Evaluating the Changes from Endogranitic Magmatic to Magmatic-Hydrothermal Mineralization: The Zaaiplaats Tin Granites, Bushveld Igneous Complex, South Africa
Abstract
1. Introduction
2. Regional Geology
3. Petrography and Field Relationships
Cassiterite Mineralization
4. Methods and Materials
5. Results
Whole Rock XRF and ICP-MS
6. Discussion
Formation of the Lease and Bobbejaankop Granites
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bailie, R.H.; Robb, L.J. Polymetallic mineralization in the granites of the Bushveld Complex—Examples from the central southeastern lobe. S. Afr. J. Geol. 2004, 107, 633–652. [Google Scholar] [CrossRef]
- Finn, C.A.; Bedrosian, P.A.; Cole, J.C.; Khoza, T.D.; Webb, S.J. Mapping the 3D extent of the Northern Lobe of the Bushveld layered mafic intrusion from geophysical data. Precambrian Res. 2015, 268, 279–294. [Google Scholar] [CrossRef]
- Zeh, A.; Ovtcharova, M.; Wilson, A.H.; Schaltegger, U. The Bushveld Complex was emplaced and cooled in less than one million years—Results of zirconology, and geotectonic implications. Earth Planet. Sci. Lett. 2015, 418, 103–114. [Google Scholar] [CrossRef]
- Kinnaird, J.A.; Kruger, F.J.; Cawthorn, R.G. Rb-Sr and Nd-Sm isotopes in fluorite related to the granites of the Bushveld Complex. S. Afr. J. Geol. 2004, 107, 413–430. [Google Scholar] [CrossRef]
- Zeh, A.; Allan, H.W.; Gudelius, D.; Gerdes, A. Hafnium isotopic composition of the Bushveld Complex requires mantle melt-upper crust mixing: New evidence from zirconology of mafic, felsic and metasedimentary rocks. J. Petrol. 2020. [Google Scholar] [CrossRef]
- Robb, L.J.; Freeman, L.A.; Armstrong, R.A. Nature and longevity of hydrothermal fluid flow and mineralisation in granites of the Bushveld Complex, South Africa. Earth Sci. 2000, 91, 269–281. [Google Scholar]
- Crocker, I.T.; Eales, H.V.; Ehlers, D.L. The Fluorite, Cassiterite and Sulphide Deposits Associated with the Acid Rocks of the Bushveld Complex; Council for Geoscience: Pretoria, South Africa, 2001; p. 151. [Google Scholar]
- De Waal, S.A. The Bushveld granites in the Zaaiplaats area. Trans. Geol. Soc. S. Afr. 1972, 75, 135–143. [Google Scholar]
- Lenthall, D.H.; Hunter, D.R. The geochemistry of the Bushveld granites in the Potgietersrus tin-field. Precambrian Res. 1977, 5, 359–400. [Google Scholar] [CrossRef]
- Falcon, L.M. Tin in South Africa. J. S. Afr. Inst. Min. Metall. 1985, 85, 333–345. [Google Scholar]
- Coetzee, J. A Geochemical and Petrographical Investigation of the Low-Grade Tin Deposits in the Bobbejaankop Granite at the Zaaiplaats Tin Mine. 1984. Available online: https://repository.up.ac.za/handle/2263/60909 (accessed on 15 April 2020).
- Coetzee, J.; Twist, D. Disseminated tin mineralisation in the roof of the Bushveld granite pluton at the Zaaiplaats mine, with implications for the genesis of magmatic hydrothermal tin systems. Econ. Geol. 1989, 84, 1817–1834. [Google Scholar] [CrossRef]
- Strauss, C.A.; Truter, F.C. The Bushveld granites in the Zaaiplaats tin mining area. Trans. Geol. Soc. S. Afr. 1944, 47, 47–77. [Google Scholar]
- Pollard, P.J.; Taylor, R.G.; Taylor, R.P.; Groves, D.I. Petrographic and geochemical evolution of pervasively altered Bushveld granites at the Zaaiplaats tin mine. Econ. Geol. 1991, 88, 1401–1453. [Google Scholar] [CrossRef]
- Gruenewaldt, G.V.; Strydom, J.H. Geochemical distribution patterns surrounding tin-bearing pipes and the origin of the mineralizing fluids at the Zaaiplaats tin mine, Potgietersrus district. Econ. Geol. 1985, 80, 1201–1211. [Google Scholar] [CrossRef]
- Pollard, P.J.; Taylor, R.G.; Tate, N.M. Textural evidence for quartz and feldspar dissolution as a mechanism of formation for Maggs Pipe, Zaaiplaats tin mine, South Africa. Miner. Depos. 1989, 24, 210–218. [Google Scholar] [CrossRef]
- Hunter, D.R. The Regional Geological Setting of the Bushveld Complex (An Adjunct to the Provisional Tectonic Map of the Bushveld Complex); Economic Geology Research Unit, University of the Witwatersrand: Johannesburg, South Africa, 1975; p. 18. [Google Scholar]
- Hunt, J.P. Geological Characteristics of Iron-Oxide-Copper-Gold (IOCG) Type Mineralisation in the Western Bushveld Complex; University of the Witwatersrand: Johannesburg, South Africa, 2005. [Google Scholar]
- Kleemann, G.J. The Geochemistry and Petrology of the Roofrocks of the Bushveld Complex East of Groblersdal. Master’s Thesis, University of Pretoria, Pretoria, South Africa, 1985. [Google Scholar]
- Kleemann, G.J.; Twist, D. The compositionally-zoned sheet-like granite pluton of the Bushveld Complex: Evidence bearing on the nature of a-type magmatism. J. Petrol. 1989, 30, 1383–1414. [Google Scholar] [CrossRef]
- Hill, M.; Barker, F.; Hunter, D.; Knight, R. Geochemical characteristics and origin of the Lebowa Granite Suite, Bushveld Complex. Int. Geol. Rev. 1996, 38, 195–227. [Google Scholar] [CrossRef]
- Wilson, J.; Ferre, E.C.; Lespinasse, P. Repeated tabular injection of high-level alkaline granites in the eastern Bushveld, South Africa. J. Geol. Soc. 2000, 157, 1077–1088. [Google Scholar] [CrossRef]
- McCarthy, T.S.; Fripp, R.E.P. The crystallization history of a granitic magma, as revealed by trace element abundances. J. Geol. 1980, 88, 211–224. [Google Scholar] [CrossRef]
- McNaughton, N.J.; Pollard, P.J.; Groves, D.I.; Taylor, R.G. A long-lived hydrothermal system in Bushveld granites at the Zaaiplaats tin mine: Lead isotope evidence. Econ. Geol. 1993, 88, 27–43. [Google Scholar] [CrossRef]
- Pollard, P.J.; Taylor, R.G. Progressive evolution of alteration and tin mineralisation: Controls by interstitial permeability and fracture-related tapping of magmatic fluid reservoirs in tin granites. Econ. Geol. 1986, 81, 1795–1800. [Google Scholar] [CrossRef]
- Coetzee, J. The Lease granite—A granophyric, miarolitic mineralised granite at the apical region of a tin-tungsten system. Trans. Geol. Soc. S. Afr. 1986, 89, 335–345. [Google Scholar]
- Strauss, C.A. The geology and mineral deposits of the Potgietersrus tinfields. S. Afr. Geol. Surv. Mem. 1954, 46, 241. [Google Scholar]
- Pollard, P.J.; Andrew, A.S.; Taylor, R.G. Fluid inclusion and stable isotope evidence for interaction between granites and magmatic hydrothermal fluids during formation of disseminated and pipe-style mineralization at the Zaaiplaats tin mine. Econ. Geol. 1991, 86, 121–141. [Google Scholar] [CrossRef]
- SACS. Stratigraphy of South Africa. Part 1 (Kent, L.E. Comp.), Lithostratigraphy of the Republic of South Africa. In Stratigraphy of South Africa Handbook; Government Printer: Pretoria, South Africa, 1980; Volume 8, p. 690. [Google Scholar]
- Söhnge, P.G. The structure, ore genesis and mineral sequence of the cassiterite deposit in the Zaaiplaats tin mine, Potgietersrust district, Transvaal. Trans. Geol. Soc. S. Afr. 1944, 47, 157–181. [Google Scholar]
- Putnis, A. Mineral replacement reactions: From macroscopic observations to microscopic mechanisms. Mineral. Mag. 2002, 66, 689–708. [Google Scholar] [CrossRef]
- Putnis, A.; Hinrichs, R.; Putnis, C.V.; Golla-Schindler, U.; Collins, L.G. Hematite in porous red-clouded feldspars: Evidence of large-scale crustal fluid–rock interaction. Lithos 2007, 95, 10–18. [Google Scholar] [CrossRef]
- Arth, J. Behaviour of trace elements during magmatic process summary of theoretical models and their applications. J. Res. U.S. Geol. Surv. 1976, 4, 41–47. [Google Scholar]
- Kynaston, H.; Mellor, E.T.; Swinburne, U.P. The Geology of the Waterberg Tin-Fields; Geological Survey of Pretoria: Pretoria, South Africa, 1909; p. 124. [Google Scholar]
- Norrish, K.; Hutton, J.T. An accurate X-ray spectrographic method for the analysis of geologic samples. Geochem. Cosmochim. Acta 1969, 33, 431–454. [Google Scholar] [CrossRef]
- Wilson, A.H. A chill sequence to the Bushveld Complex: Insight into the first stage of emplacement and implications for the parental magmas. J. Petrol. 2012, 53, 1123–1168. [Google Scholar] [CrossRef]
- Labuschagne, L.S. Evolution of the ore-forming fluids in the Rooiberg tin field, South Africa. Mem. Counc. Geosci. 2004, 126. [Google Scholar]
- Frost, C.D.; Frost, B.R. On ferroan (a-type) granitoids: Their compositional variability and modes of origin. J. Petrol. 2011, 52, 39–53. [Google Scholar] [CrossRef]
- Gao, P.; Zheng, Y.F.; Zhao, Z.F. Experimental melts from crustal rocks: A lithochemical constraint on granite petrogenesis. Lithos 2016. [Google Scholar] [CrossRef]
- Jiang, H.; Li, W.Q.; Jiang, S.Y.; Wang, H.; Wei, X.P. Geochronological, geochemical and Sr-Nd-Hf isotopic constraints on the petrogenesis of late cretaceous a-type granites from the Sibumasu Block, Southern Myanmar, SE Asia. Lithos 2016. [Google Scholar] [CrossRef]
- Juniper, D.N.; Kleeman, J.D. Geochemical characterisation of some tin-mineralising granites of new South Wales. J. Geochem. Explor. 1979, 11, 321–333. [Google Scholar] [CrossRef]
- Li, H.; Watanabe, K.; Yonezu, K. Geochemistry of a-type granites in the Huangshaping polymetallic deposit (South Hunan, China): Implications for granite evolution and associated mineralization. J. Asian Earth Sci. 2014, 88, 149–167. [Google Scholar] [CrossRef]
- Singh, L.G.; Vallinayagam, G. Petrological and geochemical constraints in the origin and associated mineralization of a-type granite suite of the Dhiran Area, Northwestern Peninsular India. Geosciences 2012. [Google Scholar] [CrossRef]
- Zhou, G.; Wu, Y.; Wang, H.; Qin, Z.; Zhang, W.; Zheng, J.; Yang, S. Petrogenesis of the Huashanguan a-type granite complex and its implications for the early evolution of the Yangtze Block. Precambrian Res. 2017, 292, 57–74. [Google Scholar] [CrossRef]
- Walraven, F. Stratigraphy and structure of the Nebo Granite, Bushveld Complex, South Africa. Abstr. Geocongress 1986, 86, 637–642. [Google Scholar]
- Frost, B.R.; Barnes, C.G.; Collins, W.J.; Arculus, R.J.; Ellis, D.J.; Frost, C.D. A geochemical classification for granitic rocks. J. Petrol. 2001, 42, 2033–2048. [Google Scholar] [CrossRef]
- Huang, W.-L.; Wyllie, P. Phase relationships of S-type granite with H2O to 35 kbar: Muscovite granite from Harney Peak, South Dakota. J. Geophys. Res. Solid Earth 1981, 86, 10515–10529. [Google Scholar] [CrossRef]
- Luth, W.C. The systems NaAlSi3O8-SiO2 and KAlSi2O8 to 20 kb and the relationship between H2O content, PH2O in granitic magmas. Am. J. Sci. 1969, 267-A, 325–341. [Google Scholar]
- Tuttle, O.F.; Bowen, N.L. Origin of Granite in the Light of Experimental Studies in the System: NaAlSi3O8; Geological Society of America: Boulder, CO, USA, 1958; p. 153. [Google Scholar]
- Anderson, J.L. Proterozoic anorogenic granite plutonism of North America. Geol. Soc. Am. 1983, 161, 133–154. [Google Scholar]
- Bartoli, O.; Acosta-Vigil, A.; Ferrero, S.; Cesare, B. Granitoid magmas preserved as melt inclusions in high-grade metamorphic rock. Am. Mineral. 2016, 101, 1543–1559. [Google Scholar] [CrossRef]
- Wyllie, P.J. Crustal anatexis: An experimental review. Tectonophysics 1977, 43, 41–71. [Google Scholar] [CrossRef]
- Bacon, C.R.; Druitt, T.H. Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contrib. Mineral. Petrol. 1988, 98, 224–256. [Google Scholar] [CrossRef]
- Bea, F.; Pereira, M.; Stroh, A. Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study). Chem. Geol. 1994, 117, 291–312. [Google Scholar] [CrossRef]
- Sisson, T. Hornblende-melt trace-element partitioning measured by ion microprobe. Chem. Geol. 1994, 117, 331–344. [Google Scholar] [CrossRef]
- Nash, W.; Crecraft, H. Partition coefficients for trace elements in silicic magmas. Geochim. Cosmochim. Acta 1985, 49, 2309–2322. [Google Scholar] [CrossRef]
- Butler, J.; Bowden, P.; Smith, A. K/Rb ratios in the evolution of the Younger Granites of Northern Nigeria. Geochim. Cosmochim. Acta 1962, 26, 89–100. [Google Scholar] [CrossRef]
- Shaw, D. A review of K-Rb fractionation trends by covariance analysis. Geochim. Cosmochim. Acta 1968, 32, 573–601. [Google Scholar] [CrossRef]
- Aseri, A.A.; Linnen, R.L.; Che, X.D.; Thibault, Y.; Holtz, F. Effects of fluorine on the solubilities of Nb, Ta, Zr and Hf minerals in highly fluxed water-saturated haplogranitic melts. Ore Geol. Rev. 2015, 64, 736–746. [Google Scholar] [CrossRef]
- Ballouard, C.; Poujol, M.; Boulvais, P.; Branquet, Y.; Tartese, R.; Vigneresse, J.-L. Nb-Ta fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition. Geology 2016, 44, 231–234. [Google Scholar] [CrossRef]
- Dostal, J.; Chatterjee, A.K. Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton (Nova Scotia, Canada). Chem. Geol. 2000, 163, 207–218. [Google Scholar] [CrossRef]
- Green, T.; Pearson, N. An experimental study of Nb and Ta partitioning between Ti-rich minerals and silicate liquids at high pressure and temperature. Geochim. Cosmochim. Acta 1987, 51, 55–62. [Google Scholar] [CrossRef]
- Green, T.H. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chem. Geol. 1995, 120, 347–359. [Google Scholar] [CrossRef]
- Bonin, B. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos 2007, 97, 1–29. [Google Scholar] [CrossRef]
- Walraven, F.; Hattingh, E. Geochronology of the Nebo Granite, Bushveld Complex. S. Afr. J. Geol. 1993, 96, 31–41. [Google Scholar]
- Collins, W.J.; Beams, S.D.; White, A.J.R.; Chappell, B.W. Nature and origin of a-type granites with particular reference to Southeastern Australia. Contrib. Mineral. Petrol. 1982, 80, 189–200. [Google Scholar] [CrossRef]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S.S. The composition of the earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Sun, S.-S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Fourie, D.S.; Harris, C. O-isotope study of the Bushveld Complex granites and granophyres: Constrains on source composition and assimilation. J. Petrol. 2011, 52, 2221–2242. [Google Scholar] [CrossRef]
- Dill, H.G. The “chessboard” classification scheme of mineral deposits: Mineralogy and geology from aluminum to zirconium. Earth Sci. Rev. 2010, 100, 1–420. [Google Scholar] [CrossRef]
- Štemprok, M. Greisenization (a review). Geol. Rundsch. 1987, 76, 169–175. [Google Scholar] [CrossRef]
- Viswanathan, S. Geochemical behaivour of Rb, Ba, Pb, Ti, Mn and Zn during progressive chloritization of granitic biotites. Curr. Sci. Assoc. 1972, 41, 655–658. [Google Scholar]
- Bau, M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib. Mineral. Petrol. 1996, 123, 323–333. [Google Scholar] [CrossRef]
- Pan, Y. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect–a discussion of the article by M. Bau (1996). Contrib. Mineral. Petrol. 1997, 128, 405–408. [Google Scholar] [CrossRef]
- Zaraisky, G.P.; Aksyuk, A.M.; Devyatova, V.N.; Udoratina, O.V.; Chevychelov, V.Y. The Zr/Hf Ratio as a fractionation indicator of rare-metal granites. Petrology 2009, 17, 25–45. [Google Scholar] [CrossRef]
- Simons, B.; Andersen, J.C.; Shail, R.K.; Jenner, F.E. Fractionation of Li, Be, Ga, Nb, Ta, In, Sn, Sb, W and Bi in the peraluminous early permian Variscan granites of the Cornubian Batholith: Precursor processes to magmatic-hydrothermal mineralisation. Lithos 2017, 278, 491–512. [Google Scholar] [CrossRef]
- Halter, W.E.; Williams-Jones, A.E.; Kontak, D.J. Origin and evolution of the greisenizing fluid at the East Kemptville tin deposit, Nova Scotia, Canada. Econ. Geol. 1998, 93, 1026–1051. [Google Scholar] [CrossRef]
- Migdisov, A.A.; Williams-Jones, A. Hydrothermal transport and deposition of the rare earth elements by fluorine-bearing aqueous liquids. Miner. Depos. 2014, 49, 987–997. [Google Scholar] [CrossRef]
- Nagaseki, H.; Hayashi, K.-I. Experimental study of the behavior of copper and zinc in a boiling hydrothermal system. Geology 2008, 36, 27–30. [Google Scholar] [CrossRef]
- Sherman, D. Metal complexation and ion association in hydrothermal fluids: Insights from quantum chemistry and molecular dynamics. Geofluids 2010, 10, 41–57. [Google Scholar]
- Robb, L. Introduction to Ore-Forming Processes; Blackwell Publishing: Oxford, UK, 2005; p. 373. [Google Scholar]
- Winter, J.D.N. Principles of Igneous and Metamorphic Petrology; Prentice Hall: Upper Saddle River, NJ, USA, 2010; p. 702. [Google Scholar]
- Heinrich, C.A.; Gunther, D.; Audétat, A.; Ulrich, T.; Frischknecht, R. Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions. Geology 1999, 27, 755–758. [Google Scholar] [CrossRef]
- Taylor, J.R.; Wall, V.J. Cassiterite solubility, tin speciation, and transport in a magmatic aqueous phase. Econ. Geol. 1993, 88, 437–460. [Google Scholar] [CrossRef]
- Hong, W.; Cooke, D.R.; Zhang, L.; Fox, N.; Thompson, J. Tourmaline-rich features in the Heemskirk and Pieman Heads granites from western Tasmania, Australia: Characteristics, origins, and implications for tin mineralization. Am. Mineral. 2017, 102, 876–899. [Google Scholar] [CrossRef]
- Duchoslav, M.; Marks, M.; Drost, K.; McCammon, C.; Marschall, H.; Wenzel, T.; Markl, G. Changes in tourmaline composition during magmatic and hydrothermal processes leading to tin-ore deposition: The Cornubian Batholith, SW England. Ore Geol. Rev. 2017, 83, 215–234. [Google Scholar] [CrossRef]
- Wolf, M.B.; London, D. Boron in granitic magmas: Stability of tourmaline in equilibrium with biotite and cordierite. Contrib. Mineral. Petrol. 1997, 130, 12–30. [Google Scholar] [CrossRef]
- Heinrich, C.A. Fluid-fluid interactions in magmatic-hydrothermal ore formation. Rev. Mineral. Geochem. 2007, 65, 363–387. [Google Scholar] [CrossRef]
- Heinrich, C.A. The chemistry of hydrothermal tin (-tungsten) ore deposition. Econ. Geol. 1990, 85, 457–481. [Google Scholar] [CrossRef]
- Walker, F.D.L.; Lee, M.R.; Parsons, I. Micropores and micropermeable texture in alkali feldspars: Geochemical and geophysical implications. Mineral. Mag. 1995, 59, 505–534. [Google Scholar] [CrossRef]
- Candela, P.A. Physics of aqueous phase evolution in plutonic environments. Am. Mineral. 1991, 76, 1081–1091. [Google Scholar]
- London, D.; Morgan, G.B.; Hervig, R.L. Vapor-undersaturated experiments with Macusani glass + H2O at 200 MPa, and the internal differentiation of granitic pegmatites. Contrib. Mineral. Petrol. 1989, 102, 1–17. [Google Scholar] [CrossRef]
- London, D. Stability of tourmaline in peraluminous granite systems: The boron cycle from anatexis to hydrothermal aureoles. Eur. J. Mineral. 1999, 11, 253–262. [Google Scholar] [CrossRef]
- Drivenes, K.; Larsen, R.B.; Müller, A.; Sørensen, B.E.; Wiedenbeck, M.; Raanes, M.P. Late-magmatic immiscibility during batholith formation: Assessment of B isotopes and trace elements in tourmaline from the Land’s End granite, SW England. Contrib. Mineral. Petrol. 2015, 169, 56. [Google Scholar] [CrossRef]
- Williamson, B.; Spratt, J.; Adams, J.; Tindle, A.; Stanley, C. Geochemical constraints from zoned hydrothermal tourmalines on fluid evolution and Sn mineralization: An example from fault breccias at Roche, SW England. J. Petrol. 2000, 41, 1439–1453. [Google Scholar] [CrossRef]
Type | Color | Grain Size | Mineralogy | Alteration | Mineralization | Description |
---|---|---|---|---|---|---|
1 | Red | <0.2 to 0.5 cm | Quartz and reddened feldspars, minor chlorite and biotite | Microclinization and chloritization | Minor cassiterite within miarolitic cavities | Typical appearance of the Lease granite. Generally coarser-grained at the base and finer in the roof facies. |
2 | Maroon | <0.1 to 0.5 mm | Increased fluorite, epidote, miarolitic cavities, and chloritization of biotite | Increased microclinization, chloritization, and epidotization | Disseminated cassiterite hosted in miarolitic cavities | Finest-grained facies of the Lease granite. Associated with disseminated cassiterite |
3 | Green | <0.2 cm | Increased quartz, chlorite, sericite, and tourmaline | Greater degree of greisenization | Minor cassiterite present in cavities and dissemination | Similar mineralogy and grain size to Type 1 although has greater greisenization resulting in the green tinge. This facies usually exists as an alteration halo around pipes |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vonopartis, L.; Nex, P.; Kinnaird, J.; Robb, L. Evaluating the Changes from Endogranitic Magmatic to Magmatic-Hydrothermal Mineralization: The Zaaiplaats Tin Granites, Bushveld Igneous Complex, South Africa. Minerals 2020, 10, 379. https://doi.org/10.3390/min10040379
Vonopartis L, Nex P, Kinnaird J, Robb L. Evaluating the Changes from Endogranitic Magmatic to Magmatic-Hydrothermal Mineralization: The Zaaiplaats Tin Granites, Bushveld Igneous Complex, South Africa. Minerals. 2020; 10(4):379. https://doi.org/10.3390/min10040379
Chicago/Turabian StyleVonopartis, Leonidas, Paul Nex, Judith Kinnaird, and Laurence Robb. 2020. "Evaluating the Changes from Endogranitic Magmatic to Magmatic-Hydrothermal Mineralization: The Zaaiplaats Tin Granites, Bushveld Igneous Complex, South Africa" Minerals 10, no. 4: 379. https://doi.org/10.3390/min10040379
APA StyleVonopartis, L., Nex, P., Kinnaird, J., & Robb, L. (2020). Evaluating the Changes from Endogranitic Magmatic to Magmatic-Hydrothermal Mineralization: The Zaaiplaats Tin Granites, Bushveld Igneous Complex, South Africa. Minerals, 10(4), 379. https://doi.org/10.3390/min10040379