REE Characteristics of Lower Cretaceous Limestone Succession in Gümüşhane, NE Turkey: Implications for Ocean Paleoredox Conditions and Diagenetic Alteration
Abstract
:1. Introduction
2. Geological Setting
3. Studied Section
4. Material and Methods
5. Results
5.1. Petrography
5.2. Major and Trace Elements
6. Discussion
6.1. Siliciclastic Impurities
6.2. Diagenetic Influence
6.3. Early Cretaceous Paleoenvironmental Implications
7. Conclusions
- Analyzed micritic limestone samples mainly exhibit a seawater signature including (1) slight LREE depletion relative to the HREEs (ave. 0.72 of Nd/YbN and ave. 0.73 of Pr/YbN), (2) negative Ce anomalies (Ce*/Ce = 0.38–0.81; ave. 0.57), (3) positive La anomaly (La*/La = 0.21–3.02; ave. 1.75) and (4) superchondritic Y/Ho (ave. 46.26).
- Micritic limestone also shows slight positive Eu* anomalies (Eu*/Eu = 1.01–1.65; ave. 1.29) and relatively higher Sm/Yb (1.39–1.26; ave. 2.05) and La/YbN (0.68–1.35; 0.96) ratios compared to the modern seawater. This may imply the presence of water-rock interaction between parental seawater and basaltic rocks at elevated temperatures triggered by hydrothermal activity associated with Early Cretaceous basaltic magma generation.
- The studied sections exhibit negative Ce* anomalies, varying from 0.38 to 0.81, which may confirm mostly oxic to dysoxic paleoceanographic conditions. Further, dyspoxic (Ce* = 0.71–0.81) conditions are also recorded in the most upper part of the MF-1 Microfacies during the late Aptian-early Albian.
- The current work suggests that the shallower part of the paleo-ocean remained relatively less oxic and became suboxic during the Late Aptian-Albian, while deeper facies displaying overall transgressive trend were developed in relatively more oxic paleo-oceanic conditions up to end of Albian.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Franchi, F. Petrographic and geochemical characterization of the Lower Transvaal Supergroup stromatolitic dolostones (Kanye Basin, Botswana). Precambrian Res. 2018, 310, 93–113. [Google Scholar] [CrossRef]
- Frimmel, H.E. Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator. Chem. Geol. 2009, 258, 338–353. [Google Scholar] [CrossRef]
- Liu, X.M.; Hardisty, D.S.; Lyons, T.W.; Swart, P.K. Evaluating the fidelity of the cerium paleoredox tracer during variable carbonate diagenesis on the Great Bahamas Bank. Geochim. Et Cosmochim. Acta 2019, 248, 25–42. [Google Scholar] [CrossRef]
- Nothdurft, L.D.; Webb, G.E.; Kamber, B.S. Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, Western Australia: Confirmation of a seawater REE proxy in ancient limestones. Geochim. Et Cosmochim. Acta 2004, 68, 263–283. [Google Scholar] [CrossRef]
- Redivo, H.V.; Mizusaki, A.M.; Santana, A.V. REE patterns and trustworthiness of stable carbon isotopes of Salitre Formation, Irecê Basin (Neoproterozoic), São Francisco Craton. J. S. Am. Earth Sci. 2019, 90, 255–264. [Google Scholar] [CrossRef]
- Webb, G.E.; Kamber, B.S. Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy. Geochim. Et Cosmochim. Acta 2000, 64, 1557–1565. [Google Scholar] [CrossRef]
- Alibo, D.S.; Nozaki, Y. Rare earth elements in seawater: Particle association, shale-normalization, and Ce oxidation. Geochim. Et Cosmochim. Acta 1999, 63, 363–372. [Google Scholar] [CrossRef]
- Azmy, K.; Brand, U.; Sylvester, P.; Gleeson, S.A.; Logan, A.; Bitner, M.A. Biogenic and abiogenic low-Mg calcite (bLMC and aLMC): Evaluation of seawater-REE composition, water masses and carbonate diagenesis. Chem. Geol. 2011, 280, 180–190. [Google Scholar] [CrossRef] [Green Version]
- Nozaki, Y. Rare earth elements and their isotopes. Encycl. Ocean Sci. 2001, 4, 2354–2366. [Google Scholar]
- Piper, D.Z.; Bau, M. Normalized rare earth elements in water, sediments, and wine: Identifying sources and environmental redox conditions. Am. J. Anal. Chem. 2013, 4, 69–83. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Nozaki, Y. Rare earth elements and yttrium in seawater: ICP-MS determinations in the East Caroline, Coral Sea, and South Fiji basins of the western South Pacific Ocean. Geochim. Et Cosmochim. Acta 1996, 60, 4631–4644. [Google Scholar] [CrossRef]
- Zhang, J.; Nozaki, Y. Behavior of rare earth elements in seawater at the ocean margin: A study along the slopes of the Sagami and Nankai troughs near Japan. Geochim. Et Cosmochim. Acta 1998, 62, 1307–1317. [Google Scholar] [CrossRef]
- Sholkovitz, E.R.; Landing, W.M.; Lewis, B.L. Ocean particle chemistry: The fractionation of rare earth elements between suspended particles and seawater. Geochim. Et Cosmochim. Acta 1994, 58, 1567–1579. [Google Scholar] [CrossRef]
- Elderfield, H. The oceanic chemistry of the rare-earth elements. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1988, 325, 105–126. [Google Scholar]
- Caetano-Filho, S.; Paula-Santos, G.M.; Dias-Brito, D. Carbonate REE + Y signatures from the restricted early marine phase of South Atlantic Ocean (late Aptian–Albian): The influence of early anoxic diagenesis on shale-normalized REE + Y patterns of ancient carbonate rocks. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 500, 69–83. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Torres, M.E.; Haley, B.A.; Kastner, M.; Pohlman, J.W.; Riedel, M.; Lee, Y.J. The effect of diagenesis and fluid migration on rare earth element distribution in pore fluids of the northern Cascadia accretionary margin. Chem. Geol. 2012, 291, 152–165. [Google Scholar] [CrossRef]
- Li, F.; Webb, G.E.; Algeo, T.J.; Kershaw, S.; Lu, C.; Oehlert, A.M.; Tan, X. Modern carbonate ooids preserve ambient aqueous REE signatures. Chem. Geol. 2019, 509, 163–177. [Google Scholar] [CrossRef]
- Qing, H.; Mountjoy, E.W. Rare earth element geochemistry of dolomites in the Middle Devonian Presqu’ile barrier, Western Canada Sedimentary Basin: Implications for fluid-rock ratios during dolomitization. Sedimentology 1994, 41, 787–804. [Google Scholar] [CrossRef]
- Chen, J.; Algeo, T.J.; Zhao, L.; Chen, Z.Q.; Cao, L.; Zhang, L.; Li, Y. Diagenetic uptake of rare earth elements by bioapatite, with an example from Lower Triassic conodonts of South China. Earth Sci. Rev. 2015, 149, 181–202. [Google Scholar] [CrossRef]
- De Baar, H.J.; German, C.R.; Elderfield, H.; Van Gaans, P. Rare earth element distributions in anoxic waters of the Cariaco Trench. Geochim. Et Cosmochim. Acta 1988, 52, 1203–1219. [Google Scholar] [CrossRef]
- Mongelli, G.; Sinisi, R.; Paternoster, M.; Perri, F. REEs and U distribution in P-rich nodules from Gelasian Apulian Tethyan carbonate: A genetic record. J. Geochem. Explor. 2018, 194, 19–28. [Google Scholar] [CrossRef]
- Sarangi, S.; Mohanty, S.P.; Barik, A. Rare earth element characteristics of Paleoproterozoic cap carbonates pertaining to the Sausar Group, Central India: Implications for ocean paleoredox conditions. J. Asian Earth Sci. 2017, 148, 31–50. [Google Scholar] [CrossRef]
- Özyurt, M.; Kirmaci, M.Z.; Yilmaz, İ.Ö.; Kandemir, R. Sedimentological and Geochemical Records of Lower Cretaceous Carbonate Successions Around Trabzon (NE Turkey). In Patterns and Mechanisms of Climate, Paleoclimate and Paleoenvironmental Changes from Low-Latitude Regions; Zhang, Z., Khélif, N., Mezghani, A., Heggy, E., Eds.; Springer: London, UK; Berlin/Heidelberg, Germany, 2019; pp. 19–21. [Google Scholar]
- Görür, N. Timing of opening of the Black Sea basin. Tectonophysics 1988, 147, 247–262. [Google Scholar] [CrossRef]
- Eren, M.; Tasli, K. Kilop cretaceous hardground (Kale, Gümüshane, NE Turkey): Description and origin. J. Asian Earth Sci. 2002, 20, 433–448. [Google Scholar] [CrossRef]
- Kara-Gülbay, R.; Kırmacı, M.Z.; Korkmaz, S. Organic geochemistry and depositional environment of the Aptian bituminous limestone in the Kale Gümüşhane area (NE-Turkey): An example of lacustrine deposits on the platform carbonate sequence. Org. Geochem. 2012, 49, 6–17. [Google Scholar] [CrossRef]
- Kırmacı, M.Z. Sedimatological Investigation of the Upper Jurassic-Lower Cretaceous Berdiga Limestone in the Alucra-Gumushane-Bayburt areas (Eastern Pontide Southern Zone). Ph.D. Thesis, Karadeniz Technical University, Ortahisar/Trabzon, Turkey, 1992; p. 256. [Google Scholar]
- Kirmaci, M.Z.; Koch, R.; Bucur, J.I. An Early Cretaceous section in the Kircaova Area (Berdiga Limestone, NE-Turkey) and its correlation with platform carbonates in W-Slovenia. Facies 1996, 34, 1–21. [Google Scholar] [CrossRef]
- Koch, R.; Bucur, I.I.; Kirmaci, M.Z.; Eren, M.; Tasli, K. Upper Jurassic and Lower Cretaceous carbonate rocks of the Berdiga Limestone–Sedimentation on an onbound platform with volcanic and episodic siliciclastic influx. Biostratigraphy, facies and diagenesis (Kircaova, Kale-Gümüşhane area; NE-Turkey). Neues Jahrb. Für Geol. Paläontol. Abh. 2008, 247, 23–61. [Google Scholar] [CrossRef]
- Vincent, S.J.; Guo, L.; Flecker, R.; BouDagher-Fadel, M.K.; Ellam, R.M.; Kandemir, R. Age constraints on intra-formational unconformities in Upper Jurassic-Lower Cretaceous carbonates in northeast Turkey; geodynamic and hydrocarbon implications. Mar. Petrol. Geol. 2018, 91, 639–657. [Google Scholar] [CrossRef] [Green Version]
- Özyurt, M. Origin of Dolomitization in Upper Jurassıc-Lower Cretaceous Platform Carbonates (Berdiga Formatıon) in Gümüşhane Area. Ph.D. Thesis, Karadeniz Technical University, Trabzon, Turkey, 2019. [Google Scholar]
- Özyurt, M.; Kırmacı, M.Z.; Al-Aasm, I.S. Geochemical characteristics of Upper Jurassic–Lower Cretaceous platform carbonates in Hazine Mağara, Gümüşhane (northeast Turkey): Implications for dolomitization and recrystallization. Can. J. Earth Sci. 2019, 56, 306–320. [Google Scholar] [CrossRef]
- Özyurt, M.; Al-Aasm, İ.; Kirmaci, M.Z. Diagenetic Evolution of Upper Jurassic-Lower Cretaceous Berdiga Formation, NE Turkey: Petrographic and Geochemical Evidence. In Paleobiodiversity and Tectono-Sedimentary Records in the Mediterranean Tethys and Related Eastern Areas; Boughdiri, M., Bádenas, B., Selden, P., Jaillard, E., Bengtson, P., Granier, B.R.C., Eds.; Springer: London, UK; Berlin/Heidelberg, Germany,, 2019; pp. 175–177. [Google Scholar]
- Kırmacı, M.Z.; Yıldız, M.; Kandemir, R.; Eroğlu-Gümrük, T. Multistage dolomitization in Late Jurassic–Early Cretaceous platform carbonates (Berdiga Formation), Başoba Yayla (Trabzon), NE Turkey: Implications of the generation of magmatic arc on dolomitization. Mar. Petrol. Geol. 2018, 89, 515–529. [Google Scholar] [CrossRef]
- Pelin, S. Geological Investigation of Alucra (Giresun) Southeast Region in Terms of Petroleum Opportunities. Ph.D. Thesis, Karadeniz Technical University, Trabzon, Turkey, 1977. [Google Scholar]
- Taslı, K. Stratigraphy, Paleogeography and Micropaleontology of Upper Jurassic–Lower Cretaceous Carbonate Sequence in the Gümüshane and Bayburt Areas (NE Turkey). Ph.D. Thesis, Karadeniz Technical University, Trabzon, Turkey, 1991. [Google Scholar]
- Taslı, K.; Özer, E.; Yılmaz, C. Biostratigraphic and Environmental Analysis of the Upper Jurassic-Lower Cretaceous Carbonate Sequence in the Başoba Yayla Area (Trabzon, NE Turkey). Turk. J. Earth Sci. 2000, 8, 125–135. [Google Scholar]
- Yildiz, M.; Ziya Kirmaci, M.; Kandemir, R.; Taslı, K. Benthic Foraminiferal Assemblages and Facies Analysis of the Late Jurrasic-Early Cretaceous Platform Carbonate Succession in the Mescitli-İkisu Area (Gümüşhane, NE Turkey). In Proceedings of the ICOCEE-CAPPADOCIA2017 Conference, Nevsehir, Turkey, 8–10 May 2017. [Google Scholar]
- Yildiz, M.; Ziya Kirmaci, M.; Kandemir, R. Dolomitization in Late Jurassic-Early Cretaceous Platform Carbonates (Berdiga Formation), Ayralaksa Yayla (Trabzon), NE Turkey. In Proceedings of the 19th EGU General Assembly, Vienna, Austria, 23–28 April 2017; Volume 19, p. 11661. [Google Scholar]
- Okay, A.I.; Sahinturk, O. AAPG Memoir 68: Regional and Petroleum Geology of the Black Sea and Surrounding Region. Chapter 15. Geol. East. Pontides 1997, 291–311. [Google Scholar]
- Okay, A.I.; Tüysüz, O. Tethyan Sutures of Northern Turkey; Geological Society Special Publications: London, UK, 1999; Volume 156, pp. 475–515. [Google Scholar]
- Gedikoğlu, A.; Pelin, S.; Özsayar, T. The main lines of geotectonic development of East Pontids in the Mesozoic era: Geocome-I. Min. Res. Exp. Inst. Geol. Soc. Turk. 1979, 551–581. [Google Scholar]
- Aydin, F. Geochronology, geochemistry, and petrogenesis of the Maçka subvolcanic intrusions: Implications for the Late Cretaceous magmatic and geodynamic evolution of the eastern part of the Sakarya Zone, northeastern Turkey. Int. Geol. Rev. 2014, 56, 1246–1275. [Google Scholar] [CrossRef]
- Karsli, O.; Dokuz, A.; Uysal, İ.; Aydin, F.; Kandemir, R.; Wijbrans, J. Generation of the Early Cenozoic adakitic volcanism by partial melting of mafic lower crust, Eastern Turkey: Implications for crustal thickening to delamination. Lithos 2010, 114, 109–120. [Google Scholar] [CrossRef]
- Karsli, O.; Dokuz, A.; Uysal, I.; Aydin, F.; Chen, B.; Kandemir, R.; Wijbrans, J. Relative contributions of crust and mantle to generation of Campanian high-K calc-alkaline I-type granitoids in a subduction setting, with special reference to the Harşit Pluton, Eastern Turkey. Contrib. Mineral. Petrol. 2010, 160, 467–487. [Google Scholar] [CrossRef] [Green Version]
- Karsli, O.; Ketenci, M.; Uysal, İ.; Dokuz, A.; Aydin, F.; Chen, B.; Wijbrans, J. Adakite-like granitoid porphyries in the Eastern Pontides, NE Turkey: Potential parental melts and geodynamic implications. Lithos 2011, 127, 354–372. [Google Scholar] [CrossRef]
- Yücel, C.; Arslan, M.; Temizel, I.; Yazar, E.A.; Ruffet, G. Evolution of K-rich magmas derived from a net veined lithospheric mantle in an ongoing extensional setting: Geochronology and geochemistry of Eocene and Miocene volcanic rocks from Eastern Pontides (Turkey). Gondwana Res. 2017, 45, 65–86. [Google Scholar] [CrossRef] [Green Version]
- Yücel, C. Geochronology, geochemistry, and petrology of adakitic Pliocene–Quaternary volcanism in the Şebinkarahisar (Giresun) area, NE Turkey. Int. Geol. Rev. 2019, 61, 754–777. [Google Scholar] [CrossRef]
- Delibaş, O.; Moritz, R.; Ulianov, A.; Chiaradia, M.; Saraç, C.; Revan, K.M.; Göç, D. Cretaceous subduction-related magmatism and associated porphyry-type Cu–Mo prospects in the Eastern Pontides, Turkey: New constraints from geochronology and geochemistry. Lithos 2016, 248, 119–137. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, C.; Carannante, G.; Kandemir, R. The rift-related Late Cretaceous drowning of the Gümüshane carbonate platform (NE Turkey). Boll. Della Soc. Geol. Italiana 2008, 127, 37–50. [Google Scholar]
- Özyurt, M.; Kırmacı, M.Z.; Yılmaz, İ.Ö.; Kandemir, R.; Taslı, K. Sedimentological and geochemical approaches for determination of the paleooceanographic and paleoclimatic conditions of Lower Cretaceous marine deposits of the eastern part of Sakarya Zone, NE Turkey. Int. J. Earth Sci. Under review.
- Kırmacı, M.Z.; Akdağ, K. Origin of dolomite in the Late Cretaceous–Paleocene limestone turbidites, eastern Pontides, Turkey. Sediment. Geol. 2005, 181, 39–57. [Google Scholar] [CrossRef]
- Yılmaz, C. Gümüşhane-Bayburt yöresindeki mesozoyik havzalarının tektono-sedimantolojik kayıtları ve kontrol etkenleri. Türk. Jeol. Bül. 2002, 45, 141–164. [Google Scholar]
- Güven, İ. 1/100000 Ölçekli Açınsama Nitelikli Türkiye Jeoloji Haritaları, Trabzon-C28 ve D28 Paftaları; Jeoloji Etütleri Dairesi, MTA Genel Müdürlüğü: Ankara, Turkey, 1998. [Google Scholar]
- Topuz, G.; Altherr, R.; Schwarz, W.H.; Dokuz, A.; Meyer, H.P. Variscan amphibolite-facies rocks from the Kurtoğlu metamorphic complex (Gümüşhane area, Eastern Pontides, Turkey). Int. J. Earth Sci. 2007, 96, 861. [Google Scholar] [CrossRef]
- Dokuz, A. A slab detachment and delamination model for the generation of Carboniferous high-potassium I-type magmatism in the Eastern Pontides, NE Turkey: The Köse composite pluton. Gondwana Res. 2011, 19, 926–944. [Google Scholar] [CrossRef]
- Topuz, G.; Altherr, R.; Siebel, W.; Schwarz, W.H.; Zack, T.; Hasözbek, A.; Şen, C. Carboniferous high-potassium I-type granitoid magmatism in the Eastern Pontides: The Gümüşhane pluton (NE Turkey). Lithos 2010, 116, 92–110. [Google Scholar] [CrossRef]
- Kandemir, R. Sedimentary Characteristics and Depositional Conditions of Lower-Middle Jurassic Şenköy Formation in and Around Gümüşhane. Ph.D. Thesis, Karadeniz Technical University, Trabzon, Turkey, 2004, unpublished work. [Google Scholar]
- Kandemir, R.; Yılmaz, C. Lithostratigraphy, facies, and deposition environment of the lower Jurassic Ammonitico Rosso type sediments (ARTS) in the Gümüşhane area, NE Turkey: Implications for the opening of the northern branch of the Neo-Tethys Ocean. J. Asian Earth Sci. 2009, 34, 586–598. [Google Scholar] [CrossRef]
- Eyuboglu, Y. Petrogenesis and U–Pb zircon chronology of felsic tuffs interbedded with turbidites (Eastern Pontides Orogenic Belt, NE Turkey): Implications for Mesozoic geodynamic evolution of the eastern Mediterranean region and accumulation rates of turbidite sequences. Lithos 2015, 212, 74–92. [Google Scholar]
- Yilmaz, C.; Kandemir, R. Sedimentary records of the extensional tectonic regime with temporal cessation: Gumushane Mesozoic Basin (NE Turkey). Geol. Carpath. Bratisl. 2006, 57, 3. [Google Scholar]
- Arslan, M.; Aliyazicioglu, I. Geochemical and petrological characteristics of the Kale (Gümüshane) volcanic rocks: Implications for the Eocene evolution of eastern Pontide arc volcanism, northeast Turkey. Int. Geol. Rev. 2001, 43, 595–610. [Google Scholar] [CrossRef]
- Karsli, O.; Chen, B.; Aydin, F.; Şen, C. Geochemical and Sr–Nd–Pb isotopic compositions of the Eocene Dölek and Sariçiçek Plutons, Eastern Turkey: Implications for magma interaction in the genesis of high-K calc-alkaline granitoids in a post-collision extensional setting. Lithos 2007, 98, 67–96. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, L.; Chen, Z.Q.; Algeo, T.J.; Cao, L.; Wang, X. Oceanic environmental changes on a shallow carbonate platform (Yangou, Jiangxi Province, South China) during the Permian-Triassic transition: Evidence from rare earth elements in conodont bioapatite. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 486, 6–16. [Google Scholar] [CrossRef]
- Premoli Silva, I.; Sliter, W.V. Cretaceous planktonic foraminiferal biostratigraphy and evolutionary trends from the Bottaccione section, Gubbio, Italy. Paleontogr. Ital. 1995, 82, 1–89. [Google Scholar]
- Dunham, R.J. Classification of Carbonate Rocks According to Depositional Textures; AAPG: Tulsa, OK, USA, 1962; pp. 108–121. [Google Scholar]
- Flügel, E. Microfacies Data: Fabrics. In Microfacies of Carbonate Rocks; Springer: Berlin/Heidelberg, Germany, 2004; pp. 177–242. [Google Scholar]
- McLennan, S.M.; Taylor, S.R. Archaean Sedimentary Rocks and Their Relation to the Composition of the Archaean Continental Crust. In Archaean Geochemistry; Springer: Berlin/Heidelberg, Germany, 1984; pp. 47–72. [Google Scholar]
- Bau, M.; Dulski, P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Res. 1996, 79, 37–55. [Google Scholar] [CrossRef]
- Shields, G.; Stille, P. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: An isotopic and REE study of Cambrian phosphorites. Chem. Geol. 2001, 175, 29–48. [Google Scholar] [CrossRef]
- Alexander, B.W.; Bau, M.; Andersson, P.; Dulski, P. Continentally-derived solutes in shallow Archean seawater: Rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa. Geochim. Et Cosmochim. Acta 2008, 72, 378–394. [Google Scholar] [CrossRef]
- Tang, Y.; Han, G.; Wu, Q.; Xu, Z. Use of rare earth element patterns to trace the provenance of the atmospheric dust near Beijing, China. Environ. Earth Sci. 2013, 68, 871–879. [Google Scholar] [CrossRef]
- Elderfield, H.; Upstill-Goddard, R.; Sholkovitz, E.R. The rare earth elements in rivers, estuaries and coastal sea waters: Processes affecting crustal input of elements to the ocean and their significance to the composition of sea water. Geochim. Cosmocim. Acta 1990, 55, 1807–1813. [Google Scholar]
- Hu, M.; Ngia, N.R.; Gao, D. Dolomitization and hydrotectonic model of burial dolomitization of the Furongian-Lower Ordovician carbonates in the Tazhong Uplift, central Tarim Basin, NW China: Implications from petrography and geochemistry. Mar. Petrol. Geol. 2019, 106, 88–115. [Google Scholar] [CrossRef]
- Zaky, A.H.; Brand, U.; Azmy, K. A new sample processing protocol for procuring seawater REE signatures in biogenic and abiogenic carbonates. Chem. Geol. 2015, 416, 36–50. [Google Scholar] [CrossRef]
- Gromet, L.P.; Haskin, L.A.; Korotev, R.L.; Dymek, R.F. The “North American shale composite”: Its compilation, major and trace element characteristics. Geochim. Et Cosmochim. Acta 1984, 48, 2469–2482. [Google Scholar] [CrossRef]
- Bau, M. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chem. Geol. 1991, 93, 219–230. [Google Scholar] [CrossRef]
- Liu, J.; Song, J.; Yuan, H.; Li, X.; Li, N.; Duan, L. Rare earth element and yttrium geochemistry in sinking particles and sediments of the Jiaozhou Bay, North China: Potential proxy assessment for sediment resuspension. Mar. Pollut. Bull. 2019, 144, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Nozaki, Y.; Zhang, J.; Amakawa, H. The fractionation between Y and Ho in the marine environment. Earth Planet. Sci. Lett. 1997, 148, 329–340. [Google Scholar] [CrossRef]
- Bau, M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib. Mineral. Petrol. 1996, 123, 323–333. [Google Scholar] [CrossRef]
- Banner, J.L.; Hanson, G.N. Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis. Geochim. Et Cosmochim. Acta 1990, 54, 3123–3137. [Google Scholar] [CrossRef]
- Banner, J.L.; Hanson, G.N.; Meyers, W.J. Rare earth element and Nd isotopic variations in regionally extensive dolomites from the Burlington-Keokuk Formation (Mississippian); implications for REE mobility during carbonate diagenesis. J. Sediment. Res. 1988, 58, 415–432. [Google Scholar]
- Barrat, J.A.; Boulegue, J.; Tiercelin, J.J.; Lesourd, M. Strontium isotopes and rare-earth element geochemistry of hydrothermal carbonate deposits from Lake Tanganyika, East Africa. Geochim. Et Cosmochim. Acta 2000, 64, 287–298. [Google Scholar] [CrossRef]
- Bau, M. Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: Experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect. Geochim. Et Cosmochim. Acta 1999, 63, 67–77. [Google Scholar] [CrossRef]
- Li, F.; Yan, J.; Burne, R.V.; Chen, Z.Q.; Algeo, T.J.; Zhang, W.; Xie, S. Paleo-seawater REE compositions and microbial signatures preserved in laminae of Lower Triassic ooids. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 486, 96–107. [Google Scholar] [CrossRef]
- Zhao, M.Y.; Zheng, Y.F. A geochemical framework for retrieving the linked depositional and diagenetic histories of marine carbonates. Earth Planet. Sci. Lett. 2017, 460, 213–221. [Google Scholar] [CrossRef]
- Bau, M.; Alexander, B. Preservation of primary REE patterns without Ce anomaly during dolomitization of Mid-Paleoproterozoic limestone and the potential re-establishment of marine anoxia immediately after the “Great Oxidation Event”. S. Afr. J. Geol. 2006, 109, 81–86. [Google Scholar] [CrossRef]
- Bau, M.; Balan, S.; Schmidt, K.; Koschinsky, A. Rare earth elements in mussel shells of the Mytilidae family as tracers for hidden and fossil high-temperature hydrothermal systems. Earth Planet. Sci. Lett. 2010, 299, 310–316. [Google Scholar] [CrossRef]
- Kamber, B.S.; Webb, G.E. The geochemistry of late Archaean microbial carbonate: Implications for ocean chemistry and continental erosion history. Geochim. Et Cosmochim. Acta 2001, 65, 2509–2525. [Google Scholar] [CrossRef]
- Tanaka, K.; Kawabe, I. REE abundances in ancient seawater inferred from marine limestone and experimental REE partition coefficients between calcite and aqueous solution. Geochem. J. 2006, 40, 425–435. [Google Scholar] [CrossRef] [Green Version]
- Shields, G.A.; Webb, G.E. Has the REE composition of seawater changed over geological time? Chem. Geol. 2004, 204, 103–107. [Google Scholar] [CrossRef]
- Bolhar, R.; Van Kranendonk, M.J. A non-marine depositional setting for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates. Precambrian Res. 2007, 155, 229–250. [Google Scholar] [CrossRef]
- Bolhar, R.; Kamber, B.S.; Moorbath, S.; Fedo, C.M.; Whitehouse, M.J. Characterisation of early Archaean chemical sediments by trace element signatures. Earth Planet. Sci. Lett. 2004, 222, 43–60. [Google Scholar] [CrossRef]
- MacLeod, K.G.; Irving, A.J. Correlation of cerium anomalies with indicators of paleoenvironment. J. Sediment. Res. 1996, 66, 948–955. [Google Scholar]
- Smrzka, D.; Zwicker, J.; Bach, W.; Feng, D.; Himmler, T.; Chen, D.; Peckmann, J. The behavior of trace elements in seawater, sedimentary pore water, and their incorporation into carbonate minerals: A review. Facies 2019, 65, 41. [Google Scholar] [CrossRef]
- Zhong, S.; Mucci, A. Partitioning of rare earth elements (REEs) between calcite and seawater solutions at 25 C and 1 atm, and high dissolved REE concentrations. Geochim. Et Cosmochim. Acta 1995, 59, 443–453. [Google Scholar] [CrossRef]
- Feng, D.; Chen, D.; Peckmann, J. Rare earth elements in seep carbonates as tracers of variable redox conditions at ancient hydrocarbon seeps. Terra Nova 2009, 21, 49–56. [Google Scholar] [CrossRef]
- Zhu, B.; Ge, L.; Yang, T.; Jiang, S.; Lv, X. Stable isotopes and rare earth element compositions of ancient cold seep carbonates from Enza River, northern Apennines (Italy): Implications for fluids sources and carbonate chimney growth. Mar. Petrol. Geol. 2019, 109, 434–448. [Google Scholar] [CrossRef]
- Auer, G.; Reuter, M.; Hauzenberger, C.A.; Piller, W.E. The impact of transport processes on rare earth element patterns in marine authigenic and biogenic phosphates. Geochim. Et Cosmochim. Acta 2017, 203, 140–156. [Google Scholar] [CrossRef]
- Kato, Y.; Yamaguchi, K.E.; Ohmoto, H. Rare earth elements in Precambrian banded iron formations: Secular changes ofCe andEu anomalies and evolution of atmospheric oxygen. Evol. Early Earth Atmos. Hydros. Biosph. Constraints Ore Depos. 2006, 198, 269. [Google Scholar]
- Tostevin, R.; Shields, G.A.; Tarbuck, G.M.; He, T.; Clarkson, M.O.; Wood, R.A. Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings. Chemical Geology 2016, 438, 146–162. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, M.G.; Jupiter, S.D.; Kamber, B.S. Aquatic geochemistry of the rare earth elements and yttrium in the Pioneer River catchment, Australia. Mar. Freshw. Res. 2006, 57, 725–736. [Google Scholar] [CrossRef]
- Parsapoor, A.; Khalili, M.; Mackizadeh, M.A. The behaviour of trace and rare earth elements (REE) during hydrothermal alteration in the Rangan area (Central Iran). J. Asian Earth Sci. 2009, 34, 123–134. [Google Scholar] [CrossRef]
- Klinkhammer, G.P.; Elderfield, H.; Edmond, J.M.; Mitra, A. Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges. Geochim. Et Cosmochim. Acta 1994, 58, 5105–5113. [Google Scholar] [CrossRef]
- Morse, J.W.; Mackenzie, F.T. Geochemistry of Sedimentary Carbonates; Elsevier: Amsterdam, The Netherland, 1990. [Google Scholar]
- Mresah, M.H. The massive dolomitization of platformal and basinal sequences: Proposed models from the Paleocene, Northeast Sirte Basin, Libya. Sediment. Geol. 1998, 116, 199–226. [Google Scholar] [CrossRef]
- Bischoff, J.L.; Fyfe, W.S. Catalysis, inhibition, and the calcite-aragonite problem; [Part] 1, The aragonite-calcite transformation. Am. J. Sci. 1968, 266, 65–79. [Google Scholar] [CrossRef]
- McManus, K.M. The Aqueous Aragonite to Calcite Transformation: Rate, Mechanisms, and Its Role in the Development of Neomorphic Fabrics. PhD Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 1982. [Google Scholar]
- Perdikouri, C.; Piazolo, S.; Kasioptas, A.; Schmidt, B.C.; Putnis, A. Hydrothermal replacement of aragonite by calcite: Interplay between replacement, fracturing and growth. Eur. J. Mineral. 2013, 25, 123–136. [Google Scholar] [CrossRef]
- Hashim, M.S.; Kaczmarek, S.E. Experimental stabilization of carbonate sediments to calcite: Insights into the depositional and diagenetic controls on calcite microcrystal texture. Earth Planet. Sci. Lett. 2020, 538, 116235. [Google Scholar] [CrossRef]
- Moshier, S.O. Microporosity in micritic limestones: A review. Sediment. Geol. 1989, 63, 191–213. [Google Scholar] [CrossRef]
- Lambert, L.; Durlet, C.; Loreau, J.P.; Marnier, G. Burial dissolution of micrite in Middle East carbonate reservoirs (Jurassic–Cretaceous): Keys for recognition and timing. Mar. Petrol. Geol. 2006, 23, 79–92. [Google Scholar] [CrossRef]
- Loucks, R.G.; Lucia, F.J.; Waite, L.E. Origin and description of the micropore network within the Lower Cretaceous Stuart City Trend tight-gas limestone reservoir in Pawnee Field in South Texas. GCAGS J. 2013, 2, 29–41. [Google Scholar]
- Karsli, O.; İlhan, M.; Kandemir, R.; Dokuz, A.; Duygu, L. In Review. Nature of the Early Cretaceous calk-alkaline lamprophyre and high-Nb alkaline basaltic dykes in Sakarya Zone, NE Turkey: Constrains on their linkage to subduction initiation of Neotethyan oceanic Slab. Contrib. Mineral. Petrol. Under review.
- Reynard, B.; Lécuyer, C.; Grandjean, P. Crystal-chemical controls on rare-earth element concentrations in fossil biogenic apatites and implications for paleoenvironmental reconstructions. Chem. Geol. 1999, 155, 233–241. [Google Scholar] [CrossRef]
- Michard, A.; Albarède, F. The REE content of some hydrothermal fluids. Chem. Geol. 1986, 55, 51–60. [Google Scholar] [CrossRef]
- Olivarez, A.M.; Owen, R.M. REE/Fe variations in hydrothermal sediments: Implications for the REE content of seawater. Geochim. Et Cosmochim. Acta 1989, 53, 757–762. [Google Scholar] [CrossRef] [Green Version]
- Bright, C.A.; Cruse, A.M.; Lyons, T.W.; MacLeod, K.G.; Glascock, M.D.; Ethington, R.L. Seawater rare-earth element patterns preserved in apatite of Pennsylvanian conodonts? Geochim. Et Cosmochim. Acta 2009, 73, 1609–1624. [Google Scholar] [CrossRef]
- German, C.R.; Elderfield, H. Rare earth elements in Saanich Inlet, British Columbia, a seasonally anoxic basin. Geochim. Et Cosmochim. Acta 1989, 53, 2561–2571. [Google Scholar] [CrossRef]
- Koeppenkastrop, D.; Eric, H. Sorption of rare-earth elements from seawater onto synthetic mineral particles: An experimental approach. Chem. Geol. 1992, 95, 251–263. [Google Scholar] [CrossRef]
- Derry, L.A.; Jacobsen, S.B. The chemical evolution of Precambrian seawater: Evidence from REEs in banded iron formations. Geochim. Et Cosmochim. Acta 1990, 54, 2965–2977. [Google Scholar] [CrossRef]
- Jenkyns, H.C. Transient cooling episodes during Cretaceous Oceanic Anoxic Events with special reference to OAE 1a (Early Aptian). Philos. Trans. Royal Soc. A Math. Phys. Eng. Sci. 2018, 376, 20170073. [Google Scholar] [CrossRef] [Green Version]
- Taslı, K.; Özsayar, T. Stratigraphy and paleoenvironmental setting of the Albian–Campanian deposits within the Gümüsßhane province (Eastern Pontides, NE Turkey). Turk. Assoc. Petrol. Geol. Bull. 1997, 9, 13–29. [Google Scholar]
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample No | M-82 | M-83 | M-84 | M-85 | M-89 | M-91 | M-92 | M-94 | M-106 | M-110 | M-112 | M-116 | M-137 | M-141 | M-146 |
Analyte | Rock Pulp | Rock Pulp | Rock Pulp | Rock Pulp | Rock Pulp | Rock Pulp | Rock Pulp | Rock Pulp | Rock Pulp | Rock Pulp | Rock Pulp | Rock Pulp | Rock Pulp | Rock Pulp | Rock Pulp |
Microfacies | MF-1 | MF-1 | MF-1 | MF-1 | MF-1 | MF-2 | MF-2 | MF-2 | MF-2 | MF-2 | MF-3 | MF-3 | MF-3 | MF-3 | MF-3 |
CaCO3 | 99.20 | 99.22 | 99.24 | 99.22 | 99.14 | 99.18 | 99.16 | 99.34 | 99.33 | 99.18 | 99.03 | 98.35 | 99.20 | 99.26 | 99.29 |
MgCO3 | 0.80 | 0.78 | 0.7 | 0.78 | 0.86 | 0.82 | 0.84 | 0.66 | 0.67 | 0.82 | 0.97 | 1.65 | 0.80 | 0.74 | 0.71 |
SiO2 | 0.67 | 12.22 | 0.75 | 0.57 | 3.51 | 3.79 | 7.99 | 3.42 | 1.78 | 3.88 | 4.12 | 21.90 | 4.86 | 2.84 | 1.96 |
Al2O3 | 0.24 | 0.76 | 0.19 | 0.14 | 1.10 | 0.72 | 2.48 | 0.88 | 0.27 | 0.82 | 0.44 | 3.57 | 0.20 | 0.34 | 0.35 |
Fe2O3 | 0.11 | 0.27 | 0.09 | 0.08 | 0.18 | 0.27 | 0.19 | 0.20 | 0.20 | 0.21 | 0.25 | 0.46 | 0.12 | 0.13 | 0.15 |
Na2O | <0.01 | 0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.02 | <0.01 | <0.01 | <0.01 | <0.01 | 0.03 | <0.01 | 0.01 | <0.01 |
K2O | 0.07 | 0.22 | 0.06 | 0.04 | 0.57 | 0.23 | 1.79 | 0.62 | 0.09 | 0.38 | 0.14 | 0.90 | 0.06 | 0.11 | 0.11 |
TiO2 | <0.01 | 0.03 | <0.01 | <0.01 | 0.02 | 0.02 | 0.03 | 0.02 | <0.01 | 0.02 | 0.01 | 0.08 | <0.01 | 0.01 | 0.01 |
P2O5 | 0.02 | 0.13 | 0.07 | 0.02 | 0.02 | 0.04 | 0.04 | 0.02 | 0.03 | 0.03 | 0.02 | 0.09 | 0.03 | 0.35 | 0.32 |
MnO | <0.01 | 0.01 | 0.01 | <0.01 | <0.01 | 0.01 | <0.01 | <0.01 | 0.01 | <0.01 | 0.02 | 0.01 | <0.01 | 0.01 | 0.01 |
Cr2O3 | <0.002 | <0.002 | <0.002 | <0.002 | <0.002 | <0.002 | 0.002 | <0.002 | <0.002 | <0.002 | <0.002 | 0.003 | <0.002 | <0.002 | <0.002 |
Ba | 3 | 3 | 7 | 4 | 7 | 5 | 27 | 9 | 2 | 6 | 3 | 21 | 4 | 3 | 3 |
Ni | <20 | <20 | <20 | <20 | <20 | <20 | <20 | <20 | <20 | <20 | <20 | <20 | <20 | <20 | <20 |
Sc | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | 2 | <1 | <1 | <1 |
LOI | 43.6 | 38.2 | 43.5 | 43.7 | 41.6 | 41.9 | 38.8 | 41.9 | 43.1 | 41.6 | 41.8 | 32.6 | 41.7 | 42.3 | 42.6 |
Hf | <0.1 | 0.1 | <0.1 | <0.1 | 0.1 | 0.1 | 0.2 | 0.2 | <0.1 | 0.2 | <0.1 | 0.5 | <0.1 | <0.1 | 0.1 |
Th | <0.2 | 0.4 | <0.2 | <0.2 | 0.2 | 0.3 | 0.3 | <0.2 | <0.2 | <0.2 | <0.2 | 0.9 | <0.2 | <0.2 | <0.2 |
Zr | 2.2 | 5.9 | 2.4 | 2.1 | 4.9 | 4.9 | 10.5 | 5.5 | 1.9 | 6.1 | 3.2 | 20.4 | 2.7 | 2.9 | 3.5 |
Y | 1.4 | 5.3 | 1.1 | 0.7 | 2.2 | 5.0 | 3.2 | 2.7 | 4.0 | 2.7 | 3.6 | 8.8 | 2.9 | 4.8 | 4.0 |
La | 1.2 | 4.4 | 0.7 | 0.6 | 2.5 | 3.8 | 3.5 | 2.7 | 2.7 | 2.6 | 2.9 | 10.8 | 2.1 | 3.0 | 2.9 |
Ce | 0.9 | 4.2 | 0.8 | 0.7 | 3.4 | 3.0 | 3.8 | 3.1 | 2.2 | 3.0 | 2.4 | 10.8 | 2.0 | 2.5 | 2.5 |
Pr | 0.17 | 0.79 | 0.33 | 0.09 | 0.40 | 0.56 | 0.53 | 0.47 | 0.42 | 0.41 | 0.42 | 2.06 | 0.31 | 0.42 | 0.44 |
Nd | 0.7 | 3.1 | 0.4 | 0.3 | 1.5 | 2.5 | 2.0 | 1.7 | 1.7 | 1.6 | 1.7 | 8.5 | 1.3 | 1.9 | 1.8 |
Sm | 0.11 | 0.59 | 0.11 | 0.05 | 0.25 | 0.50 | 0.31 | 0.31 | 0.38 | 0.27 | 0.31 | 1.67 | 0.25 | 0.29 | 0.43 |
Eu | 0.02 | 0.16 | <0.02 | <0.02 | 0.09 | 0.13 | 0.12 | 0.08 | 0.09 | 0.09 | 0.09 | 0.45 | 0.05 | 0.09 | 0.10 |
Gd | 0.10 | 0.79 | 0.06 | 0.07 | 0.33 | 0.54 | 0.45 | 0.39 | 0.39 | 0.38 | 0.42 | 1.68 | 0.27 | 0.47 | 0.50 |
Tb | 0.02 | 0.11 | 0.02 | <0.01 | 0.05 | 0.09 | 0.05 | 0.06 | 0.07 | 0.05 | 0.06 | 0.25 | 0.04 | 0.08 | 0.07 |
Dy | 0.08 | 0.73 | 0.10 | 0.05 | 0.32 | 0.50 | 0.38 | 0.32 | 0.43 | 0.30 | 0.38 | 1.33 | 0.35 | 0.39 | 0.48 |
Ho | 0.02 | 0.15 | 0.02 | <0.02 | 0.06 | 0.11 | 0.06 | 0.07 | 0.08 | 0.07 | 0.08 | 0.30 | 0.05 | 0.10 | 0.09 |
Er | 0.09 | 0.43 | 0.08 | 0.04 | 0.18 | 0.36 | 0.25 | 0.20 | 0.27 | 0.17 | 0.29 | 0.78 | 0.24 | 0.30 | 0.28 |
Tm | 0.01 | 0.06 | 0.01 | <0.01 | 0.02 | 0.05 | 0.04 | 0.03 | 0.04 | 0.03 | 0.04 | 0.11 | 0.02 | 0.05 | 0.04 |
Yb | 0.06 | 0.37 | 0.07 | <0.05 | 0.15 | 0.30 | 0.24 | 0.16 | 0.25 | 0.20 | 0.19 | 0.61 | 0.18 | 0.23 | 0.21 |
Lu | 0.01 | 0.06 | <0.01 | <0.01 | 0.02 | 0.04 | 0.03 | 0.02 | 0.03 | 0.03 | 0.04 | 0.09 | 0.03 | 0.04 | 0.04 |
ΣREEs | 4.89 | 21.24 | 3.80 | 2.60 | 11.47 | 17.48 | 14.96 | 12.31 | 13.05 | 11.90 | 12.92 | 48.23 | 10.09 | 14.66 | 13.88 |
Y/Ho | 70.00 | 35.33 | 55.00 | n.c. | 36.67 | 45.45 | 53.33 | 38.57 | 50.00 | 38.57 | 45.00 | 29.33 | 58.00 | 48.00 | 44.44 |
Eu/Eu* | 1.01 | 1.22 | n.c. | n.c. | 1.63 | 1.32 | 1.65 | 1.20 | 1.24 | 1.45 | 1.29 | 1.42 | 1.02 | 1.24 | 1.13 |
Ce/Ce* | 0.47 | 0.54 | 0.38 | 0.71 | 0.81 | 0.48 | 0.66 | 0.66 | 0.49 | 0.69 | 0.51 | 0.55 | 0.58 | 0.52 | 0.52 |
Pr/Pr* | 1.16 | 1.19 | 3.29 | 1.11 | 1.00 | 1.09 | 1.08 | 1.15 | 1.17 | 1.05 | 1.14 | 1.16 | 1.06 | 1.04 | 1.13 |
La/La* | 2.11 | 1.47 | 0.21 | 1.28 | 1.48 | 2.70 | 1.59 | 1.27 | 1.83 | 1.65 | 1.97 | 1.58 | 2.15 | 3.02 | 1.94 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Özyurt, M.; Kırmacı, M.Z.; Al-Aasm, I.; Hollis, C.; Taslı, K.; Kandemir, R. REE Characteristics of Lower Cretaceous Limestone Succession in Gümüşhane, NE Turkey: Implications for Ocean Paleoredox Conditions and Diagenetic Alteration. Minerals 2020, 10, 683. https://doi.org/10.3390/min10080683
Özyurt M, Kırmacı MZ, Al-Aasm I, Hollis C, Taslı K, Kandemir R. REE Characteristics of Lower Cretaceous Limestone Succession in Gümüşhane, NE Turkey: Implications for Ocean Paleoredox Conditions and Diagenetic Alteration. Minerals. 2020; 10(8):683. https://doi.org/10.3390/min10080683
Chicago/Turabian StyleÖzyurt, Merve, M. Ziya Kırmacı, Ihsan Al-Aasm, Cathy Hollis, Kemal Taslı, and Raif Kandemir. 2020. "REE Characteristics of Lower Cretaceous Limestone Succession in Gümüşhane, NE Turkey: Implications for Ocean Paleoredox Conditions and Diagenetic Alteration" Minerals 10, no. 8: 683. https://doi.org/10.3390/min10080683
APA StyleÖzyurt, M., Kırmacı, M. Z., Al-Aasm, I., Hollis, C., Taslı, K., & Kandemir, R. (2020). REE Characteristics of Lower Cretaceous Limestone Succession in Gümüşhane, NE Turkey: Implications for Ocean Paleoredox Conditions and Diagenetic Alteration. Minerals, 10(8), 683. https://doi.org/10.3390/min10080683