An X-ray Absorption Near-Edge Structure (XANES) Study on the Oxidation State of Chromophores in Natural Kunzite Samples from Nuristan, Afghanistan
Abstract
1. Introduction
2. Samples Site, Materials and Analytical Methods
2.1. Samples Site
2.2. Sample Preparation
2.3. Analytical Methods
2.3.1. LA-ICP-MS
2.3.2. X-ray Absorption Near-Edge Structure (XANES)
2.3.3. UV−Visible Spectroscopy
3. Results and Discussion
3.1. Gemmological Observations
3.2. LA-ICP-MS
3.3. X-ray Absorption Spectroscopic Analysis
3.3.1. Distribution of Mn
3.3.2. Distribution of Fe
3.4. UV—Visible Spectroscopy
3.5. Ionic Structure Consideration
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Souza, S.; Watanabe, S.; Lima, A.; Lalic, M. Thermoluminescent mechanism in lilac spodumene. Acta Phys. Pol. Ser. A. 2007, 112, 1001. [Google Scholar] [CrossRef]
- d’Amorim, R.A.P.O.; de Vasconcelos, D.A.A.; de Barros, V.S.M.; Khoury, H.J.; Souza, S.O. Characterization of α-spodumene to OSL dosimetry. Radiat. Phys. Chem. 2014, 95, 141–144. [Google Scholar] [CrossRef]
- Walker, G.; Jaer, A.E.; Sherlock, R.; Glynn, T.J.; Czaja, M.; Mazurak, Z. Luminescence spectroscopy of Cr 3+ and Mn 2+ in spodumene (LiAlSi2O6). J. Lumin. 1997, 72–74, 278–280. [Google Scholar] [CrossRef]
- Isotani, S.; Watari, K.; Mizukami, A.; Bonventi, W.; Ito, A.S. UV optical absorption spectra analysis of spodumene crystals from Brazil. Phys. B Condens. Matter 2007, 391, 322–330. [Google Scholar] [CrossRef]
- Cameron, M.; Sueno, S.; Prewitt, C.T.; Papike, J.J. High-temperature crystal chemistry of acmite, diopside, hedenbergite jadeite, spodumene and ureyite. Am. Mineral. J. Earth Planet. Mater. 1973, 58, 594–618. [Google Scholar]
- Mattson, S.M.; Rossman, G.R. Identifying characteristics of charge transfer transitions in minerals. Phys. Chem. Miner. 1987, 14, 94–99. [Google Scholar] [CrossRef]
- Rossman, G.R. The geochemistry of gems and its relevance to gemology: Different traces, different prices. Elements 2009, 5, 159–162. [Google Scholar] [CrossRef]
- Schmetzer, K. Surface treatment of gemstones, especially topaz—An update of recent patent literature. Gemmology 2004, 7. [Google Scholar] [CrossRef]
- Shigley, J.E.; McClure, S.F. Laboratory-treated gemstones. Elements 2009, 5, 175–178. [Google Scholar] [CrossRef]
- Rossi, M.; Dell’Aglio, M.; De Giacomo, A.; Gaudiuso, R.; Senesi, G.S.; De Pascale, O.; Capitelli, F.; Nestola, F.; Ghiara, M.R. Multi-methodological investigation of kunzite, hiddenite, alexandrite, elbaite and topaz, based on laser-induced breakdown spectroscopy and conventional analytical techniques for supporting mineralogical characterization. Phys. Chem. Miner. 2014, 41, 127–140. [Google Scholar] [CrossRef]
- Bowersox, G.W. A status report on gemstones from Afghanistan. Gems Gemol. 1985, 21, 192–204. [Google Scholar] [CrossRef]
- Lagache, M.; Sebastian, A. Experimental study of Li-rich granitic pegmatites: Part II. Spodumene + albite + quartz equilibrium. Am. Miner. 1991, 76, 611–616. [Google Scholar]
- Ogundare, F.; Alatishe, M.; Chithambo, M.; Costin, G. Thermoluminescence of kunzite: A study of kinetic processes and dosimetry characteristics. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2016, 373, 44–51. [Google Scholar] [CrossRef]
- Ito, A.S.; Isotani, S. Heating effects on the optical absorption spectra of irradiated, natural spodumene. Radiat. Eff. 1991, 116, 307–314. [Google Scholar] [CrossRef]
- Yonghua, D.; Lishi, M.; Ping, L.; Yong, C. First-principles calculations of electronic structures and optical, phononic, and thermodynamic properties of monoclinic α-spodumene. Ceram. Int. 2017, 43, 6312–6321. [Google Scholar] [CrossRef]
- Koningsberger, D.C. X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES; John Wiley and Sons: Hoboken, NJ, USA, 1988. [Google Scholar]
- Ressler, T.; Wong, J.; Roos, J.; Smith, J.L. Quantitative speciation of Mn-bearing particulates emitted from autos burning MMT-added gasolines using XANES spectroscopy. Environ. Sci. Technol. 2000, 34, 950–958. [Google Scholar] [CrossRef]
- Hayashi, H.; Abe, H. Gel-state dependencies of brown patterns of Mn–Fe-based prussian blue analogues studied by combined X-ray spectroscopies. Bull. Chem. Soc. Jpn. 2017, 90, 807–819. [Google Scholar] [CrossRef]
- Bariand, P.; Poullen, J.F. Famous mineral localities: The pegmatities of Laghman, Nuristan, Afghanistan. Miner. Rec. 1978, 9, 301–308. [Google Scholar]
- Cook, R.B. Connoisseur’s choice: Spodumene var. Kunzite, Nuristan, Afghanistan. Rocks Miner. 1997, 72, 340–343. [Google Scholar] [CrossRef]
- Teo, B.K. EXAFS: Basic Principles and Data Analysis; Springer Science & Business Media: Berlin, Germany, 2012; Volume 9. [Google Scholar]
- Phan, T.L.; Zhang, P.; Yang, D.S.; Nghia, N.X.; Yu, S.C. Local structure and paramagnetic properties of Zn1-xMnxO. J. Appl. Phys. 2011, 110, 063912. [Google Scholar] [CrossRef]
- Haeger, T. Study of impurity in blue spinel from the Luc Yen mining area, Yen Bai province, Vietnam. Vietnam J. Earth Sci. 2018, 40, 47–55. [Google Scholar]
- Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2010, 12, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, R.A.P.; Mello, A.C.S.; Lima, H.R.B.R.; Campos, S.S.; Souza, S.O. Radiation detection using the color changes of lilac spodumene. In Proceedings of the INAC 2009: International Nuclear Atlantic Conference Innovations in Nuclear Technology for a Sustainable Future, Rio de Janeiro, RJ, Brazil, 27 September–2 October 2009. [Google Scholar]
- Farges, F.; Panczer, G.; Benbalagh, N.; Riondet, G. The grand sapphire of Louis Xiv and the ruspoli sapphire: Historical and gemological discoveries. Gems Gemol. 2015, 51. [Google Scholar] [CrossRef]
- Souza, S.; Ferraz, G.; Watanabe, S. Effects of Mn and Fe impurities on the TL and EPR properties of artificial spodumene polycrystals under irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2004, 218, 259–263. [Google Scholar] [CrossRef]
- Lu, R. Color origin of lavender jadeite: An alternative approach. Gems Gemol. 2012, 48, 273–283. [Google Scholar] [CrossRef]
- Fridrichová, J.; Bačík, P.; Ertl, A.; Wildner, M.; Dekan, J.; Miglierini, M. Jahn-Teller distortion of Mn3+-occupied octahedra in red beryl from Utah indicated by optical spectroscopy. J. Mol. Struct. 2018, 1152, 79–86. [Google Scholar] [CrossRef]
- Burns, R.G. Mineralogical Applications of Crystal Field Theory, 2nd ed.; Cambridge University Press: Cambridge, UK, 1993; Volume 5. [Google Scholar] [CrossRef]
- Sugiyama, K.; Arima, H.; Konno, H.; Kawamata, T. Distribution of Mn in pink elbaitic tourmaline from Mogok, Myanmar. J. Miner. Petrol. Sci. 2016, 111, 1–8. [Google Scholar] [CrossRef][Green Version]
Oxides | Minimum | Maximum | Average |
---|---|---|---|
SiO2 | 64.026 | 64.960 | 64.051 |
Al2O3 | 27.513 | 28.216 | 27.974 |
Li2O | 7.528 | 7.739 | 7.621 |
TiO2 | 0 | 5.667 | 0.0003 |
FeO | 0 | 0.149 | 0.0362 |
MnO | 0.003 | 0.117 | 0.0694 |
Na2O | 0.064 | 0.155 | 0.133 |
K2O | 0 | 0.035 | 0.0015 |
P2O5 | 0.035 | 0.061 | 0.055 |
CaO | 0 | 4.331 | 0.3795 |
Elements (ppm) | Minimum | Maximum | Average |
---|---|---|---|
Sn | 19.74 | 300.424 | 126.1673 |
Ga | 50.542 | 86.637 | 73.6148 |
Ge | 7.794 | 68.007 | 28.4366 |
B | 8.035 | 84.441 | 23.2575 |
Zn | 0 | 25.176 | 6.5206 |
Cd | 0 | 2.590 | 0.7602 |
Be | 0 | 2.050 | 0.6742 |
Pb | 0 | 5.923 | 0.63 |
Cu | 0 | 1.167 | 0.3265 |
Sc | 0 | 0.859 | 0.2615 |
Rb | 0 | 0.585 | 0.2319 |
Mo | 0 | 0.656 | 0.155 |
Hf | 0 | 0.463 | 0.15 |
Cr | 0 | 1.498 | 0.1249 |
Cs | 0 | 0.750 | 0.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, H.U.; Martens, G.; Tsai, Y.L.; Chankhantha, C.; Kidkhunthod, P.; H. Shen, A. An X-ray Absorption Near-Edge Structure (XANES) Study on the Oxidation State of Chromophores in Natural Kunzite Samples from Nuristan, Afghanistan. Minerals 2020, 10, 463. https://doi.org/10.3390/min10050463
Rehman HU, Martens G, Tsai YL, Chankhantha C, Kidkhunthod P, H. Shen A. An X-ray Absorption Near-Edge Structure (XANES) Study on the Oxidation State of Chromophores in Natural Kunzite Samples from Nuristan, Afghanistan. Minerals. 2020; 10(5):463. https://doi.org/10.3390/min10050463
Chicago/Turabian StyleRehman, Habib Ur, Gerhard Martens, Ying Lai Tsai, Chawalit Chankhantha, Pinit Kidkhunthod, and Andy H. Shen. 2020. "An X-ray Absorption Near-Edge Structure (XANES) Study on the Oxidation State of Chromophores in Natural Kunzite Samples from Nuristan, Afghanistan" Minerals 10, no. 5: 463. https://doi.org/10.3390/min10050463
APA StyleRehman, H. U., Martens, G., Tsai, Y. L., Chankhantha, C., Kidkhunthod, P., & H. Shen, A. (2020). An X-ray Absorption Near-Edge Structure (XANES) Study on the Oxidation State of Chromophores in Natural Kunzite Samples from Nuristan, Afghanistan. Minerals, 10(5), 463. https://doi.org/10.3390/min10050463