The Secret ‘After Life’ of Foraminifera: Big Things Out of Small
Abstract
:1. Introduction
2. Material and Methods
3. Results
4. Discussion
4.1. Significance of Authigenic Mineral Formation
4.1.1. Calcite
4.1.2. Sphalerite
4.1.3. Baryte
4.1.4. Pyrite/Fe Oxides
4.1.5. Foraminifera Chamber vs. Shale Matrix Diagenesis
4.2. Significance of Test Damage
4.2.1. Predation
4.2.2. Shell (Test) Collapse
4.2.3. Transportation Damage
4.2.4. Localised Dissolution
4.2.5. Overview of Test Damage
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kaminski, M.A.; Schroder, C.J. Environmental analysis of deep-sea agglutinated foraminifera: Can we distinguish tranquil from disturbed environments? In Proceedings of the Gulf Coast Section SEPM Foundation Proceedings of the 8th Annual Research Conference, Houston, TX, USA, 3–6 December 1987; pp. 90–93. [Google Scholar]
- Kaminski, M.A.; Boersma, A.; Tyszka, J.; Holbourn, A.E.L. Response of deep-water agglutinated foraminifera to dysoxic conditions in the California Borderlands basins. In Proceedings of the Fourth International Workshop on Agglutinated Foraminifera, Kraków, Poland, 12–19 September 1993; Kaminski, M.A., Geroch, S., Gasinski, M.A., Eds.; Grzybowski Foundation: Krakow, Poland, 1995; pp. 131–140. [Google Scholar]
- Kucera, M. Planktonic Foraminifera as Tracers of Past Oceanic Environments. In Developments in Marine Geology; Elsevier: Amsterdam, The Netherlands, 2007; pp. 213–262. ISSN 1572-5480. [Google Scholar]
- Schieber, J. Discovery of agglutinated benthic foraminifera in Devonian black shales and their relevance for the redox state of ancient seas. Paleogeogr. Paleoclimatol. Paleoecol. 2009, 271, 292–300. [Google Scholar] [CrossRef]
- Schieber, J.; Southard, J.B.; Schimmelmann, A. Lenticular shale fabrics resulting from intermittent erosion of water-rich muds—Interpreting the rock record in the light of recent flume experiments. J. Sed. Res. 2010, 80, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Schieber, J. Styles of agglutination in benthic foraminifera from modern Santa Barbara Basin sediments and the implications of finding fossil analogs in Devonian and Mississippian black shales. In Anoxia: Evidence of Eukaryote Survival and Paleontological Strategies; Altenbach, A.V., Bernard, J.M., Seckbach, J., Eds.; Springer Science: Berlin/Heidelberg, Germany, 2011; pp. 573–590. [Google Scholar]
- Flores, J.A.; Johnson, J.E.; Mejía-Molina, A.E.; Álvarez, M.C.; Sierro, F.J.; Singh, S.D.; Mahanti, S.; Giosan, L. Sedimentation rates from calcareous nannofossil and planktonic foraminifera biostratigraphy in the Andaman Sea, northern Bay of Bengal, and eastern Arabian Sea. Mar. Pet. Geol. 2014, 58, 425–437. [Google Scholar] [CrossRef]
- Stefanoudis, P.V.; Schiebel, R.; Mallet, R.; Durden, J.M.; Bett, J.B.; Gooday, A.J. Agglutination of benthic foraminifera in relation to mesoscale bathymetric features in the abyssal NE Atlantic (Porcupine Abyssal Plain). Marine Micropaleontol. 2015, 123, 15–28. [Google Scholar] [CrossRef]
- Doering, K.; Erdem, Z.; Ehlert, C.; Fleury, S.; Frank, M.; Schneider, R. Changes in diatom productivity and upwelling intensity off Peru since the Last Glacial Maximum: Response to basin-scale atmospheric and oceanic forcing. Paleoceanography 2016. [Google Scholar] [CrossRef]
- Camp, W. Diagenesis of organic-rich shale: Views from foraminifera Penetralia, Eagle Ford Formation, Maverick Basin, Texas. In Proceedings of the AAPG Rocky Mountain Section Meeting, Denver, CO, USA, 20–22 July 2014. [Google Scholar]
- Ramiro-Ramirez, S. Petrographic and Petrophysical Characterization of the Eagle Ford Shale in La Salle and Gonzales Counties, Texas. Master’s Thesis, Colorado School of Mines, Golden, CO, USA, 2016. [Google Scholar]
- McAllister, R.T. Diagenetic Modifications of the Eagle Ford Formation: Implications on Chemical and Physical Properties. Ph.D. Thesis, University of Manchester, Manchester, UK, 2017. [Google Scholar]
- Buckman, J.; Mahoney, C.; März, C.; Wagner, T.; Blanco, V. Identifying biogenic silica: Mudrock micro-fabric explained through charge contrast imaging. Am. Miner. 2017, 102, 833–844. [Google Scholar] [CrossRef] [Green Version]
- Buckman, J.O.; Corbett, P.W.M.; Mitchell, L. Charge contrast imaging (CCI): Revealing enhanced diagenetic features of a coquina limestone. J. Sed. Res. 2016, 86, 734–748. [Google Scholar] [CrossRef]
- Giuliani, G.; Groat, L.A.; Marshall, D.; Fallick, A.E.; Branquet, Y. Emerald deposits: A review and enhanced classification. Minerals 2019, 9, 105. [Google Scholar] [CrossRef] [Green Version]
- Branson, O.; Read, E.; Redfern, S.A.T.; Rau, C.; Elderfield, H. Revisiting diagenesis on the Ontong Java Plateau: Evidence for authigenic crust precipitation in Globorotalia tumida. Paleoceanography 2015. [Google Scholar] [CrossRef] [Green Version]
- Davis, C.V.; Fehrenbacher, J.S.; Hill, T.M.; Russell, A.D.; Spero, H.J. Relationships between temperature, pH, and crusting on Mg/Ca ratios in laboratory-grown Neogloboquadrina foraminifera. Paleoceanography 2017. [Google Scholar] [CrossRef] [Green Version]
- Boggs, S., Jr.; Krinsley, D. Applications of Cathodoluminescence Imaging to the Study of Sedimentary Rocks; Cambridge University Press: Cambridge, UK, 2006; 165p. [Google Scholar]
- Wedepohl, K.H. Environmetal influences on the chemical composition of shales and clays. Phys. Chem. Earth 1971, 8, 305–333. [Google Scholar] [CrossRef]
- Brumsack, H.J. The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation. Palaeogeogr. Palaeoclimatol. Palaecol. 2006, 232, 344–361. [Google Scholar] [CrossRef]
- Jewell, P.W.; Stallard, R.F. Geochemistry and Paleoceanographic Setting of Central Nevada Bedded Barites. J. Geol. 1991, 99, 151–170. [Google Scholar] [CrossRef] [Green Version]
- Desborough, G.A.; Hatch, J.R.; Leventhal, J.S. Geochemical and mineralogical comparison of the Upper Pennsylvanian Stark Shale Member of the Dennis Limestone, East-Central Kansas, with the Middle Pennsylvannian Mecca Quarry Shale Member of the Carbondale Formation in Illinois and of the Linton Formation in Indiana. US Geol. Surv. Circ. 1989, 1058, 12–30. [Google Scholar]
- Tribovillard, N.; Algeo, T.J.; Lyons, T.; Riboulleau, A. Trace metals as paleoredox and paleoproductivity proxies: An update. Chem. Geol. 2006, 232, 12–32. [Google Scholar] [CrossRef]
- Morse, J.W.; Luther, G.W., III. Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochim. Cosmochim. Acta 1999, 63, 3373–3378. [Google Scholar] [CrossRef]
- Bloomstein, E.I.; Clark, J.B. Geochemistry of the Ordovician high-calcium black shales hosting major gold deposits of the Getchell Trend in Nevada. US Geol. Surv. Circ. 1989, 1058, 1–5. [Google Scholar]
- Elmore, R.D.; Dulin, S.A.; Manning, E.B.; Steullet, A.K.; Benton, A.; Dennie, D.; Roberts, J.; Heij, G.; Deng, J. Paragenesis of Mineralized Fractures in Organic Rich Shales. In Proceedings of the AAPG Annual Convention and Exhibition, Denver, CO, USA, 31 May–3 June 2015. [Google Scholar]
- Bishop, J.K.B. The barite-opal-organic carbon association in oceanic particulate matter. Nature 1988, 332, 341–343. [Google Scholar] [CrossRef]
- Von Breymann, M.T.; Emeis, K.C.; Suess, E. Water depth and diagenetic constraints on the use of barium as a paleoproductivity indicator. In Upwelling Systems: Evolution since the Early Miocene; Summerhayes, C.P., Prell, W.L., Emeis, K.C., Eds.; The Geological Society: London, UK, 1992; pp. 273–284. [Google Scholar]
- Torres, M.E.; Brumsack, H.J.; Bohrman, G.; Emeis, K.C. Barite front in continental margin sediments: A new look at barium remobilization in the zone of sulfate reduction and formation of heavy barites in diagenetic fronts. Chem. Geol. 1996, 127, 125–139. [Google Scholar] [CrossRef]
- Hetzel, A.; März, C.; Vogt, C.; Brumsack, H.-J. Geochemical environment of Cenomanian-Turonian black shale deposition at Wunstorf (northern Germany). Cret. Res. 2011, 32, 480–494. [Google Scholar] [CrossRef]
- Martinez-Ruiz, F.; Paytan, A.; Gonzalez-Muñoz, M.T.; Jroundi, F.; Abad, M.M.; Lam, P.J.; Bishop, J.K.B.; Horner, T.J.; Morton, P.L.; Kastner, M. Barite formation in the ocean: Origin of amorphous and crystalline precipitates. Chem. Geol. 2019, 511, 441–451. [Google Scholar] [CrossRef]
- Schieber, J. Marcasite in Black Shales—A Mineral Proxy for Oxygenated Bottom Waters and Intermittent Oxidation of Carbonaceous Muds. J. Sed. Res. 2011, 81, 447–458. [Google Scholar] [CrossRef] [Green Version]
- Mahoney, C.; März, C.; Buckman, J.; Wagner, T.; Blanco-Velandia, V.-O. Pyrite oxidation in shales: Implications for palaeo-redox proxies based on geochemical and SEM-EDX evidence. Sed. Geol. 2019, 89, 186–199. [Google Scholar] [CrossRef]
- Mora, A.; Horton, B.K.; Mesa, A.; Rubiano, J.; Ketcham, R.A.; Parra, M.; Blanco, V.; Garcia, D.; Stockli, D.F. Migration of Cenozoic deformation in the Eastern Cordillera of Colombia interpreted from fission track results and structural relationships: Implications for petroleum systems. AAPG Bull. 2010, 94, 1543–1580. [Google Scholar] [CrossRef]
- Parra, M.; Mora, A.; Jaramillo, C.; Torres, V.; Zeilinger, G.; Strecker, M.R. Tectonic controls on Cenozoic foreland basin development in the north-eastern Andes, Colombia. Basin Res. 2010, 22, 874–903. [Google Scholar] [CrossRef]
- Bande, A.; Horton, B.K.; Ramírez, J.C.; Mora, A.; Parra, M.; Stockli, D.F. Clastic deposition, provenance, and sequence of Andean thrusting in the frontal Eastern Cordillera and Llanos foreland basin of Colombia. Geol. Soc. Am. Bull. 2012, 124, 59–76. [Google Scholar] [CrossRef]
- Gottardi, R.; Mason, S.L. Characterization of the natural fracture system of the Eagle Ford Formation (Val Verde County, Texas). AAPG Bull. 2018, 102, 1963–1984. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buckman, J.; Mahoney, C.; März, C.; Wagner, T. The Secret ‘After Life’ of Foraminifera: Big Things Out of Small. Minerals 2020, 10, 550. https://doi.org/10.3390/min10060550
Buckman J, Mahoney C, März C, Wagner T. The Secret ‘After Life’ of Foraminifera: Big Things Out of Small. Minerals. 2020; 10(6):550. https://doi.org/10.3390/min10060550
Chicago/Turabian StyleBuckman, Jim, Carol Mahoney, Christian März, and Thomas Wagner. 2020. "The Secret ‘After Life’ of Foraminifera: Big Things Out of Small" Minerals 10, no. 6: 550. https://doi.org/10.3390/min10060550
APA StyleBuckman, J., Mahoney, C., März, C., & Wagner, T. (2020). The Secret ‘After Life’ of Foraminifera: Big Things Out of Small. Minerals, 10(6), 550. https://doi.org/10.3390/min10060550