Petrogenesis of the Early Cretaceous Hongshan Complex in the Southern Taihang Mountains: Constraints from Element Geochemistry, Zircon U-Pb Geochronology and Hf Isotopes
Abstract
:1. Introduction
2. Geological Setting and Petrology of the Hongshan Complex
2.1. Geological Setting
2.2. Geology and Petrology of the Hongshan Complex
2.2.1. Syenite Facies
2.2.2. Fine-Grained Biotite Hornblende Monzo-Diorite (MD)
2.2.3. Fine-Grained Hornblende Monzo-Gabbro (GD)
3. Samples and Analytical Methods
3.1. Zircon U–Pb Isotope Analyses
3.2. Major and Trace Elements Analyses of Whole Rock
3.3. Zircon Lu-Hf Isotope Analyses
4. Results
4.1. Zircon U-Pb Dating
4.1.1. FBAS (ZKS002-8)
4.1.2. MD (ZK3-3)
4.1.3. GD (ZK3-6)
4.2. Major Elements, Trace Elements, and REEs
4.2.1. Syenites (FBAS, MAS, CAS, SP, and BSP)
4.2.2. Diorite and Gabbro
4.3. Zircon Lu-Hf Isotopes
4.3.1. FBAS (ZKS002-8)
4.3.2. MD (ZK3-3)
4.3.3. GD (ZK3-6)
5. Discussion
5.1. Emplacement Time and Magmatism Stage
5.2. Petrogenesis
5.2.1. Petrogenesis of the Syenites
5.2.2. Petrogenesis of the Diorite and Gabbro
5.3. Geodynamic Implications
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhao, G.C.; Zhai, M.G. Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications. Gondwana Res. 2013, 23, 1207–1240. [Google Scholar] [CrossRef]
- Gao, S.; Rudnick, R.L.; Yuan, H.L.; Liu, X.M.; Liu, Y.S.; Xu, W.L.; Ling, W.L.; Ayers, J.; Wang, X.C.; Wang, Q.H. Recycling lower continental crust in the North China craton. Nature 2004, 432, 892–897. [Google Scholar] [CrossRef]
- Zhu, R.X.; Xu, Y.G.; Zhu, G.; Zhang, H.F.; Xia, Q.K.; Zheng, T.Y. Destruction of the North China Craton. Sci. China Earth Sci. 2012, 42, 1135–1159, (in Chinese with English abstract). [Google Scholar] [CrossRef]
- Guo, F. The modification of the lithospheric mantle beneath the North China Craton by subducted continental and oceanic crust: Oxygen isotopic records of olivine. Acta Petrol. Mineralogica. 2013, 32, 593–603, (in Chinese with English abstract). [Google Scholar]
- Deng, J.F.; Mo, X.X.; Zhao, H.L.; Wu, Z.X.; Luo, Z.H.; Su, S.G. A new model for the dynamic evolution of Chinese lithosphere: ‘continental roots-plume tectonics’. Earth Sci. Rev. 2004, 65, 223–275. [Google Scholar] [CrossRef]
- Kusky, T.M.; Windley, B.F.; Zhai, M.G. Tectonic evolution of the North China Block: From orogen to craton to orogen. Geol. Soc. Lond. Spec. Publ. 2007, 280, 1–34. [Google Scholar] [CrossRef]
- Zhai, M.G.; Fan, Q.C.; Zhang, H.F.; Sui, J.L.; Shao, J.A. Lower crustal processes leading to Mesozoic lithospheric thinning beneath eastern North China: Underplating, replacement and delamination. Lithos 2007, 96, 36–54. [Google Scholar] [CrossRef]
- Zhu, R.X.; Yang, J.H.; Wu, F.Y. Timing of destruction of the North China Craton. Lithos 2012, 149, 51–60. [Google Scholar] [CrossRef]
- Gao, S.; Rudnick, R.L.; Carlson, R.W.; McDonough, W.F.; Liu, Y.S. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth Planet. Sci. Lett. 2002, 198, 307–322. [Google Scholar] [CrossRef]
- Wu, F.Y.; Ge, W.C.; Sun, D.Y.; Guo, C.L. Discussions on the lithospheric thinning in eastern China. Earth Sci. Front. 2003, 10, 51–60, (in Chinese with English abstract). [Google Scholar]
- Zhang, H.F.; Ying, J.F.; Xu, P.; Ma, Y.G. Mantle olivine xenocrysts entrained in Mesozoic basalts from the North China craton:Implication for replacement process of lithospheric mantle. Chin. Sci. Bull. 2004, 49, 961–966. [Google Scholar] [CrossRef]
- Xu, W.L.; Gao, S.; Wang, Q.H.; Wang, D.Y.; Liu, Y.S. Mesozoic crustal thickening of the eastern North China craton:Evidence from eclogite xenoliths and petrologic implications. Geol. Soc. Am. 2006, 34, 721–724. [Google Scholar]
- Luo, Z.H.; Deng, J.F.; Han, X.Q. On Characteristics of Magmatic Activities and Orogenic Process of Taihangshan Intraplate Orogen; Geological Publishing House: Beijing, China, 1999; pp. 1–124. (in Chinese) [Google Scholar]
- Chen, B.; Liu, C.Q.; Tian, W. Magma-mixing between mantle- and crustal-derived melts in the process of Mesozoicmagmatism, Taihangshan: Constraints from petrology and geochemistry. Earth Sci. Front. 2006, 13, 140–147, (in Chinese with English abstract). [Google Scholar]
- Sørensen, H. The Alkaline Rocks; John Wiley and Sons: London, UK, 1974. [Google Scholar]
- Queen, M.; Hanes, J.A.; Archibald, D.A.; Farrar, E.; Heaman, L.M. 40Ar/39Ar phlogopite and U -Pb perovskite dating of lamprophyre dykes from the eastern Lake Superior region: Evidence for a 1.14 Ga magmatic precursor to Midcontinent Rift volcanism. Can. J. Earth Sci. 1996, 33, 958–965. [Google Scholar] [CrossRef]
- Ren, K.X. Study progress of the alkaline rocks: A review. Geol. Chenical Miner. 2003, 25, 151–163. [Google Scholar]
- Tappe, S.; Foley, S.F.; Jenner, G.A.; Heaman, L.M.; Kjarsgaard, B.A.; Romer, R.L.; Stracke, A.; Joyce, N.; Hoefs, J. Genesis of ultramafic lamprophyres and carbonatites at aillik bay, labrador: A Consequence of incipient lithospheric thinning beneath the North Atlantic Craton. J. Petrol. 2006, 47, 1261–1315. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Jiang, S.Y.; Hofmann, A.W.; Xu, Y.G.; Hou, M.L. Rapid lithospheric thinning of the north china craton: New evidence from cretaceous mafic dikes in the jiaodong peninsula. Chem. Geol. 2016, 432, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.X.; Marks, M.A.W.; Wenzel, T.; Markl, G. Halogen-bearing minerals from the tamazeght complex (morocco): Constraints on halogen distribution and evolution in alkaline to peralkaline magmatic systems. Can. Mineral. 2016, 54, 1347–1368. [Google Scholar] [CrossRef]
- Marks, M.A.W.; Markl, G. A global review on agpaitic rocks. Earth Sci. Rev. 2017, 173, 229–258. [Google Scholar] [CrossRef]
- Cai, J.H.; Yan, G.H.; Xiao, C.D.; Wang, G.Y.; Mu, B.L.; Zhang, R.H. Nd, Sr, Pb isotopic characteristics of the Mesozoic intrusive rocks in the Taihang-Da Hinggan Mountains Tectonomagmatic Belt and their source region. Acta Petrol. Sin. 2004, 20, 1225–1242, (in Chinese with English abstract). [Google Scholar]
- Chen, B.; Tian, W.; Jahn, B.M.; Chen, Z.C. Zircon SHRIMP U-Pb ages and in-situ Hf isotopic analysis for the Mesozoic intrusions in South Taihang, North China craton: Evidence for hybridization between mantle-derived magmas and crustal components. Lithos 2008, 102, 118–137. [Google Scholar] [CrossRef]
- Yang, J.H.; O’Reilly, S.; Walker, R.J.; Griffin, W.; Wu, F.Y.; Zhang, M.; Pearson, N. Diachronous decratonization of the Sino-Korean craton: Geochemistry of mantle xenoliths from North Korea. Geology 2010, 38, 799–802. [Google Scholar] [CrossRef]
- Xu, W.; Liu, F.L. Geochronological and geochemical insights into the tectonic evolution of the Paleoproterozoic Jiao-Liao-Ji Belt, Sino-Korean Craton. Earth Sci. Rev. 2019, 193, 162–198. [Google Scholar] [CrossRef]
- Liu, D.Y.; Nutman, A.P.; Compston, W.; Wu, J.S.; Shen, Q.H. Remnants of ≥3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology 1992, 20, 339–342. [Google Scholar] [CrossRef]
- Zhao, G.C.; Sun, M.; Wilde, S.A.; Li, S.Z. Assembly, accretion and breakup of the Paleo-Mesoproterozoic Columbia Supercontinent: Records in the North China Craton. Gondwana Res. 2003, 6, 417–434. [Google Scholar] [CrossRef]
- Santosh, M. Assembling North China Craton within the Columbia supercontinent: The role of double-sided subduction. Precambrian Res. 2010, 178, 149–167. [Google Scholar] [CrossRef]
- Kusky, T.M. Geophysical and geological tests of tectonic models of the North China Craton. Gondwana Res. 2011, 20, 26–35. [Google Scholar] [CrossRef]
- Zhai, M.G.; Santosh, M. Metallogeny of the North China Craton: Link with secular changes in the evolving Earth. Gondwana Res. 2013, 24, 275–297. [Google Scholar] [CrossRef]
- Ma, L.; Jiang, S.Y.; Hofmann, A.W.; Dai, B.Z.; Hou, M.L.; Zhao, K.D.; Chen, L.H.; Li, J.W.; Jiang, Y.H. Lithospheric and asthenospheric sources of lamprophyres in the Jiaodong Peninsula: A consequence of rapid lithospheric thinning beneath the North China Craton? Geochim. Cosmochim. Acta 2014, 124, 250–271. [Google Scholar] [CrossRef]
- Ma, J.Q. Metallogenic specialization of magmatic rocks as discussed in the light of endogenic deposits. Geol. Rev. 1987, 33, 84–90, (in Chinese with English abstract). [Google Scholar]
- Song, X.Y.; Feng, Z.Y. Minor element geochemistry of mesozoic magmatic intrusions of southern taihang mountains. J. Geol. Min. Res. North China 1999, 14, 1–17, (in Chinese with English abstract). [Google Scholar]
- Luo, Z.H.; Wei, Y.; Xin, H.T.; Ke, S.; Li, W.T.; Li, D.D.; Huang, J.X. The Mesozoic intraplate orogeny of the Taihang Mountains and the thinning of the continental lithosphere in North China. Earth Sci. Front. 2006, 13, 52–63, (in Chinese with English abstract). [Google Scholar]
- Sun, Y.; Xiao, L.; Zhan, Q.Y.; Wu, J.X.; Zhu, D.; Huang, W.; Bai, M.; Zhang, Y.H. Petrogenesis of the Kuangshancun and Hongshan intrusive complexes from the Handan-Xingtai district: Implications for iron mineralization associated with Mesozoic magmatism in the North China Craton. J. Asian Earth Sci. 2015, 113, 1162–1178. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, T.; Xiao, L.; Bai, M.; Zhang, Y.H. U-Pb ages, Hf-O isotopes and trace elements of zircons from the ore-bearing and ore-barren adakitic rocks in the Handan-Xingtai district: Implications for petrogenesis and iron mineralization. Ore Geol. Rev. 2019, 104, 14–25. [Google Scholar] [CrossRef]
- Chen, B.; Jahn, B.M.; Arakawa, Y.; Zhai, M.G. Petrogenesis of the Mesozoic intrusive complexes from the southern Taihang Orogen, North China Craton: Elemental and Sr-Nd-Pb isotopic constraints. Contrib. Miner. Pet. 2004, 148, 489–501. [Google Scholar] [CrossRef]
- Xu, W.L.; Lin, J.Q. The magmatic evolution of Hb-diorite series of Yanshan stage in Han-Xing district, China-The amphibole-dominated fractional crystallization. J. Chang. Univ. Earth Sci. 1990, 20, 259–264. [Google Scholar]
- Xu, W.L.; Yang, D.B.; Pei, F.P.; Yu, Y. Petrogenesis of Fushan high-Mg# diorites from the southern Taihang Mts. In the central North China Craton:Resulting from interaction of peridotite-melt derived from partial melting of delaminated lower continental crust. Acta Petrol. Sin. 2009, 25, 1947–1961, (in Chinese with English abstract). [Google Scholar]
- Yuan, H.L.; Gao, S.; Liu, X.M.; Li, H.M.; Günther, D.; Wu, F.Y. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostand. Geoanalytical Res. 2004, 28, 353–370. [Google Scholar] [CrossRef]
- Andersen, T. Correction of common lead in U-Pb analyses that do not report 204 Pb. Chem. Geol. 2002, 192, 59–79. [Google Scholar] [CrossRef]
- Zhang, S.H.; Zhao, Y.; Li, X.H.; Ernst, R.E.; Yang, Z.Y. The 1.33-1.30 Ga Yanliao large igneous province in the North China Craton: Implications for reconstruction of the Nuna (Columbia) supercontinent, and specifically with the North Australian Craton. Earth Planet. Sci. Lett. 2017, 465, 112–125. [Google Scholar] [CrossRef]
- Hu, Z.C.; Zhang, W.; Liu, Y.S.; Gao, S.; Li, M.; Zong, K.Q.; Chen, H.H.; Hu, S.H. “Wave” signal-smoothing and mercury-removing device for laser ablation quadrupole and multiple collector ICPMS analysis: Application to lead isotope analysis. Anal. Chem. 2015, 87, 1152–1157. [Google Scholar] [CrossRef]
- Hu, Z.C.; Liu, Y.S.; Gao, S.; Liu, W.G.; Yang, L.; Zhang, W.; Tong, X.R.; Lin, L.; Zong, K.Q.; Li, M.; et al. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and Jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. J. Anal. At. Spectrom. 2012, 27, 1391–1399. [Google Scholar] [CrossRef]
- Middlemost, E.A.K. Naming materials in the magma/igneous rock system. Earth Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Wright, J.B. A simple alkalinity ratio and its application to questions of non-orogenic granite genesis. Geol. Mag. 1969, 106, 370–384. [Google Scholar] [CrossRef]
- Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Middlemost, E. A simple classification of volcanic rocks. Bull. Volcanol. 1972, 36, 382–397. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In Magmatism in the Oceanic Basalts; Saunders, A.D., Norry, M.J., Eds.; Geological Society Special Publication: London, UK, 1989; pp. 313–345. [Google Scholar]
- Yang, J.H.; Wu, F.Y.; Wilde, S.A.; Xie, L.W.; Yang, Y.H.; Liu, X.M. Tracing magma mixing in granite genesis: In situ u–pb dating and hf-isotope analysis of zircons. Contrib. Mineral. Petrol. 2007, 153, 177–190. [Google Scholar] [CrossRef]
- Chen, B.; Tian, W.; Zhai, M.G.; Arakawa, Y. Zircon U-Pb geochronology and geochemistry of the Mesozoic magmatism in the Taihang Mountains and other places of the North China craton, with implications for petrogenesis and geodynamic setting. Acta Petrol. Sin. 2005, 21, 13–24, (in Chinese with English abstract). [Google Scholar]
- Litvinovsky, B.A.; Jahn, B.M.; Zanvilevich, A.N.; Saunders, A.; Poulain, S.; Kuzmin, D.V.; Reichow, M.K.; Titov, A.V. Petrogenesis of syenite-granite suites from the Bryansky Complex (Transbaikalia, Russia): Implications for the origin of A-type granitoid magmas. Chem. Geol. 2002, 189, 105–133. [Google Scholar] [CrossRef]
- Wang, Q.; Li, J.W.; Jian, P.; Zhao, Z.H.; Xiong, X.L.; Bao, Z.W.; Xu, J.F.; Li, C.F.; Ma, J.L. Alkaline syenites in eastern Cathaysia (South China): Link to permian-triassic transtension. Earth Planet. Sci. Lett. 2005, 230, 339–354. [Google Scholar] [CrossRef]
- Sutcliffe, R.H.; Smith, A.R.; Doherty, W.; Barnett, R.L. Mantle derivation of Archean amphibole-bearing granitoids and associated mafic rocks: Evidence from the southern Superrior Province, Canada. Contrib. Mineral. Petrol. 1990, 105, 255–274. [Google Scholar] [CrossRef]
- Lynch, D.J.; Musselman, T.E.; Gutmann, J.T.; Patchett, P.J. Isotopic evidence for the origin of Cenozoic volcanic rocks in the Pinacate volcanic field, northwestern Mexico. Lithos 1993, 29, 295–302. [Google Scholar] [CrossRef]
- Mingram, B.; Trumbull, R.B.; Littman, S.; Gerstenberger, H. A petrogenetic study of anorogenic felsic magmatism in the Cretaceous Paresis ring complex, Namibia: Evidence for mixing of crust and mantle-derived components. Lithos 2000, 54, 1–22. [Google Scholar] [CrossRef]
- Vernikovsky, V.A.; Pease, V.L.; Vernikovskaya, A.E.; Romanov, A.P.; Gee, D.G.; Travin, A.V. First report of early Triassic A-type granite and syenite intrusions from Taimyr: Product of the northern Eurasian superplume? Lithos 2003, 66, 23–36. [Google Scholar] [CrossRef]
- Lubala, R.T.; Frick, C.; Rogers, J.H.; Walraven, F. Petrogenesis of syenites and granites of the schiel alkaline complex, Northern Transvaal, South Africa. J. Geol. 1994, 102, 307–316. [Google Scholar] [CrossRef]
- Yang, J.H.; Chung, S.L.; Wilde, S.A.; Wu, F.Y.; Chu, M.F.; Lo, C.H.; Fan, H.R. Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, East China: Geochronological, geochemical and Nd-Sr isotopic evidence. Chem. Geol. 2005, 214, 99–125. [Google Scholar] [CrossRef]
- Drummond, M.S.; Defant, M.J.; Kepezhinskas, P.K. Petrogenesis of slab-derived tronhjemite-tonalite-dacite/adakite magmas. Trans. R. Soc. Edinb. Earth Sci. 1996, 87, 205–215. [Google Scholar]
- Wyllie, P.J. Constraints imposed by experimental petrology on possible and impossible magma sources and products. Philos. Trans. R. Society. Lond. 1984, A310, 439–456. [Google Scholar]
- Deng, J.F.; Luo, Z.H.; Zhao, H.L. Trachyte and syenite: Petrogenesis constrained by the petrological phase equilibrium. In Proceedings of the Collected Words of International Symposium on Geological Science by Department of Geology, Peking University: Beijing, China; Seism Publishing House: Beijing, China, 1998; pp. 745–757. [Google Scholar]
- Defant, M.J.; Drummond, M.S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 1990, 347, 662–665. [Google Scholar] [CrossRef]
- Martin, H. Adakitic magmas: Modern analogues of Archaean granitoids. Lithos 1999, 46, 411–429. [Google Scholar] [CrossRef]
- Defant, M.J.; Jackson, T.E.; Drummond, M.S.; de Boer, J.Z.; Bellon, H.; Feigenson, M.D.; Maury, R.C.; Stewart, R.H. The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica: An overview. J. Geol. Soc. 1992, 149, 569–579. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Fountain, D.M. Nature and composition of the continental crust: A lower crustal perspective. Rev. Geophys. 1995, 33, 267. [Google Scholar] [CrossRef] [Green Version]
- Martin, H.; Smithies, R.H.; Rapp, R.; Moyen, J.F.; Champion, D. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos 2005, 79, 1–24. [Google Scholar] [CrossRef]
- Kepezhinskas, P.K.; Defant, M.J.; Drummond, M.S. Na metasomatism in the sub-arc mantle by slab melt-peridotite interaction: Evidence from mantle xenoliths in the North Kamchatka Arc. J. Petrol. 1995, 36, 1505–1527. [Google Scholar]
- Defant, M.J.; Xu, J.F. Adakites: Some variations on a theme. Acta Petrol. Sin. 2002, 18, 129–142. [Google Scholar]
- Zheng, F.; Dai, L.Q.; Zhao, Z.F.; Zheng, Y.F.; Ma, L.T.; Fang, W. Syn-exhumation magmatism during continental collision: Geochemical evidence from the early Paleozoic Fushui mafic rocks in the Qinling orogen, Central China. Lithos 2020, 352–353, 1–15. [Google Scholar] [CrossRef]
- Tamura, Y.; Ishizuka, O.; Stern, R.J. Mission immiscible: Distinct subduction components generate two primary magmas at pagan volcano, Mariana arc. J. Petrol. 2014, 55, 63–101. [Google Scholar] [CrossRef] [Green Version]
- Kimura, J.I.; Yoshida, T. Contributions of slab fluid, mantle wedge and crust to the origin of quaternary lavas in the NE Japan arc. J. Petrol. 2006, 47, 2185–2232. [Google Scholar] [CrossRef] [Green Version]
- Pearce, J.A.; Norry, M.J. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib. Mineral. Petrol. 1979, 69, 33–47. [Google Scholar] [CrossRef]
- Shervais, J.W. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet. Sci. Lett. 1982, 59, 101–118. [Google Scholar] [CrossRef]
- Wang, Y.J.; Fan, W.M.; Zhang, H.F.; Peng, T.P. Early Cretaceous gabbroic rocks from the Taihang Mountains:Implications for a paleosubduction-related lithospheric mantle beneath the central North China Craton. Lithos 2006, 86, 281–302. [Google Scholar] [CrossRef]
- Olafsson, M.; Eggler, D.H. Phase relations of amphibolem, amphibole-carbonate and phlogopite-carbonate peridotite:petrological constrains on the asthenosphere. Earth Planet. Sci. Lett. 1983, 64, 305–315. [Google Scholar] [CrossRef]
- LaTourrette, T.; Hervig, R.L.; Holloway, J.R. Trace element partitioning between amphibole, phlogopite, and basanite melt. Earth Planet. Sci. Lett. 1995, 135, 13–30. [Google Scholar] [CrossRef]
- Furman, T.; Graham, D. Erosion of lithospheric mantle beneath the East African Rift system: Geochemical evidence from the Kivu volcanic province. Lithos 1999, 48, 237–262. [Google Scholar] [CrossRef]
- Duggen, S.; Hoernle, K.; den Van, B.P.; Garbeschönberg, D. Post-Collisional transition from Subduction- to Intraplate-type Magmatism in the Westernmost Mediterranean:evidence for Continental-Edge delamination of subcontinental lithosphere. J. Petrol. 2005, 46, 1155–1201. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.H.; Jiang, S.Y.; Ling, H.F.; Ni, P. Petrogenesis and tectonic implications of Late Jurassic shoshonitic lamprophyre dikes from the Liaodong Peninsula, NE China. Mineral. Petrol. 2010, 100, 127–151. [Google Scholar] [CrossRef]
- Chen, B.; Zhai, M.G.; Shao, J.A. Origin and significance of Mesozoic lithofacies in the northern part of Taihang Mountain: Main and trace element geochemical evidence. Sci. China 2002, 32, 896–907, (In Chinese with English abstract). [Google Scholar]
- Lustrino, M.; Dallai, L.; Rome. On the origin of EM-I end-member. Neues Jahrb. Mineral. Abh. 2003, 179, 85–100. [Google Scholar] [CrossRef]
- La Flèche, M.R.; Camiré, G.; Jenner, G.A. Geochemistry of post-acadian, carboniferous continental intraplate basalts from the Maritimes Basin, Magdalen Islands, Québec, Canada. Chem. Geol. 1998, 148, 115–136. [Google Scholar] [CrossRef]
- Sun, J.F.; Zhang, J.H.; Yang, J.H.; Yang, Y.H.; Chen, S. Tracing magma mixing and crystal-melt segregation in the genesis of syenite with mafic enclaves: Evidence from in situ zircon Hf-O and apatite Sr-Nd isotopes. Lithos 2019, 334, 42–57. [Google Scholar] [CrossRef]
- Yang, H.T.; Yang, D.B.; Mu, M.S.; Wang, A.Q.; Quan, Y.K.; Hao, L.R.; Xu, W.L.; Yang, D.H. Sr-Nd-Hf isotopic compositions of lamprophyres in western Shandong, China: Implications for the nature of the early cretaceous lithospheric mantle beneath the eastern North China Craton. Lithos 2019, 336–337, 1–13. [Google Scholar] [CrossRef]
- Xue, F.; Santosh, M.; Tsunogae, T.; Yang, F. Geochemical and isotopic imprints of early cretaceous mafic and felsic dyke suites track lithosphere-asthenosphere interaction and craton destruction in the North China Craton. Lithos 2019, 326–327, 174–199. [Google Scholar] [CrossRef]
- Yang, K.F.; Fan, H.R.; Santosh, M.; Hu, F.F.; Wilde, S.A.; Lan, T.G.; Lu, L.N.; Liu, Y.S. Reactivation of the Archean lower crust:implications for zircon geochronology, elemental and Sr-Nd-Hf isotopic geochemistry of late Mesozoic granitoids from northwestern Jiaodong Terrain, the North China Craton. Lithos 2012, 146–147, 112–127. [Google Scholar] [CrossRef]
- Yang, J.H.; Wu, F.Y.; Wilde, S.A.; Belousova, E.; Griffin, W.L. Mesozoic decratonization of the North China block. Geology 2008, 36, 467–470. [Google Scholar] [CrossRef]
- Xu, Y.G. Thermo-tectonic destruction of the archaean lithospheric keel beneath the sino-Korean Craton in China: Evidence, timing and mechanism. Phys. Chem. Earth Part A Solid Earth Geod. 2001, 26, 747–757. [Google Scholar] [CrossRef]
- Wang, Q.; Wyman, D.A.; Xu, J.F.; Zhao, Z.H.; Jian, P.; Xiong, X.L.; Bao, Z.W.; Li, C.F.; Bai, Z.H. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): Implications for geodynamics and Cu-Au mineralization. Lithos 2006, 89, 424–446. [Google Scholar] [CrossRef]
- Huang, J.; Zhao, D. High-resolution mantle tomography of China and surrounding regions. J. Geophys. Res. Solid Earth 2006, 111, 1–21. [Google Scholar] [CrossRef]
- Zhu, R.X.; Fan, H.R.; Li, J.W.; Meng, Q.R.; Li, S.R.; Zeng, Q.D. Decratonic gold deposits. Sci. China Earth Sci. 2015, 58, 1523–1537, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Li, S.Z.; Suo, Y.H.; Li, X.Y.; Zhou, J.; Santosh, M.; Wang, P. Mesozoic tectono-magmatic response in the east asian ocean-continent connection zone to subduction of the paleo-pacific plate. Earth-Sci. Rev. 2019, 192, 91–137. [Google Scholar] [CrossRef]
Content (ppm) | Th/U | Isotopic Ratios | Isotopic Ages (Ma) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pb | Th | U | 207Pb/206Pb | ±1s | 207Pb/235U | ±1s | 206Pb/238U | ±1s | 207Pb/206Pb | ±1s | 207Pb/235U | ±1s | 206Pb/238U | ±1s | ||
ZKS002-8-FBAS | ||||||||||||||||
ZKS002-8-1 | 23 | 283 | 1034 | 0.27 | 0.04869 | 0.00128 | 0.13208 | 0.00366 | 0.01969 | 0.00044 | 133 | 30 | 126 | 3 | 126 | 3 |
ZKS002-8-2 | 50 | 1070 | 1726 | 0.62 | 0.04891 | 0.00113 | 0.15944 | 0.00397 | 0.02366 | 0.00053 | 144 | 26 | 150 | 3 | 151 | 3 |
ZKS002-8-3 | 10 | 254 | 394 | 0.64 | 0.05036 | 0.00175 | 0.13729 | 0.00488 | 0.01979 | 0.00045 | 212 | 43 | 131 | 4 | 126 | 3 |
ZKS002-8-4 | 14 | 122 | 246 | 0.50 | 0.05268 | 0.00161 | 0.34602 | 0.01091 | 0.04767 | 0.00108 | 315 | 35 | 302 | 8 | 300 | 7 |
ZKS002-8-5 | 14 | 455 | 518 | 0.88 | 0.05307 | 0.00160 | 0.14435 | 0.00452 | 0.01974 | 0.00045 | 332 | 34 | 137 | 4 | 126 | 3 |
ZKS002-8-6 | 108 | 722 | 1631 | 0.44 | 0.05408 | 0.00114 | 0.41988 | 0.00972 | 0.05635 | 0.00125 | 374 | 23 | 356 | 7 | 353 | 8 |
ZKS002-8-7 | 95 | 370 | 647 | 0.57 | 0.06328 | 0.00137 | 1.06136 | 0.02507 | 0.12172 | 0.00272 | 718 | 22 | 734 | 12 | 740 | 16 |
ZKS002-8-8 | 22 | 1161 | 677 | 1.72 | 0.05032 | 0.00144 | 0.13658 | 0.00409 | 0.01970 | 0.00045 | 210 | 32 | 130 | 4 | 126 | 3 |
ZKS002-8-9 | 13 | 405 | 477 | 0.85 | 0.05017 | 0.00159 | 0.13978 | 0.00458 | 0.02022 | 0.00046 | 203 | 38 | 133 | 4 | 129 | 3 |
ZKS002-8-10 | 144 | 156 | 231 | 0.67 | 0.16825 | 0.00342 | 10.73467 | 0.24206 | 0.46296 | 0.01035 | 2540 | 17 | 2500 | 21 | 2453 | 46 |
ZKS002-8-11 | 44 | 1735 | 1392 | 1.25 | 0.04863 | 0.00131 | 0.14242 | 0.00404 | 0.02125 | 0.00048 | 130 | 31 | 135 | 4 | 136 | 3 |
ZKS002-8-12 | 52 | 74 | 134 | 0.55 | 0.11000 | 0.00234 | 4.67566 | 0.10937 | 0.30842 | 0.00693 | 1799 | 19 | 1763 | 20 | 1733 | 34 |
ZKS002-8-13 | 13 | 422 | 479 | 0.88 | 0.04605 | 0.00240 | 0.12603 | 0.00589 | 0.01985 | 0.00046 | 113 | 121 | 5 | 127 | 3 | |
ZKS002-8-14 | 48 | 2927 | 1393 | 2.10 | 0.04852 | 0.00119 | 0.13556 | 0.00358 | 0.02027 | 0.00046 | 125 | 28 | 129 | 3 | 129 | 3 |
ZKS002-8-15 | 14 | 480 | 562 | 0.85 | 0.04678 | 0.00326 | 0.12572 | 0.00823 | 0.01949 | 0.00046 | 38 | 154 | 120 | 7 | 124 | 3 |
ZKS002-8-16 | 15 | 439 | 617 | 0.71 | 0.04980 | 0.00149 | 0.13674 | 0.00427 | 0.01992 | 0.00046 | 186 | 35 | 130 | 4 | 127 | 3 |
ZKS002-8-17 | 5 | 172 | 187 | 0.92 | 0.05307 | 0.00370 | 0.14393 | 0.00994 | 0.01968 | 0.00052 | 332 | 109 | 137 | 9 | 126 | 3 |
ZKS002-8-18 | 28 | 800 | 993 | 0.81 | 0.04905 | 0.00159 | 0.14322 | 0.00481 | 0.02118 | 0.00049 | 150 | 39 | 136 | 4 | 135 | 3 |
ZKS002-8-19 | 9 | 222 | 372 | 0.60 | 0.04692 | 0.00309 | 0.13070 | 0.00801 | 0.02020 | 0.00048 | 45 | 145 | 125 | 7 | 129 | 3 |
ZKS002-8-20 | 20 | 569 | 769 | 0.74 | 0.04871 | 0.00142 | 0.13937 | 0.00428 | 0.02076 | 0.00048 | 134 | 34 | 132 | 4 | 132 | 3 |
ZKS002-8-21 | 21 | 650 | 791 | 0.82 | 0.04963 | 0.00141 | 0.14255 | 0.00427 | 0.02084 | 0.00048 | 178 | 33 | 135 | 4 | 133 | 3 |
ZKS002-8-22 | 15 | 362 | 577 | 0.63 | 0.04888 | 0.00184 | 0.14473 | 0.00558 | 0.02148 | 0.00051 | 142 | 48 | 137 | 5 | 137 | 3 |
ZKS002-8-23 | 38 | 1614 | 1338 | 1.21 | 0.04605 | 0.00338 | 0.12897 | 0.00895 | 0.02031 | 0.00049 | 163 | 123 | 8 | 130 | 3 | |
ZK3-3-MD | ||||||||||||||||
ZK3-3-1 | 8 | 433 | 253 | 1.71 | 0.05000 | 0.00336 | 0.14105 | 0.00936 | 0.02048 | 0.00052 | 195 | 105 | 134 | 8 | 131 | 3 |
ZK3-3-3 | 6 | 236 | 199 | 1.19 | 0.04681 | 0.00370 | 0.12408 | 0.00970 | 0.01924 | 0.00050 | 40 | 122 | 119 | 9 | 123 | 3 |
ZK3-3-4 | 11 | 685 | 328 | 2.09 | 0.04579 | 0.00267 | 0.12582 | 0.00726 | 0.01995 | 0.00048 | 13 | 79 | 120 | 7 | 127 | 3 |
ZK3-3-5 | 5 | 219 | 165 | 1.33 | 0.04669 | 0.00330 | 0.13142 | 0.00921 | 0.02044 | 0.00050 | 33 | 107 | 125 | 8 | 130 | 3 |
ZK3-3-6 | 9 | 503 | 307 | 1.64 | 0.05072 | 0.00258 | 0.13598 | 0.00686 | 0.01947 | 0.00046 | 228 | 73 | 129 | 6 | 124 | 3 |
ZK3-3-7 | 9 | 383 | 227 | 1.69 | 0.05610 | 0.00767 | 0.14943 | 0.02000 | 0.01932 | 0.00055 | 456 | 308 | 141 | 18 | 123 | 3 |
ZK3-3-8 | 7 | 372 | 227 | 1.64 | 0.04722 | 0.00233 | 0.12444 | 0.00611 | 0.01913 | 0.00044 | 60 | 67 | 119 | 6 | 122 | 3 |
ZK3-3-9 | 5 | 256 | 177 | 1.44 | 0.05053 | 0.00351 | 0.13379 | 0.00919 | 0.01923 | 0.00049 | 219 | 110 | 127 | 8 | 123 | 3 |
ZK3-3-10 | 9 | 621 | 297 | 2.09 | 0.05051 | 0.00235 | 0.13280 | 0.00615 | 0.01909 | 0.00044 | 219 | 65 | 127 | 6 | 122 | 3 |
ZK3-3-11 | 9 | 546 | 278 | 1.96 | 0.05070 | 0.00228 | 0.13125 | 0.00589 | 0.01880 | 0.00043 | 227 | 62 | 125 | 5 | 120 | 3 |
ZK3-3-12 | 4 | 170 | 124 | 1.37 | 0.04436 | 0.00429 | 0.11917 | 0.01141 | 0.01950 | 0.00052 | 52 | 159 | 114 | 10 | 124 | 3 |
ZK3-3-13 | 9 | 490 | 281 | 1.74 | 0.05121 | 0.00242 | 0.14353 | 0.00678 | 0.02034 | 0.00047 | 250 | 67 | 136 | 6 | 130 | 3 |
ZK3-3-14 | 7 | 312 | 240 | 1.30 | 0.04870 | 0.00237 | 0.13068 | 0.00636 | 0.01948 | 0.00046 | 133 | 70 | 125 | 6 | 124 | 3 |
ZK3-3-15 | 9 | 512 | 274 | 1.87 | 0.05516 | 0.00243 | 0.14815 | 0.00653 | 0.01949 | 0.00045 | 419 | 58 | 140 | 6 | 124 | 3 |
ZK3-3-16 | 7 | 357 | 228 | 1.57 | 0.05886 | 0.00308 | 0.15946 | 0.00830 | 0.01966 | 0.00047 | 562 | 72 | 150 | 7 | 126 | 3 |
ZK3-3-17 | 10 | 572 | 296 | 1.93 | 0.05319 | 0.00252 | 0.14689 | 0.00695 | 0.02004 | 0.00047 | 337 | 65 | 139 | 6 | 128 | 3 |
ZK3-3-18 | 13 | 845 | 320 | 2.64 | 0.05171 | 0.00251 | 0.14055 | 0.00682 | 0.01972 | 0.00047 | 273 | 68 | 134 | 6 | 126 | 3 |
ZK3-3-19 | 8 | 421 | 250 | 1.69 | 0.05183 | 0.00280 | 0.14372 | 0.00773 | 0.02011 | 0.00049 | 278 | 79 | 136 | 7 | 128 | 3 |
ZK3-3-20 | 5 | 202 | 152 | 1.32 | 0.04605 | 0.00394 | 0.12373 | 0.01014 | 0.01949 | 0.00048 | 189 | 118 | 9 | 124 | 3 | |
ZK3-3-21 | 6 | 339 | 199 | 1.70 | 0.05104 | 0.00271 | 0.13302 | 0.00705 | 0.01890 | 0.00046 | 243 | 78 | 127 | 6 | 121 | 3 |
ZK3-3-22 | 7 | 400 | 239 | 1.67 | 0.05208 | 0.00261 | 0.13646 | 0.00685 | 0.01900 | 0.00045 | 289 | 72 | 130 | 6 | 121 | 3 |
ZK3-6-MG | ||||||||||||||||
ZK3-6-1 | 17 | 1044 | 532 | 1.96 | 0.05086 | 0.00128 | 0.13852 | 0.00348 | 0.01976 | 0.00024 | 234 | 36 | 132 | 3 | 126 | 2 |
ZK3-6-2 | 16 | 860 | 516 | 1.67 | 0.05256 | 0.00138 | 0.14097 | 0.00370 | 0.01946 | 0.00024 | 310 | 37 | 134 | 3 | 124 | 2 |
ZK3-6-3 | 17 | 934 | 565 | 1.65 | 0.04824 | 0.00123 | 0.13100 | 0.00335 | 0.01970 | 0.00024 | 111 | 38 | 125 | 3 | 126 | 2 |
ZK3-6-4 | 22 | 1013 | 811 | 1.25 | 0.05014 | 0.00116 | 0.13189 | 0.00308 | 0.01909 | 0.00023 | 201 | 32 | 126 | 3 | 122 | 1 |
ZK3-6-5 | 25 | 1753 | 669 | 2.62 | 0.04605 | 0.00183 | 0.12343 | 0.00468 | 0.01944 | 0.00023 | 84 | 118 | 4 | 124 | 1 | |
ZK3-6-6 | 12 | 497 | 457 | 1.09 | 0.04632 | 0.00228 | 0.12151 | 0.00578 | 0.01903 | 0.00024 | 14 | 106 | 116 | 5 | 122 | 2 |
ZK3-6-7 | 25 | 1580 | 777 | 2.03 | 0.04819 | 0.00111 | 0.12977 | 0.00300 | 0.01954 | 0.00023 | 109 | 33 | 124 | 3 | 125 | 1 |
ZK3-6-8 | 13 | 456 | 407 | 1.12 | 0.04605 | 0.00300 | 0.11807 | 0.00750 | 0.01860 | 0.00026 | 143 | 113 | 7 | 119 | 2 | |
ZK3-6-9 | 18 | 886 | 596 | 1.49 | 0.05109 | 0.00129 | 0.13747 | 0.00347 | 0.01953 | 0.00024 | 245 | 36 | 131 | 3 | 125 | 2 |
ZK3-6-10 | 5 | 165 | 182 | 0.91 | 0.05171 | 0.00250 | 0.13855 | 0.00660 | 0.01944 | 0.00028 | 273 | 83 | 132 | 6 | 124 | 2 |
ZK3-6-11 | 11 | 542 | 370 | 1.46 | 0.05024 | 0.00151 | 0.13479 | 0.00402 | 0.01947 | 0.00024 | 206 | 46 | 128 | 4 | 124 | 2 |
ZK3-6-12 | 14 | 755 | 436 | 1.73 | 0.05005 | 0.00354 | 0.13520 | 0.00939 | 0.01959 | 0.00027 | 197 | 162 | 129 | 8 | 125 | 2 |
ZK3-6-14 | 5 | 218 | 192 | 1.14 | 0.05287 | 0.00249 | 0.14217 | 0.00661 | 0.01952 | 0.00028 | 323 | 79 | 135 | 6 | 125 | 2 |
ZK3-6-15 | 8 | 343 | 258 | 1.33 | 0.04605 | 0.00201 | 0.12356 | 0.00518 | 0.01946 | 0.00025 | 93 | 118 | 5 | 124 | 2 | |
ZK3-6-16 | 7 | 293 | 245 | 1.20 | 0.04638 | 0.00196 | 0.12967 | 0.00541 | 0.02029 | 0.00027 | 17 | 63 | 124 | 5 | 129 | 2 |
ZK3-6-17 | 17 | 1262 | 473 | 2.67 | 0.05005 | 0.00142 | 0.13474 | 0.00381 | 0.01954 | 0.00024 | 197 | 43 | 128 | 3 | 125 | 2 |
ZK3-6-18 | 19 | 1168 | 572 | 2.04 | 0.05016 | 0.00140 | 0.13713 | 0.00381 | 0.01985 | 0.00024 | 202 | 42 | 130 | 3 | 127 | 2 |
ZK3-6-19 | 21 | 1184 | 730 | 1.62 | 0.04976 | 0.00129 | 0.13365 | 0.00346 | 0.01950 | 0.00024 | 184 | 38 | 127 | 3 | 124 | 2 |
ZK3-6-21 | 5 | 214 | 184 | 1.17 | 0.04605 | 0.00221 | 0.12249 | 0.00563 | 0.01929 | 0.00027 | 103 | 117 | 5 | 123 | 2 |
Sample No. | ZKS002-8-1 | ZKS002-8-2 | ZKS002-11-1 | ZKS002-11-2 | ZKS002-14 | ZKS002-24-1 | ZKS002-24-2 | PM03-27-1 | PM03-23-1 |
---|---|---|---|---|---|---|---|---|---|
Rock Type | FBAS (Fine-Grained Biotite Aegirine Syenite) | BAS(Medium-Grained Aegirine Gabbro Syenite) | CAS (Coarse-Grained Aegirine Gabbro Syenite) | SP (Syenite Pegmatite) | |||||
Major element (wt.%) | |||||||||
SiO2 | 60.92 | 61.11 | 64.88 | 62.11 | 64.84 | 62.03 | 61.81 | 63.75 | 63.90 |
TiO2 | 0.58 | 0.59 | 0.26 | 0.34 | 0.26 | 0.51 | 0.54 | 0.39 | 0.34 |
Al2O3 | 16.38 | 16.52 | 18.16 | 16.80 | 18.08 | 17.36 | 17.13 | 19.10 | 18.91 |
Fe2O3 | 3.93 | 3.62 | 1.53 | 3.29 | 1.42 | 2.84 | 3.22 | 2.60 | 2.44 |
FeO | 2.18 | 2.36 | 0.87 | 1.84 | 0.76 | 1.44 | 1.55 | 0.10 | 0.18 |
MnO | 0.16 | 0.15 | 0.05 | 0.12 | 0.05 | 0.10 | 0.11 | 0.02 | 0.03 |
MgO | 1.86 | 1.75 | 0.39 | 1.05 | 0.28 | 0.93 | 0.99 | 0.15 | 0.09 |
CaO | 2.30 | 1.98 | 1.05 | 1.68 | 1.00 | 2.29 | 2.33 | 0.48 | 0.51 |
Na2O | 8.60 | 8.70 | 7.19 | 6.74 | 6.72 | 6.02 | 5.99 | 7.07 | 6.77 |
K2O | 1.60 | 1.78 | 5.12 | 5.11 | 6.08 | 5.46 | 5.32 | 5.26 | 5.66 |
P2O5 | 0.31 | 0.30 | 0.04 | 0.19 | 0.05 | 0.24 | 0.19 | 0.07 | 0.11 |
LOI | 1.04 | 1.00 | 0.29 | 0.54 | 0.32 | 0.45 | 0.46 | 0.71 | 0.77 |
Total | 99.86 | 99.86 | 99.83 | 99.81 | 99.85 | 99.67 | 99.64 | 99.70 | 99.71 |
K2O + Na2O | 10.20 | 10.48 | 12.31 | 11.85 | 12.80 | 11.48 | 11.31 | 12.33 | 12.44 |
A/CNK | 0.82 | 0.83 | 0.94 | 0.85 | 0.93 | 0.87 | 0.86 | 1.05 | 1.04 |
A/NK | 1.03 | 1.02 | 1.05 | 1.01 | 1.03 | 1.10 | 1.10 | 1.10 | 1.09 |
TFe2O3 | 6.35 | 6.24 | 2.50 | 5.34 | 2.26 | 4.44 | 4.94 | 2.71 | 2.64 |
Mg# | 36.7 | 35.7 | 23.6 | 28.0 | 19.7 | 29.3 | 28.4 | 9.6 | 6.4 |
Trace element (ppm) | |||||||||
Sc | 10.20 | 5.92 | 1.46 | 3.00 | 1.58 | 5.20 | 4.66 | 1.47 | 2.06 |
V | 170.00 | 175.00 | 74.90 | 195.00 | 64.80 | 129.00 | 166.00 | 89.91 | 94.00 |
Cr | 9.54 | 8.49 | 1.91 | 7.40 | 2.72 | 3.84 | 3.34 | 3.85 | 6.20 |
Co | 8.83 | 9.59 | 3.20 | 7.63 | 2.84 | 7.15 | 8.08 | 3.10 | 2.70 |
Ni | 8.39 | 8.76 | 1.93 | 15.90 | 9.52 | 9.49 | 10.10 | 2.65 | 2.17 |
Cu | 38.50 | 38.10 | 36.90 | 107.00 | 5.52 | 38.60 | 20.30 | 238.77 | 207.46 |
Zn | 134.00 | 133.00 | 51.10 | 125.00 | 41.00 | 80.90 | 90.90 | 93.13 | 64.07 |
Ga | 25.50 | 25.70 | 27.90 | 25.50 | 25.30 | 21.20 | 22.40 | 29.72 | 31.57 |
Rb | 48.10 | 53.90 | 110.00 | 124.00 | 145.00 | 107.00 | 104.00 | 130.60 | 114.48 |
Sr | 475.00 | 487.00 | 843.00 | 715.00 | 726.00 | 1592.00 | 1737.00 | 641.14 | 775.34 |
Y | 17.30 | 22.10 | 8.03 | 10.20 | 7.22 | 16.40 | 17.30 | 16.10 | 13.61 |
Zr | 325.00 | 322.00 | 241.00 | 316.00 | 301.00 | 88.20 | 97.10 | 399.76 | 569.61 |
Nb | 17.70 | 16.30 | 11.30 | 8.61 | 8.45 | 9.23 | 9.91 | 17.07 | 22.27 |
Cs | 0.56 | 0.66 | 0.39 | 1.17 | 0.88 | 0.74 | 0.71 | 1.00 | 0.97 |
Ba | 189.00 | 246.00 | 482.00 | 391.00 | 466.00 | 1188.00 | 1259.00 | 847.62 | 788.84 |
La | 22.80 | 24.70 | 11.50 | 16.40 | 19.00 | 34.20 | 33.80 | 39.92 | 39.39 |
Ce | 48.00 | 58.90 | 25.00 | 29.60 | 32.40 | 63.60 | 63.50 | 48.98 | 55.54 |
Pr | 6.15 | 7.81 | 3.02 | 3.58 | 3.43 | 7.74 | 7.98 | 5.17 | 5.59 |
Nd | 24.10 | 30.40 | 11.00 | 13.40 | 11.80 | 30.50 | 31.40 | 17.05 | 17.54 |
Sm | 4.83 | 6.17 | 1.93 | 2.38 | 2.01 | 5.52 | 5.87 | 2.80 | 2.79 |
Eu | 1.30 | 1.73 | 0.77 | 0.82 | 0.75 | 1.96 | 2.07 | 1.11 | 1.08 |
Gd | 4.31 | 5.44 | 1.84 | 2.29 | 1.92 | 4.94 | 5.03 | 2.80 | 2.63 |
Tb | 0.67 | 0.83 | 0.28 | 0.34 | 0.28 | 0.69 | 0.74 | 0.39 | 0.36 |
Dy | 3.45 | 4.47 | 1.45 | 1.82 | 1.41 | 3.39 | 3.63 | 2.26 | 2.08 |
Ho | 0.66 | 0.84 | 0.29 | 0.36 | 0.26 | 0.60 | 0.64 | 0.46 | 0.43 |
Er | 1.89 | 2.29 | 0.88 | 1.11 | 0.75 | 1.64 | 1.75 | 1.46 | 1.36 |
Tm | 0.34 | 0.38 | 0.18 | 0.23 | 0.16 | 0.26 | 0.28 | 0.26 | 0.24 |
Yb | 2.19 | 2.38 | 1.22 | 1.59 | 0.94 | 1.61 | 1.77 | 1.61 | 1.59 |
Lu | 0.35 | 0.37 | 0.18 | 0.27 | 0.13 | 0.22 | 0.25 | 0.30 | 0.27 |
Hf | 8.40 | 7.97 | 6.05 | 7.55 | 6.71 | 2.66 | 3.07 | 10.61 | 14.22 |
Ta | 1.12 | 1.38 | 0.42 | 0.44 | 0.38 | 0.56 | 0.59 | 0.61 | 0.66 |
Pb | 15.90 | 16.90 | 25.30 | 21.30 | 23.50 | 25.40 | 26.30 | 29.55 | 23.56 |
Th | 12.80 | 9.96 | 6.98 | 7.66 | 2.71 | 3.11 | 3.46 | 15.96 | 18.06 |
U | 2.94 | 2.88 | 2.08 | 2.28 | 0.90 | 0.86 | 0.98 | 3.92 | 5.06 |
ΣREE | 121.04 | 146.71 | 59.54 | 74.19 | 75.24 | 156.87 | 158.71 | 124.58 | 130.89 |
LREE | 107.18 | 129.71 | 53.22 | 66.18 | 69.39 | 143.52 | 144.62 | 115.04 | 121.94 |
HREE | 13.86 | 17.00 | 6.32 | 8.01 | 5.85 | 13.35 | 14.09 | 9.54 | 8.95 |
LREE/HREE | 7.73 | 7.63 | 8.42 | 8.26 | 11.86 | 10.75 | 10.26 | 12.06 | 13.62 |
(La/Yb)N | 7.47 | 7.44 | 6.76 | 7.40 | 14.50 | 15.24 | 13.70 | 17.77 | 17.75 |
δEu | 0.87 | 0.91 | 1.25 | 1.07 | 1.17 | 1.15 | 1.16 | 1.21 | 1.22 |
Sample No. | ZK32-1-1 | ZKN001-1 | ZKN001-2 | GY-3-1 | GY-3-2 | ZK3-3-1 | ZK3-3-2 | ZK3-6-1 | ZK3-6-2 |
Rock Type | BSP (Biotite Syenite Porphyry) | MD (Fine-Grained Biotite Hornblende Monzo-Diorite) | GD (Fine-Grained Hornblende Monzo-Gabbro) | ||||||
Major element (wt.%) | |||||||||
SiO2 | 58.53 | 62.40 | 63.23 | 56.15 | 56.10 | 57.75 | 57.50 | 48.98 | 48.94 |
TiO2 | 0.54 | 0.54 | 0.51 | 0.77 | 0.73 | 0.70 | 0.71 | 1.03 | 1.06 |
Al2O3 | 16.43 | 17.13 | 17.04 | 15.26 | 14.25 | 15.76 | 15.60 | 14.46 | 14.25 |
Fe2O3 | 3.30 | 3.29 | 2.43 | 3.94 | 4.81 | 3.58 | 3.40 | 4.98 | 4.71 |
FeO | 2.15 | 1.52 | 1.06 | 3.08 | 3.05 | 3.62 | 3.65 | 5.82 | 6.02 |
MnO | 0.09 | 0.04 | 0.08 | 0.12 | 0.11 | 0.11 | 0.11 | 0.15 | 0.16 |
MgO | 2.56 | 1.05 | 0.81 | 4.37 | 4.59 | 4.06 | 4.04 | 7.84 | 8.16 |
CaO | 1.84 | 0.73 | 1.04 | 5.74 | 4.80 | 5.07 | 5.20 | 8.36 | 8.59 |
Na2O | 3.23 | 5.82 | 6.16 | 4.14 | 3.92 | 4.65 | 4.76 | 3.89 | 3.68 |
K2O | 6.20 | 6.10 | 5.76 | 4.74 | 5.49 | 2.68 | 2.77 | 1.44 | 1.50 |
P2O5 | 0.43 | 0.21 | 0.14 | 0.52 | 0.58 | 0.30 | 0.30 | 0.40 | 0.41 |
LOI | 4.43 | 1.00 | 1.59 | 0.96 | 1.33 | 1.44 | 1.70 | 2.31 | 2.22 |
Total | 99.73 | 99.83 | 99.85 | 99.79 | 99.76 | 99.72 | 99.74 | 99.66 | 99.70 |
K2O + Na2O | 9.43 | 11.92 | 11.92 | 8.88 | 9.41 | 7.33 | 7.53 | 5.33 | 5.18 |
A/CNK | 1.07 | 0.98 | 0.93 | 0.68 | 0.67 | 0.80 | 0.77 | 0.62 | 0.61 |
A/NK | 1.37 | 1.06 | 1.04 | 1.28 | 1.15 | 1.49 | 1.44 | 1.82 | 1.86 |
TFe2O3 | 5.69 | 4.98 | 3.61 | 7.36 | 8.20 | 7.60 | 7.46 | 11.45 | 11.40 |
Mg# | 47.1 | 29.5 | 30.8 | 54.0 | 52.6 | 51.4 | 51.8 | 57.6 | 58.6 |
Trace element (ppm) | |||||||||
Sc | 8.84 | 4.80 | 2.20 | 16.40 | 20.80 | 17.80 | 12.90 | 24.30 | 24.30 |
V | 124.00 | 102.00 | 76.00 | 163.00 | 167.00 | 147.00 | 155.00 | 259.00 | 255.00 |
Cr | 31.80 | 4.51 | 2.34 | 66.00 | 96.40 | 45.90 | 35.40 | 178.00 | 163.00 |
Co | 16.60 | 7.33 | 5.12 | 23.30 | 19.80 | 16.50 | 17.30 | 35.60 | 36.50 |
Ni | 29.41 | 11.10 | 8.11 | 35.00 | 52.70 | 20.60 | 22.60 | 81.00 | 85.20 |
Cu | 48.20 | 55.70 | 57.70 | 26.20 | 43.60 | 8.37 | 11.40 | 18.20 | 19.40 |
Zn | 64.40 | 73.90 | 50.00 | 54.30 | 56.80 | 43.90 | 45.30 | 68.40 | 68.60 |
Ga | 23.20 | 25.70 | 25.10 | 20.80 | 19.20 | 18.70 | 19.80 | 20.30 | 18.70 |
Rb | 206.00 | 245.00 | 183.00 | 159.00 | 161.00 | 50.90 | 55.50 | 26.60 | 23.40 |
Sr | 791.00 | 467.00 | 356.00 | 840.00 | 784.00 | 884.00 | 892.00 | 1937.00 | 1496.00 |
Y | 15.30 | 18.70 | 20.40 | 19.00 | 17.50 | 17.70 | 18.50 | 20.10 | 19.90 |
Zr | 239.00 | 417.00 | 500.00 | 205.00 | 187.00 | 83.00 | 94.70 | 74.70 | 76.00 |
Nb | 11.50 | 21.40 | 25.40 | 9.26 | 8.87 | 6.72 | 7.02 | 5.17 | 4.92 |
Cs | 14.59 | 2.82 | 1.30 | 4.60 | 3.96 | 0.51 | 0.56 | 0.95 | 0.47 |
Ba | 778.00 | 516.00 | 325.00 | 690.00 | 813.00 | 1269.00 | 1375.00 | 791.00 | 699.00 |
La | 29.70 | 41.20 | 43.90 | 30.40 | 30.30 | 26.60 | 27.80 | 18.70 | 18.00 |
Ce | 55.30 | 70.40 | 80.60 | 66.20 | 60.40 | 50.70 | 54.80 | 41.10 | 38.60 |
Pr | 6.49 | 8.04 | 8.87 | 8.50 | 7.29 | 6.30 | 6.80 | 5.69 | 5.54 |
Nd | 25.00 | 28.20 | 30.30 | 34.80 | 29.20 | 25.10 | 26.80 | 25.80 | 24.90 |
Sm | 4.56 | 4.97 | 5.23 | 6.49 | 5.55 | 4.69 | 4.97 | 5.40 | 5.18 |
Eu | 1.43 | 1.35 | 1.22 | 2.04 | 1.78 | 1.72 | 1.85 | 1.84 | 1.79 |
Gd | 4.11 | 4.84 | 5.06 | 5.59 | 4.94 | 4.33 | 4.54 | 4.84 | 4.79 |
Tb | 0.59 | 0.67 | 0.72 | 0.80 | 0.70 | 0.64 | 0.68 | 0.76 | 0.76 |
Dy | 2.95 | 3.48 | 3.81 | 3.97 | 3.52 | 3.47 | 3.60 | 4.09 | 4.06 |
Ho | 0.55 | 0.67 | 0.75 | 0.72 | 0.63 | 0.67 | 0.69 | 0.76 | 0.77 |
Er | 1.56 | 1.97 | 2.26 | 1.94 | 1.70 | 1.83 | 1.88 | 2.06 | 2.09 |
Tm | 0.28 | 0.34 | 0.40 | 0.32 | 0.29 | 0.30 | 0.31 | 0.33 | 0.33 |
Yb | 1.75 | 2.23 | 2.65 | 1.98 | 1.76 | 1.81 | 1.91 | 2.00 | 1.96 |
Lu | 0.25 | 0.34 | 0.40 | 0.29 | 0.25 | 0.27 | 0.28 | 0.29 | 0.28 |
Hf | 5.75 | 10.70 | 13.30 | 5.19 | 4.63 | 2.59 | 2.93 | 2.27 | 2.39 |
Ta | 1.18 | 1.40 | 1.70 | 0.55 | 0.64 | 0.44 | 0.49 | 0.35 | 0.28 |
Pb | 22.20 | 20.70 | 15.70 | 11.60 | 16.80 | 8.39 | 7.76 | 5.10 | 5.86 |
Th | 11.00 | 20.00 | 24.80 | 6.79 | 7.51 | 3.45 | 3.39 | 1.51 | 1.42 |
U | 3.42 | 5.15 | 6.74 | 2.14 | 2.13 | 0.96 | 1.07 | 0.48 | 0.41 |
ΣREE | 134.52 | 168.70 | 186.17 | 164.04 | 148.31 | 128.43 | 136.91 | 113.66 | 109.05 |
LREE | 122.48 | 154.16 | 170.12 | 148.43 | 134.52 | 115.11 | 123.02 | 98.53 | 94.01 |
HREE | 12.04 | 14.54 | 16.05 | 15.61 | 13.79 | 13.32 | 13.89 | 15.13 | 15.04 |
LREE/HREE | 10.17 | 10.60 | 10.60 | 9.51 | 9.75 | 8.64 | 8.86 | 6.51 | 6.25 |
(La/Yb)N | 12.17 | 13.25 | 11.88 | 11.01 | 12.35 | 10.54 | 10.44 | 6.71 | 6.59 |
δEu | 1.01 | 0.84 | 0.73 | 1.04 | 1.04 | 1.17 | 1.19 | 1.10 | 1.10 |
No. | t (Ma) | 176Yb /177Hf | 176Lu/177Hf | 176Hf/177Hf | 1s | eHf(0) | eHf(t) | TDM1(Hf) | TDM2(Hf) | ƒLu/Hf |
---|---|---|---|---|---|---|---|---|---|---|
ZKS002-8-FBAS | ||||||||||
ZKS002-8-3 | 126 | 0.025425 | 0.001148 | 0.282361 | 0.000020 | −14.53 | −11.80 | 1264 | 2684 | −0.97 |
ZKS002-8-5 | 126 | 0.035780 | 0.001419 | 0.282338 | 0.000010 | −15.3 | −12.64 | 1306 | 2760 | −0.96 |
ZKS002-8-8 | 126 | 0.084008 | 0.003044 | 0.282353 | 0.000010 | −14.82 | −12.25 | 1343 | 2724 | −0.91 |
ZKS002-8-9 | 129 | 0.031872 | 0.001309 | 0.282319 | 0.000009 | −16.02 | −13.31 | 1329 | 2819 | −0.96 |
ZKS002-8-10 | 2540 | 0.012299 | 0.000511 | 0.281326 | 0.000008 | −51.12 | 4.99 | 2655 | 2804 | −0.98 |
ZKS002-8-11 | 136 | 0.025782 | 0.000891 | 0.282178 | 0.000008 | −21.01 | −18.27 | 1511 | 3262 | −0.97 |
ZKS002-8-12 | 1799 | 0.003867 | 0.000135 | 0.281530 | 0.000008 | −43.92 | −4.04 | 2358 | 3091 | −1.00 |
ZKS002-8-13 | 127 | 0.028804 | 0.001222 | 0.282304 | 0.000008 | −16.55 | −13.83 | 1347 | 2866 | −0.96 |
ZKS002-8-16 | 127 | 0.038991 | 0.001456 | 0.282362 | 0.000009 | −14.49 | −11.78 | 1273 | 2683 | −0.96 |
ZKS002-8-16 | 127 | 0.014007 | 0.000542 | 0.282350 | 0.000007 | −14.9 | −12.14 | 1260 | 2715 | −0.98 |
ZKS002-8-17 | 126 | 0.024920 | 0.000937 | 0.282359 | 0.000019 | −14.60 | −11.85 | 1260 | 2689 | −0.97 |
ZKS002-8-20 | 133 | 0.031035 | 0.001327 | 0.282333 | 0.000013 | −15.5 | −12.82 | 1310 | 2775 | −0.96 |
ZKS002-8-21 | 132 | 0.029445 | 0.001248 | 0.282350 | 0.000008 | −14.91 | −12.19 | 1283 | 2719 | −0.96 |
ZKS002-8-22 | 137 | 0.019798 | 0.000915 | 0.282325 | 0.000008 | −15.81 | −13.06 | 1307 | 2797 | −0.97 |
ZKS002-8-23 | 130 | 0.034775 | 0.001211 | 0.282321 | 0.000011 | −15.95 | −13.23 | 1323 | 2812 | −0.96 |
ZK3-3-MD | ||||||||||
ZK3-3-3 | 123 | 0.055182 | 0.002338 | 0.282124 | 0.000018 | −22.90 | −20.38 | 1648 | 3445 | −0.93 |
ZK3-3-5 | 130 | 0.070482 | 0.002922 | 0.282123 | 0.000022 | −22.97 | −20.49 | 1677 | 3455 | −0.91 |
ZK3-3-7 | 123 | 0.064161 | 0.002669 | 0.282070 | 0.000016 | −24.84 | −22.35 | 1743 | 3619 | −0.92 |
ZK3-3-9 | 123 | 0.082849 | 0.003469 | 0.282112 | 0.000020 | −23.33 | −20.90 | 1719 | 3490 | −0.90 |
ZK3-3-10 | 122 | 0.076025 | 0.003167 | 0.282145 | 0.000022 | −22.16 | −19.7 | 1655 | 3385 | −0.90 |
ZK3-3-12 | 124 | 0.062638 | 0.002612 | 0.282153 | 0.000025 | −21.90 | −19.40 | 1619 | 3358 | −0.92 |
ZK3-3-13 | 130 | 0.062195 | 0.002554 | 0.282180 | 0.000024 | −20.92 | −18.42 | 1577 | 3271 | −0.92 |
ZK3-3-16 | 126 | 0.091824 | 0.003736 | 0.282077 | 0.000021 | −24.57 | −22.17 | 1784 | 3602 | −0.89 |
ZK3-3-17 | 128 | 0.087753 | 0.003621 | 0.282157 | 0.000036 | −21.75 | −19.34 | 1659 | 3351 | −0.89 |
ZK3-3-19 | 128 | 0.088719 | 0.003657 | 0.282183 | 0.000042 | −20.84 | −18.43 | 1623 | 3271 | −0.89 |
ZK3-6-GD | ||||||||||
ZK3-6-1 | 126 | 0.085878 | 0.003594 | 0.282145 | 0.000025 | −22.18 | −19.76 | 1676 | 3389 | −0.89 |
ZK3-6-2 | 124 | 0.102319 | 0.004309 | 0.282184 | 0.000022 | −20.80 | −18.44 | 1651 | 3271 | −0.87 |
ZK3-6-3 | 126 | 0.115486 | 0.004769 | 0.282186 | 0.000025 | −20.73 | −18.40 | 1670 | 3267 | −0.86 |
ZK3-6-5 | 124 | 0.138117 | 0.005540 | 0.282185 | 0.000024 | −20.76 | −18.50 | 1710 | 3275 | −0.83 |
ZK3-6-6 | 122 | 0.076656 | 0.003628 | 0.282196 | 0.000022 | −20.38 | −17.96 | 1602 | 3229 | −0.89 |
ZK3-6-8 | 119 | 0.049361 | 0.002223 | 0.282150 | 0.000020 | −21.99 | −19.45 | 1606 | 3363 | −0.93 |
ZK3-6-9 | 125 | 0.107329 | 0.004582 | 0.282214 | 0.000022 | −19.72 | −17.38 | 1617 | 3176 | −0.86 |
ZK3-6-12 | 125 | 0.064189 | 0.002802 | 0.282172 | 0.000021 | −21.23 | −18.75 | 1600 | 3299 | −0.92 |
ZK3-6-16 | 129 | 0.055839 | 0.002437 | 0.282186 | 0.000020 | −20.72 | −18.21 | 1563 | 3252 | −0.93 |
ZK3-6-17 | 125 | 0.131636 | 0.005386 | 0.282203 | 0.000021 | −20.13 | −17.85 | 1674 | 3218 | −0.84 |
ZK3-6-19 | 124 | 0.132792 | 0.005927 | 0.282227 | 0.000022 | −19.26 | −17.04 | 1663 | 3144 | −0.82 |
ZK3-6-21 | 123 | 0.070731 | 0.002944 | 0.282137 | 0.000018 | −22.47 | −19.99 | 1658 | 3410 | −0.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, X.; Sun, J.; Sun, F.; Mei, Y.; Liu, Y.; Men, L.; Zhao, K.; Zhang, X. Petrogenesis of the Early Cretaceous Hongshan Complex in the Southern Taihang Mountains: Constraints from Element Geochemistry, Zircon U-Pb Geochronology and Hf Isotopes. Minerals 2021, 11, 1111. https://doi.org/10.3390/min11101111
Chu X, Sun J, Sun F, Mei Y, Liu Y, Men L, Zhao K, Zhang X. Petrogenesis of the Early Cretaceous Hongshan Complex in the Southern Taihang Mountains: Constraints from Element Geochemistry, Zircon U-Pb Geochronology and Hf Isotopes. Minerals. 2021; 11(10):1111. https://doi.org/10.3390/min11101111
Chicago/Turabian StyleChu, Xiaolei, Jinggui Sun, Fanting Sun, Yanxiong Mei, Yang Liu, Lanjing Men, Keqiang Zhao, and Xiaotian Zhang. 2021. "Petrogenesis of the Early Cretaceous Hongshan Complex in the Southern Taihang Mountains: Constraints from Element Geochemistry, Zircon U-Pb Geochronology and Hf Isotopes" Minerals 11, no. 10: 1111. https://doi.org/10.3390/min11101111
APA StyleChu, X., Sun, J., Sun, F., Mei, Y., Liu, Y., Men, L., Zhao, K., & Zhang, X. (2021). Petrogenesis of the Early Cretaceous Hongshan Complex in the Southern Taihang Mountains: Constraints from Element Geochemistry, Zircon U-Pb Geochronology and Hf Isotopes. Minerals, 11(10), 1111. https://doi.org/10.3390/min11101111