Scholar] [CrossRef]
- Available online: https://rruff.info/ima/ (accessed on 25 October 2021).
- Garcia Moreno, R.; Strivay, D.; Gilbert, B. Maya blue-green pigments found in Calakmul, Mexico: A study by Raman and UV-visible spectroscopy. J. Raman Spectrosc. 2008, 39, 1050–1056. [Google Scholar] [CrossRef] [Green Version]
- Hradil, D.; Hradilová, J.; Bezdička, P.; Švarcová, S. Provenance study of Gothic paintings from North-East Slovakia by handheld x-ray fluorescence, microscopy and x-ray microdiffraction. X-ray Spectrom. 2008, 37, 376–382. [Google Scholar] [CrossRef]
- Berrie, B.H.; Leona, M.; McLaughlin, R. Unusual pigments found in a painting by Giotto (c. 1266-1337) reveal diversity of materials used by medieval artists. Herit. Sci. 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Gabrieli, F.; Dooley, K.A.; Facini, M.; Delaney, J.K. Near-UV to mid-IR reflectance imaging spectroscopy of paintings on the macroscale. Sci. Adv. 2019, 5, eaaw7794. [Google Scholar] [CrossRef] [Green Version]
- Klisińska-Kopacz, A. Non-destructive characterization of 17th century painted silk banner by the combined use of Raman and XRF portable systems. J. Raman Spectrosc. 2015, 46, 317–321. [Google Scholar] [CrossRef]
- Clarke, M.L.; Gabrieli, F.; Rowberg, K.L.; Hare, A.; Ueda, J.; McCarthy, B.; Delaney, J.K. Imaging spectroscopies to characterize a 13th century Japanese handscroll, The Miraculous Interventions of Jizō Bosatsu. Herit. Sci. 2021, 9, 20. [Google Scholar] [CrossRef]
- Dunkerton, J.; Roy, A. The Materials of a Group of Late Fifteenth-century Florentine Panel Paintings. Natl. Gallery Tech. Bull. 1996, 17, 20–31. [Google Scholar]
- Zaffino, C.; Guglielmi, V.; Faraone, S.; Vinaccia, A.; Bruni, S. Exploiting external reflection FTIR spectroscopy for the in-situ identification of pigments and binders in illuminated manuscripts. Brochantite and posnjakite as a case study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 136 Pt B, 1076–1085. [Google Scholar] [CrossRef]
- Mugnaini, S.; Bagnoli, A.; Bensi, P.; Droghini, F.; Scala, A.; Guasparri, G. Thirteenth century wall paintings under the Siena Cathedral (Italy). Mineralogical and petrographic study of materials, painting techniques and state of conservation. J. Cult. Herit. 2006, 7, 171–185. [Google Scholar] [CrossRef]
- Sotiropoulou, S.; Daniilia, S.; Miliani, C.; Rosi, F.; Cartechini, L.; Papanikola-Bakirtzis, D. Microanalytical investigation of degradation issues in Byzantine wall paintings. Appl. Phys. A 2008, 92, 143–150. [Google Scholar] [CrossRef]
- Rosado, T.; Gil, M.; Caldeira, A.T.; Martins, M.d.R.; Dias, C.B.; Carvalho, L.; Mirão, J.; Candeias, A.E. Material Characterization and Biodegradation Assessment of Mural Paintings: Renaissance Frescoes from Santo Aleixo Church, Southern Portugal. Int. J. Archit. Herit. 2014, 8, 835–852. [Google Scholar] [CrossRef]
- Švarcová, S.; Hradil, D.; Hradilová, J.; Čermáková, Z. Pigments—Copper-based greens and blues. Archaeol. Anthropol. Sci. 2021, 13, 190. [Google Scholar] [CrossRef]
- Tanevska, V.; Nastova, I.; Minčeva-Šukarova, B.; Grupče, O.; Ozcatal, M.; Kavčić, M.; Jakovlevska-Spirovska, Z. Spectroscopic analysis of pigments and inks in manuscripts: II. Islamic illuminated manuscripts (16th–18th century). Vib. Spectrosc. 2014, 73, 127–137. [Google Scholar] [CrossRef]
- Perez-Alonso, M.; Castro, K.; Madariaga, J.M. Investigation of degradation mechanisms by portable Raman spectroscopy and thermodynamic speciation: The wall painting of Santa Maria de Lemoniz (Basque Country, North of Spain). Anal. Chim Acta 2006, 571, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Bersani, D.; Antonioli, G.; Lottici, P.P.; Casoli, A. Raman microspectrometric investigation of wall paintings in S. Giovanni Evangelista Abbey in Parma: A comparison between two artists of the 16th century. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2003, 59, 2409–2417. [Google Scholar] [CrossRef]
- Valadas, S.; Freire, R.V.; Cardoso, A.; Mirão, J.; Dias, C.B.; Vandenabeele, P.; Candeias, A. On the Use of the Unusual Green Pigment Brochantite (Cu₄(SO₄)(OH)₆) in the 16th-Century Portuguese-Flemish Paintings Attributed to The Master Frei Carlos Workshop. Microsc. Microanal. 2015, 21, 518–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aru, M.; Burgio, L.; Rumsey, M.S. Mineral impurities in azurite pigments: Artistic or natural selection? J. Raman Spectrosc. 2014, 45, 1013–1018. [Google Scholar] [CrossRef]
- Smieska, L.M.; Mullett, R.; Ferri, L.; Woll, A.R. Trace elements in natural azurite pigments found in illuminated manuscript leaves investigated by synchrotron x-ray fluorescence and diffraction mapping. Appl. Phys. A 2017, 123. [Google Scholar] [CrossRef]
- Delaney, J.K.; Ricciardi, P.; Glinsman, L.D.; Facini, M.; Thoury, M.; Palmer, M.; Rie, E.R.d.l. Use of imaging spectroscopy, fiber optic reflectance spectroscopy, and X-ray fluorescence to map and identify pigments in illuminated manuscripts. Stud. Conserv. 2014, 59, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Salvadó, N.; Butí, S.; Aranda, M.A.G.; Pradell, T. New insights on blue pigments used in 15th century paintings by synchrotron radiation-based micro-FTIR and XRD. Anal. Methods 2014, 6. [Google Scholar] [CrossRef] [Green Version]
- Siuda, R.; Domańska-Siuda, J. STOP 1: Miedzianka deposit—one of the oldest mining centres in Poland. In Proceedings of the XXVIth Meeting of the Petrology Group of the Mineralogical Society of Poland, Chęciny, Poland, 24–27 October 2019; pp. 99–103. [Google Scholar]
- Siuda, R.; Borzęcki, R.; Gołębiowska, B. Hałdy dawnego górnictwa w rejonie Miedzianki-Ciechanowic jako stanowiska dokumentacyjne unikatowej mineralizacji hipergenicznej. In Proceedings of the Dzieje Górnictwa—Element Europejskiego Dziedzictwa Kultury, Wrocław, Poland, 3 January 2010; pp. 431–441. [Google Scholar]
- Witkowski, M.; Svorová Pawełkowicz, S. Handel pigmentami miedziowymi ze złóż świętokrzyskich w świetle źródeł archiwalnych. AUNC Zabytkozn. I Konserw. 2021, forthcoming. [Google Scholar]
- Hauptmann, A.; Schneider, G.; Bartels, C. The Shipwreck of “Bom Jesus”, AD 1533: Fugger Copper in Namibia. J. Afr. Archaeol. 2016, 14, 181–207. [Google Scholar] [CrossRef]
- Dzik, J. The Famennian “Golden Age” of Conodonts and Ammonoids in the Polish Part of the Variscan Sea. Palaeontol. Pol. 2006, 63, 1–360. [Google Scholar]
- Rubinowski, Z. Rudy metali nieżelaznych w Górach Świętokrzyskich i ich pozycja metalogeniczna. Biul. Inst. Geol. 1971, 247, 1–166. [Google Scholar]
- Rubinowski, Z. Nowe obserwacje okruszcowania na Miedziance świętokrzyskiej. Przegląd Geol. 1955, 6, 299–301. [Google Scholar]
- Mazur, S.; Aleksandrowski, P. The Tepla(?)/Saxothuringian suture in the Karkonosze–Izera massif, western Sudetes, central European Variscides. Int. J. Earth Sci. 2001, 90, 341–360. [Google Scholar] [CrossRef]
- Mikulski, S.Z.; Williams, I.S.; Stein, H.J.; Wierchowiec, J. Zircon U-Pb Dating of Magmatism and Mineralizing Hydrothermal Activity in the Variscan Karkonosze Massif and Its Eastern Metamorphic Cover (SW Poland). Minerals 2020, 10, 787. [Google Scholar] [CrossRef]
- Parafiniuk, J.; Siuda, R.; Borkowski, A. Sulphate and arsenate minerals as environmental indicators in the weathering zones of selected ore deposits, Western Sudetes, Poland. Acta Geol. Pol. 2016, 66, 493–508. [Google Scholar] [CrossRef]
- Vozarova, A.; Konečný, P.; Vďačný, M.; Vozár, J.; Šarinová, K. Provenance of Permian Malužiná Formation sandstones (Hronicum, Western Carpathians): Evidence from monazite geochronology. Geol. Carpathica 2014, 65, 329–338. [Google Scholar] [CrossRef] [Green Version]
- Michňová, J.; Ozdín, D. Genetic study of the primary hydrothermal mineralization in Špania Dolina and Ľubietová ore districts (Slovakia, Western Carpathians). Acta Mineral. Petrogr. 2010, 6, 237. [Google Scholar]
- Radkova Borcinova, A.; Jamieson, H.; Lalinská-Voleková, B.; Majzlan, J.; Števko, M.; Chovan, M. Mineralogical controls on antimony and arsenic mobility during tetrahedrite-tennantite weathering at historic mine sites Špania Dolina-Piesky and Ľubietová-Svätodušná, Slovakia. Am. Mineral. 2017, 102, 1091–1100. [Google Scholar] [CrossRef]
- Coccato, A.; Moens, L.; Vandenabeele, P. On the stability of mediaeval inorganic pigments: A literature review of the effect of climate, material selection, biological activity, analysis and conservation treatments. Herit. Sci. 2017, 5, 12. [Google Scholar] [CrossRef] [Green Version]
- Švarcová, S.; Čermáková, Z.; Hradilová, J.; Bezdička, P.; Hradil, D. Non-destructive micro-analytical differentiation of copper pigments in paint layers of works of art using laboratory-based techniques. Spectrochim. Acta Part. A Mol. Biomol. Spectrosc. 2014, 132, 514–525. [Google Scholar] [CrossRef]
- Mattei, E.; de Vivo, G.; De Santis, A.; Gaetani, C.; Pelosi, C.; Santamaria, U. Raman spectroscopic analysis of azurite blackening. J. Raman Spectrosc. 2008, 39, 302–306. [Google Scholar] [CrossRef]
- Castro, K.; Sarmiento, A.; Martínez-Arkarazo, I.; Madariaga, J.M.; Fernández, L.A. Green Copper Pigments Biodegradation in Cultural Heritage: From Malachite to Moolooite, Thermodynamic Modeling, X-ray Fluorescence, and Raman Evidence. Anal. Chem. 2008, 80, 4103–4110. [Google Scholar] [CrossRef]
- Available online: www.mindat.org (accessed on 13 September 2021).
- Stavinga, D.; Jamieson, H.; Layton-Matthews, D.; Paradis, S.; Falck, H. Geochemical and mineralogical controls on metal(loid) mobility in the oxide zone of the Prairie Creek Deposit, NWT. Geochem. Explor. Environ. Anal. 2017, 17, 21–33. [Google Scholar] [CrossRef]
- Kühn, H. 4 LEAD-TIN YELLOW. Stud. Conserv. 1968, 13, 7–33. [Google Scholar] [CrossRef]
- Bugaj, U.; Nejbert, K.; Ilnicki, S.; Wiecinski, P.; Onyszczuk, T.; Halina, G.; Włodarczak, P. Copper sulphosalts in early metallurgy (2600–1900 BC)—Chemical-mineralogical investigation of artefacts from southern Poland. Geol. Q. 2019, 63. [Google Scholar] [CrossRef] [Green Version]
- Frost, R.L.; Martens, W.N.; Williams, P.A. Raman spectroscopy of the phase-related basic copper arsenate minerals olivenite, cornwallite, cornubite and clinoclase. J. Raman Spectrosc. 2002, 33, 475–484. [Google Scholar] [CrossRef] [Green Version]
- Swęd, M.; Urbanek, P.; Krechowicz, I.; Dworczak, P.; Wiecka, P.; Mleczak, M.; Tobys, P. Mineralogia hałd wietrzeniowych złoża Miedzianka (Góry Świętokrzyskie). Przegląd Geol. 2015, 63, 363–372. [Google Scholar]
- Gałuszka, A.; Migaszewski, Z.M.; Dołęgowska, S.; Michalik, A.; Duczmal-Czernikiewicz, A. Geochemical background of potentially toxic trace elements in soils of the historic copper mining area: A case study from Miedzianka Mt., Holy Cross Mountains, south-central Poland. Env. Earth Sci. 2015, 74, 4589–4605. [Google Scholar] [CrossRef] [Green Version]
- Burgio, L.; Clark, R.J.H.; Hark, R.R. Raman microscopy and X-ray fluorescence analysis of pigments on medieval and Renaissance Italian manuscript cuttings. Proc. Natl. Acad. Sci. USA 2010, 107, 5726–5731. [Google Scholar] [CrossRef] [Green Version]
- Vanmeert, F.; De Nolf, W.; De Meyer, S.; Dik, J.; Janssens, K. Macroscopic X-ray Powder Diffraction Scanning, a New Method for Highly Selective Chemical Imaging of Works of Art: Instrument Optimization. Anal. Chem. 2018, 90, 6436–6444. [Google Scholar] [CrossRef]
- Scrivano, S.; Gaggero, L.; Volpe, E. Paint Relics on Middle Age Building Stones as Proxies of Commercial Routes and Artistic Exchanges: A Multi-Analytical Investigation. Minerals 2019, 9, 663. [Google Scholar] [CrossRef] [Green Version]
- Bordignon, F.; Postorino, P.; Dore, P.; Tabasso, M.L. The Formation of Metal Oxalates in the Painted Layers of a Medieval Polychrome on Stone, as Revealed by Micro-Raman Spectroscopy. Stud. Conserv. 2008, 53, 158–169. [Google Scholar] [CrossRef]
- Fabjan, B.; Dalla Nave, P.; Moioli, P.; Seccorani, C.; Cardinali, M.; De Ruggieri, M.B.; Falucci, C. La volta del coro di Santa Maria del Popolo a Roma. In Proceedings of the Materiali e Tecniche Nella Pittura Murale Del Quattrocento, Rome, Italy, 20–22 February 2002; pp. 437–452. [Google Scholar]
- Vagnini, M.; Vivani, R.; Viscuso, E.; Favazza, M.; Brunetti, B.G.; Sgamellotti, A.; Miliani, C. Investigation on the process of lead white blackening by Raman spectroscopy, XRD and other methods: Study of Cimabue’s paintings in Assisi. Vib. Spectrosc. 2018, 98, 41–49. [Google Scholar] [CrossRef]
- Aceto, M.; Agostino, A.; Fenoglio, G.; Capra, V.; Demaria, E.; Cancian, P. Characterisation of the different hands in the composition of a 14th century breviary by means of portable XRF analysis and complementary techniques: Different hands in a 14th-century breviary by means of XRF analysis. X-ray Spectrom. 2017, 46. [Google Scholar] [CrossRef] [Green Version]
- Mastrotheodoros, G.P.; Beltsios, K.G.; Bassiakos, Y. On the blue and green pigments of post-Byzantine Greek icons. Archaeometry 2020, 62, 774–795. [Google Scholar] [CrossRef]
- Lannoy, A.; Kania, N.; Bleta, R.; Fourmentin, S.; Machut-Binkowski, C.; Monflier, E.; Ponchel, A. Photocatalysis of Volatile Organic Compounds in water: Towards a deeper understanding of the role of cyclodextrins in the photodegradation of toluene over titanium dioxide. J. Colloid Interface Sci. 2016, 461, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Perino, M.; Pronti, L.; Di Forti, L.G.; Romani, M.; Taverna, C.; Massolo, L.; Manzari, F.; Cestelli-Guidi, M.; Nucara, A.; Felici, A.C. Revealing Artists’ Collaboration in a 14th Century Manuscript by Non-Invasive Analyses. Minerals 2021, 11, 771. [Google Scholar] [CrossRef]
- Mazzinghi, A.; Ruberto, C.; Castelli, L.; Czelusniak, C.; Giuntini, L.; Mando, P.A.; Taccetti, F. MA-XRF for the Characterisation of the Painting Materials and Technique of the Entombment of Christ by Rogier van der Weyden. Appl. Sci. 2021, 11, 6151. [Google Scholar] [CrossRef]
- Mihalic, I.B.; Fazinic, S.; Barac, M.; Karydas, A.G.; Migliori, A.; Doracic, D.; Desnica, V.; Mudronja, D.; Krstic, D. Multivariate analysis of PIXE plus XRF and PIXE spectral images. J. Anal. At. Spectrom. 2021, 36, 654–667. [Google Scholar] [CrossRef]
- Krekel, C.; Polborn, K. Lime Blue—A Mediaeval Pigment for Wall Paintings? Stud. Conserv. 2003, 48, 171–182. [Google Scholar] [CrossRef]
No | Br2O | Al2O3 | SiO2 | K2O | FeO | CuO | As2O5 | Sb2O3 | PbO | P2O5 | CaO |
---|---|---|---|---|---|---|---|---|---|---|---|
K52/6 | 4.4 | 9.0 | 6.3 | 0.4 | 6.0 | 4.4 | 20.0 | 2.6 | 25.9 | 0.6 | 0.4 |
K52/7 | 2.3 | 8.2 | 4.3 | 0.4 | 6.5 | 6.7 | 17.3 | 3.0 | 20.6 | 0.0 | 0.5 |
No | Sb2O3 | In2O3 | P2O5 | FeO | As2O5 | CaO | PbO | SrO | NiO | Cl2O5 | SnO | CuO | SiO2 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G4/1 | wt% | 0.04 | 0.15 | 0.05 | 0.00 | 0.40 | 1.78 | 47.48 | 0.24 | 0.09 | 0.76 | 17.52 | 8.64 | 0.48 |
± | 0.18 | 0.13 | 0.06 | 0.29 | 0.07 | 0.13 | 0.78 | 0.23 | 0.66 | 0.12 | 0.95 | 1.77 | 0.05 | |
G4/2 | wt% | 1.09 | 0.08 | 0.00 | 0.24 | 0.08 | 0.59 | 0.13 | 0.00 | 1.08 | 0.27 | 92.78 | 1.99 | 0.63 |
± | 0.28 | 0.17 | 0.35 | 0.25 | 0.05 | 0.14 | 0.10 | 0.46 | 0.65 | 0.05 | 0.37 | 1.65 | 0.05 | |
G4/4 | wt% | 22.66 | 0.37 | 0.22 | 0.00 | 2.01 | 0.63 | 8.69 | 0.00 | 23.46 | 0.17 | 2.52 | 39.55 | 1.66 |
± | 0.33 | 0.12 | 0.06 | 0.24 | 0.23 | 0.11 | 0.27 | 0.44 | 0.91 | 0.06 | 0.18 | 2.30 | 0.07 | |
Ch33 | wt% | 34.36 | 0.00 | 0.00 | 0.00 | 0.67 | 1.94 | 44.43 | 0.00 | 1.56 | 0.28 | 0.00 | 4.78 | 1.67 |
± | 1.27 | 0.11 | 0.41 | 0.30 | 0.09 | 0.14 | 0.79 | 0.54 | 0.69 | 0.09 | 0.20 | 1.80 | 0.07 | |
Ch35/1 | wt% | 25.83 | 0.06 | 0.11 | 0.05 | 0.18 | 0.93 | 0.39 | 0.08 | 26.52 | 0.01 | 3.04 | 45.15 | 0.73 |
± | 0.33 | 0.12 | 0.06 | 0.24 | 0.06 | 0.11 | 0.10 | 0.25 | 0.93 | 0.06 | 0.18 | 2.35 | 0.05 | |
Ch35/2 | wt% | 4.07 | 0.00 | 0.00 | 0.12 | 12.31 | 7.61 | 49.73 | 0.25 | 0.18 | 1.35 | 0.29 | 0.00 | 2.43 |
± | 0.28 | 0.10 | 0.39 | 0.25 | 1.56 | 0.39 | 0.80 | 0.24 | 0.69 | 0.19 | 0.14 | 2.10 | 0.11 | |
Ch35/4 | wt% | 0.19 | 0.11 | 0.10 | 0.00 | 0.54 | 6.81 | 4.02 | 0.00 | 46.27 | 2.95 | 0.00 | 21.63 | 10.13 |
± | 0.15 | 0.09 | 0.06 | 0.20 | 0.09 | 0.09 | 0.17 | 0.49 | 1.11 | 0.13 | 0.12 | 1.99 | 0.30 | |
Ch35/5 | wt% | 29.71 | 0.16 | 0.00 | 0.00 | 1.79 | 3.55 | 45.98 | 0.00 | 0.88 | 1.26 | 0.06 | 6.35 | 3.27 |
± | 1.06 | 0.13 | 0.41 | 0.30 | 0.20 | 0.17 | 0.77 | 0.57 | 0.69 | 0.14 | 0.19 | 1.85 | 0.10 |
Sample No | 121Sb | 61Ni | |||||
---|---|---|---|---|---|---|---|
Mean | RSD, % | Max | Mean | RSD, % | Max | ||
The Sudetes; Rudawy Janowickie Mts.; Segen Gottes mine | 0 | 0.0027 | 24 | 0.0047 | 0.0001 | 441 | 0.0024 |
1 | 0.0042 | 27 | 0.0081 | n.d. | |||
2a | 0.0016 | 40 | 0.0042 | 0.0001 | 641 | 0.0063 | |
2b | 0.0108 | 42 | 0.0267 | n.d. | |||
3a | 1.8654 | 30 | 2.7633 | 0.0488 | 101 | 0.2907 | |
3b | 1.0354 | 103 | 3.3960 | 0.0114 | 134 | 0.0734 | |
3n | 1.1857 | 113 | 4.3240 | 0.0172 | 167 | 0.1625 | |
The HCM; Miedzianka * | 5 | 1.4889 | 40 | 3.3152 | 0.0442 | 126 | 0.2918 |
6 | 0.0629 | 41 | 0.1911 | 0.8788 | 24 | 1.4702 | |
7 | 0.1021 | 31 | 0.2168 | 0.2240 | 22 | 0.3833 | |
8 | 0.0286 | 72 | 0.1476 | 0.0135 | 90 | 0.0696 | |
9 | 1.1879 | 30 | 1.9761 | 0.0396 | 109 | 0.2459 | |
10 | 0.1479 | 179 | 1.9714 | 0.1192 | 27 | 0.2209 | |
11 | 0.0495 | 118 | 0.2333 | 0.0002 | 554 | 0.0076 | |
The Low Tatra; Špania Dolina; Piesky | 13 | 0.1566 | 53 | 0.4745 | 0.0027 | 244 | 0.0490 |
14 | 0.0542 | 86 | 0.3561 | 0.0021 | 216 | 0.0238 | |
15 | 0.2711 | 8 | 0.3552 | 0.0029 | 209 | 0.0353 |
9 | Ni | Cu | As | Sb | Pb | 3a | Ni | Cu | As | Sb | Pb | 3b | Ni | Cu | As | Sb | Pb | ||
Ni | 1.00 | −0.14 | 0.75 | 0.45 | −0.14 | Ni | 1.00 | 0.29 | 0.37 | 0.39 | 0.27 | Ni | 1.00 | −0.29 | 0.40 | 0.37 | 0.22 | ||
Cu | 1.00 | −0.48 | −0.80 | −0.94 | Cu | 1.00 | 0.91 | 0.86 | 0.45 | Cu | 1.00 | −0.62 | −0.90 | −0.93 | |||||
As | 1.00 | 0.70 | 0.20 | As | 1.00 | 0.82 | 0.42 | As | 1.00 | 0.68 | 0.44 | ||||||||
Sb | 1.00 | 0.60 | Sb | 1.00 | 0.60 | Sb | 1.00 | 0.86 | |||||||||||
Pb | 1.00 | Pb | 1.00 | Pb | 1.00 | ||||||||||||||
|
Reference | Copper Mineral (Method) | Trace Elements (Method) | Impurity (Method *) | Data of the Art Object |
---|---|---|---|---|
Bordignon 2008 [64] | Azurite (SEM-EDS, µRaman) | Fe | Limonite, hematite, barite, Ba carbonate, atacamite, brochantite, dolomite, calcite, gypsum (SEM-EDS, µRaman) | Painted stone, Italy, not stated |
Malachite | Pseudomalachite | |||
Hradil 2008 [18] | Azurite (XRD) | As, Zn (pXRF) | Malachite, olivenite, adamite (XRD) | Panel painting, Slovakia, 15th c |
Švarcová 2009 [12] | Azurite and malachite (XRD) | As, Ba, Zn, P (pXRF) | Malachite in azurite layer, atacamite, paratacamite posnjakite, barite, quartz (XRD); olivenite, adamite, pseudomalachite, iron oxides (SEM-EDS) | Wall paintings, Czechia, 14th c |
Fabjan 2010 [65] | Copper green (pXRF) | As, Sb, Zn (pXRF) | - | Wall painting, Italy, 16th c |
Buzgar 2014 [13] | Copper green | - | Conichalcite, malachite, Cu suphates (dolerophanite, brochantite) (µRaman) | Wall paintings, Romania, 16th c |
Delaney 2014 [35] | Azurite (FORS) | Fe, Zn (Si, K, Ca, Ti, Mn, Pb) (pXRF, SEM-EDS) | - | Manuscript, Italy, 14th c |
Salvadó 2014 [36] | Azurite | Ba, S (SEM-EDS) | Malachite (µSR-FTIR, µSR-XRD) | Panel paintings, Catalonia and Crown of Aragon, 15th c |
Aceto 2017 [67] | Azurite (pXRF) | Bi (pXRF) | - | Manuscript, Italy, 14th c |
Berrie 2016 [19] | Azurite (EBSD) | Bi not detected in pXRF | Malachite (SEM-EDS), mixite (µ Raman, EBSD) | Panel painting, Italy, 14th c |
Smieska 2017 [34] | Azurite (SR-MAXRF; SR-MAXRD) | As, Ag, Ba, Bi, Fe, Sb, Zn, Zr (SR-XRF) | Calcite, hematite, malachite, barite (SR-MAXRD) | Manuscripts, Europe, 13–16th c |
Malachite | Sb (SR-MAXRF) | - | ||
Vanmeert 2018 [62] | Azurite | Fe, Ba (MAXRF) | Malachite, barite, quartz (?) (MAXRD) | Manuscript, not stated, 15/16th c |
Vagnini 2018 [66] | Azurite, atacamite (XRD) | As, Fe, Cr, Ni, Mn, Ba/Ti (pXRF) | - | Wall painting, Italy, 13th c |
Gabrieli 2019 [20] | Azurite (BR-RIS) | Zn, and Bi, As (pXRF) | Smithsonite ?, mixite (BR-RIS) | Manuscript, Italy, early Renaissance |
Scrivano 2019 [63] | Azurite (µFTIR, µRaman) | Phosphates (P, Ce, Sm, Pr, La, Pb) (SEM-EDS) | Atacamite, paratacamite, malachite, mixite, carbon black (µRaman); monazite, pyromorphite, barite (SEM-EDS); silicates (µFTIR) | Marble fragments, Italy (Genoa), Middle Ages |
Mastrotheodoros 2020 [68] | Azurite (EDS, µRaman) | As, Ba, Ca, Cl, Fe, Ni, Sb, Zn; Phosphates (P, La, Ce, Nd, Cu) (SEM-EDS/pXRF) | - | Icons, Greece, 15th–18th c |
Malachite (EDS, µRaman) | As, Ba, Ca, Mg, Ni, P, Sb, Zn (SEM-EDS/pXRF) | - | ||
Vetter 2021 [69] | Azurite (rFTIR, FORS) | Fe, Si (pXRF) | - | Manuscript, Italy, 13th c |
Perino 2021 [70] | Azurite (FORS) | As, Bi, Zn (XRF) | - | Manuscripts, Italy, 14th c |
Clarke 2021 [22] | Copper green (MAXRF) | As, Zn (MAXRF) | - | Handscroll, Japan, 13th c |
Mazzinghi 2021 [71] | Azurite (MAXRF) | Zn, Ca (MAXRF) | - | Panel, Flanders, 15th c |
Mihalic 2021 [72] | Azurite (PIXE+XRF) | Ba, Fe (PIXE+XRF) | - | Manuscript, Italy, 15th c |
Malachite (PIXE+XRF) | As, Ba, Fe, K, Mn, Pb, Si, Zn (PIXE+XRF) | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Svorová Pawełkowicz, S.; Wagner, B.; Kotowski, J.; Żukowska, G.Z.; Gołębiowska, B.; Siuda, R.; Jokubauskas, P. Antimony and Nickel Impurities in Blue and Green Copper Pigments. Minerals 2021, 11, 1236. https://doi.org/10.3390/min11111236
Svorová Pawełkowicz S, Wagner B, Kotowski J, Żukowska GZ, Gołębiowska B, Siuda R, Jokubauskas P. Antimony and Nickel Impurities in Blue and Green Copper Pigments. Minerals. 2021; 11(11):1236. https://doi.org/10.3390/min11111236
Chicago/Turabian StyleSvorová Pawełkowicz, Sylwia, Barbara Wagner, Jakub Kotowski, Grażyna Zofia Żukowska, Bożena Gołębiowska, Rafał Siuda, and Petras Jokubauskas. 2021. "Antimony and Nickel Impurities in Blue and Green Copper Pigments" Minerals 11, no. 11: 1236. https://doi.org/10.3390/min11111236
APA StyleSvorová Pawełkowicz, S., Wagner, B., Kotowski, J., Żukowska, G. Z., Gołębiowska, B., Siuda, R., & Jokubauskas, P. (2021). Antimony and Nickel Impurities in Blue and Green Copper Pigments. Minerals, 11(11), 1236. https://doi.org/10.3390/min11111236