Deeply Buried Authigenic Carbonates in the Qiongdongnan Basin, South China Sea: Implications for Ancient Cold Seep Activities
Abstract
:1. Introduction
2. Geological Settings and Site Description
3. Materials and Methods
4. Results
4.1. Petrology and Mineralogy
4.2. Rare Earth Elements
4.3. δ13C and δ18O Values
4.4. U-Th Age of Carbonates
5. Discussion
5.1. Fluid Source and Environment of Seep Carbonate Formation
5.2. Influence of Methane Flux on the Formation of Authigenic Carbonate
5.3. Mechanism of Seep Carbonate Formation and Methane Seep Evolution
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Judd, A.A.G.; Hovland, M. Seabed Fluid Flow: The Impact of Geology, Biology and the Marine Environment; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Suess, E.; Bohrmann, G.; Von Huene, R.; Linke, P.; Wallmann, K.; Lammers, S.; Sahling, H.; Winckler, G.; Lutz, R.A.; Orange, D. Fluid venting in the eastern Aleutian Subduction Zone. J. Geophys. Res. Solid Earth 1998, 103, 2597–2614. [Google Scholar] [CrossRef] [Green Version]
- Giletycz, S.; Lin, A.T.-S.; Chang, C.-P.; Shyu, J.B.H. Relicts of mud diapirism of the emerged wedge-top as an indicator of gas hydrates destabilization in the Manila accretionary prism in southern Taiwan (Hengchun Peninsula). Geomorphology 2019, 336, 1–17. [Google Scholar] [CrossRef]
- Agarwal, D.K.; Roy, P.; Prakash, L.S.; Kurian, P.J. Hydrothermal signatures in sediments from eastern Southwest Indian Ridge 63° E to 68° E. Mar. Chem. 2020, 218, 103732. [Google Scholar] [CrossRef]
- Schmid, F.; Peters, M.; Walter, M.; Devey, C.W.; Petersen, S.; Yeo, I.; Köhler, J.; Jamieson, J.W.; Walker, S.; Sültenfuß, J. Physico-chemical properties of newly discovered hydrothermal plumes above the Southern Mid-Atlantic Ridge (13°–33° S). Deep Sea Res. Part I Oceanogr. Res. Pap. 2019, 148, 34–52. [Google Scholar] [CrossRef]
- Klaucke, I.; Sahling, H.; Weinrebe, R.W.; Blinova, V.; Bürk, D.; Lursmanashvili, N.; Bohrmann, G. Acoustic investigation of cold seeps offshore Georgia, eastern Black Sea. Mar. Geol. 2006, 231, 51–67. [Google Scholar] [CrossRef]
- Torres, M.E.; McManus, J.; Hammond, D.; De Angelis, M.; Heeschen, K.; Colbert, S.; Tryon, M.; Brown, K.; Suess, E. Fluid and chemical fluxes in and out of sediments hosting methane hydrate deposits on Hydrate Ridge, OR, I: Hydrological provinces. Earth Planet. Sci. Lett. 2002, 201, 525–540. [Google Scholar] [CrossRef]
- Wei, J.; Pape, T.; Sultan, N.; Colliat, J.-L.; Himmler, T.; Ruffine, L.; De Prunelé, A.; Dennielou, B.; Garziglia, S.; Marsset, T.; et al. Gas hydrate distributions in sediments of pockmarks from the Nigerian margin—Results and interpretation from shallow drilling. Mar. Pet. Geol. 2015, 59, 359–370. [Google Scholar] [CrossRef] [Green Version]
- Omoregie, E.O.; Niemann, H.; Mastalerz, V.; De Lange, G.; Stadnitskaia, A.; Mascle, J.; Foucher, J.-P.; Boetius, A. Microbial methane oxidation and sulfate reduction at cold seeps of the deep Eastern Mediterranean Sea. Mar. Geol. 2009, 261, 114–127. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Li, J.; Wu, T.; Zhang, W.; Li, J.; Wang, J.; Tao, J.; Chen, Z.; Wu, Z.; Chen, W. Geologically controlled intermittent gas eruption and its impact on bottom water temperature and chemosynthetic communities—A case study in the “HaiMa” cold seeps, South China Sea. Geol. J. 2020, 55, 6066–6078. [Google Scholar] [CrossRef]
- Fischer, D.; Sahling, H.; Nothen, K.; Bohrmann, G.; Zabel, M.; Kasten, S. Interaction between hydrocarbon seepage, chemosynthetic communities, and bottom water redox at cold seeps of the Makran accretionary prism: Insights from habitat-specific pore water sampling and modeling. Biogeosciences 2012, 9, 2013–2031. [Google Scholar] [CrossRef] [Green Version]
- Brooks, J.M.; Kennicutt, M.C.; Bidigare, R.R.; Fay, R.A. Hydrates, oil seepage, and chemosynthetic ecosystems on the Gulf of Mexico slope. Eos Trans. Am. Geophys. Union 1985, 66, 106. [Google Scholar] [CrossRef]
- Marcon, Y.; Ondréas, H.; Sahling, H.; Bohrmann, G.; Olu, K. Fluid flow regimes and growth of a giant pockmark. Geology 2014, 42, 63–66. [Google Scholar] [CrossRef]
- Loher, M.; Marcon, Y.; Pape, T.; Römer, M.; Wintersteller, P.; Ferreira, C.D.S.; Praeg, D.; Torres, M.; Sahling, H.; Bohrmann, G. Seafloor sealing, doming, and collapse associated with gas seeps and authigenic carbonate structures at Venere mud volcano, Central Mediterranean. Deep Sea Res. Part I Oceanogr. Res. Pap. 2018, 137, 76–96. [Google Scholar] [CrossRef]
- Römer, M.; Sahling, H.; Pape, T.; Ferreira, C.D.S.; Wenzhöfer, F.; Boetius, A.; Bohrmann, G. Methane fluxes and carbonate deposits at a cold seep area of the Central Nile Deep Sea Fan, Eastern Mediterranean Sea. Mar. Geol. 2014, 347, 27–42. [Google Scholar] [CrossRef]
- Weber, T.C.; Mayer, L.; Jerram, K.; Beaudoin, J.; Rzhanov, Y.; Lovalvo, D. Acoustic estimates of methane gas flux from the seabed in a 6000 km2region in the Northern Gulf of Mexico. Geochem. Geophys. Geosyst. 2014, 15, 1911–1925. [Google Scholar] [CrossRef] [Green Version]
- Cortes, J.; Aguilera, R.; Wilches, O.; Osorno, J.; Cortes, S. Organic geochemical insights from oil seeps, tars, rocks, and mud volcanoes on the petroleum systems of the Sinü-San Jacinto basin, Northwestern, Colombia. J. S. Am. Earth Sci. 2018, 86, 318–341. [Google Scholar] [CrossRef]
- Teichert, B.M.A.; Luppold, F.W. Glendonites from an Early Jurassic methane seep—Climate or methane indicators? Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 390, 81–93. [Google Scholar] [CrossRef]
- Punshon, S.; Azetsu-Scott, K.; Sherwood, O.; Edinger, E.N. Bottom water methane sources along the high latitude eastern Canadian continental shelf and their effects on the marine carbonate system. Mar. Chem. 2019, 212, 83–95. [Google Scholar] [CrossRef]
- Xu, W.; Ruhl, M.; Hesselbo, S.P.; Riding, J.B.; Jenkyns, H.C. Orbital pacing of the Early Jurassic carbon cycle, black-shale formation and seabed methane seepage. Sedimentology 2017, 64, 127–149. [Google Scholar] [CrossRef] [Green Version]
- Macdonald, I.R.; Sager, W.W.; Peccini, M.B. Gas hydrate and chemosynthetic biota in mounded bathymetry at mid-slope hydrocarbon seeps: Northern Gulf of Mexico. Mar. Geol. 2003, 198, 133–158. [Google Scholar] [CrossRef]
- Bohrmann, G.; Greinert, J.; Suess, E.; Torres, M. Authigenic carbonates from the Cascadia subduction zone and their relation to gas hydrate stability. Geology 1998, 26, 647–650. [Google Scholar] [CrossRef]
- Feng, D.; Chen, D.; Peckmann, J.; Bohrmann, G. Authigenic carbonates from methane seeps of the northern Congo fan: Microbial formation mechanism. Mar. Pet. Geol. 2010, 27, 748–756. [Google Scholar] [CrossRef]
- Feng, D.; Lin, Z.; Bian, Y.; Chen, D.; Peckmann, J.; Bohrmann, G.; Roberts, H.H. Rare earth elements of seep carbonates: Indication for redox variations and microbiological processes at modern seep sites. J. Asian Earth Sci. 2013, 65, 27–33. [Google Scholar] [CrossRef]
- Himmler, T.; Bach, W.; Bohrmann, G.; Peckmann, J. Rare earth elements in authigenic methane-seep carbonates as tracers for fluid composition during early diagenesis. Chem. Geol. 2010, 277, 126–136. [Google Scholar] [CrossRef]
- Himmler, T.; Sahy, D.; Martma, T.; Bohrmann, G.; Plaza-Faverola, A.; Bünz, S.; Condon, D.J.; Knies, J.; Lepland, A. A 160,000-year-old history of tectonically controlled methane seepage in the Arctic. Sci. Adv. 2019, 5, eaaw1450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamborrino, L.; Himmler, T.; Elvert, M.; Conti, S.; Gualtieri, A.F.; Fontana, D.; Bohrmann, G. Formation of tubular carbonate conduits at Athina mud volcano, eastern Mediterranean Sea. Mar. Pet. Geol. 2019, 107, 20–31. [Google Scholar] [CrossRef]
- Bayon, G.; Henderson, G.M.; Bohn, M. U-Th stratigraphy of a cold seep carbonate crust. Chem. Geol. 2009, 260, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Bayon, G.; Dupré, S.; Ponzevera, E.; Etoubleau, J.; Chéron, S.; Pierre, C.; Mascle, J.; Boetius, A.; De Lange, G.J. Formation of carbonate chimneys in the Mediterranean Sea linked to deep-water oxygen depletion. Nat. Geosci. 2013, 6, 755–760. [Google Scholar] [CrossRef]
- Chen, F.; Wang, X.; Li, N.; Cao, J.; Bayon, G.; Peckmann, J.; Hu, Y.; Gong, S.; Cheng, H.; Edwards, R.L.; et al. Gas Hydrate Dissociation During Sea-Level Highstand Inferred From U-Th Dating of Seep Carbonate from the South China Sea. Geophys. Res. Lett. 2019, 46, 13928–13938. [Google Scholar] [CrossRef]
- Feng, D.; Qiu, J.-W.; Hu, Y.; Peckmann, J.; Guan, H.; Tong, H.; Chen, C.; Chen, J.; Gong, S.; Peckmann, J.; et al. Cold seep systems in the South China Sea: An overview. J. Asian Earth Sci. 2018, 168, 3–16. [Google Scholar] [CrossRef]
- Han, X.; Suess, E.; Huang, Y.; Wu, N.; Bohrmann, G.; Su, X.; Eisenhauer, A.; Rehder, G.; Fang, Y. Jiulong methane reef: Microbial mediation of seep carbonates in the South China Sea. Mar. Geol. 2008, 249, 243–256. [Google Scholar] [CrossRef]
- Guan, H.; Feng, D.; Wu, N.; Chen, D. Methane seepage intensities traced by biomarker patterns in authigenic carbonates from the South China Sea. Org. Geochem. 2016, 91, 109–119. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.; Wei, J.; Liang, J.; Lu, J.; Lu, H.; Zhang, W. Complex gas hydrate system in a gas chimney, South China Sea. Mar. Pet. Geol. 2019, 104, 29–39. [Google Scholar] [CrossRef]
- Bangs, N.L.B.; Hornbach, M.J.; Berndt, C. The mechanics of intermittent methane venting at South Hydrate Ridge inferred from 4D seismic surveying. Earth Planet. Sci. Lett. 2011, 310, 105–112. [Google Scholar] [CrossRef]
- Wei, J.; Liang, J.; Lu, J.; Zhang, W.; He, Y. Characteristics and dynamics of gas hydrate systems in the northwestern South China Sea—Results of the fifth gas hydrate drilling expedition. Mar. Pet. Geol. 2019, 110, 287–298. [Google Scholar] [CrossRef]
- Taylor, B.; Hayes, D.E. The Tectonic Evolution of the South China Sea Basin. In The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands; Geophysical Monograph Series; American Geophysical Union: Washington, DC, USA, 1980; Volume 23. [Google Scholar]
- Zhao, Z.; Sun, Z.; Wang, Z.; Sun, Z.; Liu, J.; Zhang, C. The high resolution sedimentary filling in Qiongdongnan Basin, Northern South China Sea. Mar. Geol. 2015, 361, 11–24. [Google Scholar] [CrossRef]
- Huang, B.; Tian, H.; Li, X.; Wang, Z.; Xiao, X. Geochemistry, origin and accumulation of natural gases in the deepwater area of the Qiongdongnan Basin, South China Sea. Mar. Pet. Geol. 2016, 72, 254–267. [Google Scholar] [CrossRef]
- Huang, H.; Huang, B.; Huang, Y.; Li, X.; Tian, H. Condensate origin and hydrocarbon accumulation mechanism of the deepwater giant gas field in western South China Sea: A case study of Lingshui 17-2 gas field in Qiongdongnan Basin. Pet. Explor. Dev. 2017, 44, 409–417. [Google Scholar] [CrossRef]
- Yuan, S.; Wu, S.; Thomas, L.; Yao, G.; Lv, F.; Feng, C.; Wang, H.; Li, L. Fine-grained Pleistocene deepwater turbidite channel system on the slope of Qiongdongnan Basin, northern South China Sea. Mar. Pet. Geol. 2009, 26, 1441–1451. [Google Scholar] [CrossRef]
- Zhang, W.; Liang, J.; Su, P.; Wei, J.; Gong, Y.; Lin, L.; Liang, J.; Huang, W. Distribution and characteristics of mud diapirs, gas chimneys, and bottom simulating reflectors associated with hydrocarbon migration and gas hydrate accumulation in the Qiongdongnan Basin, northern slope of the South China Sea. Geol. J. 2019, 54, 3556–3573. [Google Scholar] [CrossRef]
- Liang, J.; Zhang, W.; Lu, J.; Wei, J.; Kuang, Z.; He, Y. Geological occurrence and accumulation mechanism of natural gas hydrates in the eastern Qiongdongnan Basin of the South China Sea: Insights from site GMGS5-W9-2018. Mar. Geol. 2019, 418, 106042. [Google Scholar] [CrossRef]
- Weiss, C.A.; Torres-Cancel, K.; Moser, R.D.; Allison, P.G.; Gore, E.R.; Chandler, M.Q.; Malone, P. Influence of temperature on calcium carbonate polymorph formed from ammonium carbonate and calcium acetate. J. Nanotech. Smart Mater. 2014, 1, 1–6. [Google Scholar] [CrossRef]
- Rongemaille, E.; Bayon, G.; Pierre, C.; Bollinger, C.; Chu, N.; Fouquet, Y.; Riboulot, V.; Voisset, M. Rare earth elements in cold seep carbonates from the Niger delta. Chem. Geol. 2011, 286, 196–206. [Google Scholar] [CrossRef]
- Tong, H.; Feng, D.; Cheng, H.; Yang, S.; Wang, H.; Min, A.G.; Edwards, R.L.; Chen, Z.; Chen, D. Authigenic carbonates from seeps on the northern continental slope of the South China Sea: New insights into fluid sources and geochronology. Mar. Pet. Geol. 2013, 43, 260–271. [Google Scholar] [CrossRef]
- Wang, L.; Ma, Z.; Sun, Z.; Wang, Y.; Wang, X.; Cheng, H.; Xiao, J. U concentration and 234 U/ 238 U of seawater from the Okinawa Trough and Indian Ocean using MC-ICPMS with SEM protocols. Mar. Chem. 2017, 196, 71–80. [Google Scholar] [CrossRef]
- Sun, Y.; Gong, S.; Li, N.; Peckmann, J.; Jin, M.; Roberts, H.H.; Chen, D.; Feng, D. A new approach to discern the hydrocarbon sources (oil vs. methane) of authigenic carbonates forming at marine seeps. Mar. Pet. Geol. 2020, 114, 104230. [Google Scholar] [CrossRef]
- Himmler, T.; Birgel, D.; Bayon, G.; Pape, T.; Ge, L.; Bohrmann, G.; Peckmann, J. Formation of seep carbonates along the Makran convergent margin, northern Arabian Sea and a molecular and isotopic approach to constrain the carbon isotopic composition of parent methane. Chem. Geol. 2015, 415, 102–117. [Google Scholar] [CrossRef] [Green Version]
- Bayon, G.; Loncke, L.; Dupré, S.; Caprais, J.-C.; Ducassou, E.; Duperron, S.; Etoubleau, J.; Foucher, J.-P.; Fouquet, Y.; Gontharet, S.; et al. Multi-disciplinary investigation of fluid seepage on an unstable margin: The case of the Central Nile deep sea fan. Mar. Geol. 2009, 261, 92–104. [Google Scholar] [CrossRef] [Green Version]
- Tong, H.; Feng, D.; Peckmann, J.; Roberts, H.H.; Chen, L.; Bian, Y.; Chen, D. Environments favoring dolomite formation at cold seeps: A case study from the Gulf of Mexico. Chem. Geol. 2019, 518, 9–18. [Google Scholar] [CrossRef]
- Wang, S.; Yan, W.; Chen, Z.; Zhang, N.; Chen, H. Rare earth elements in cold seep carbonates from the southwestern Dongsha area, northern South China Sea. Mar. Pet. Geol. 2014, 57, 482–493. [Google Scholar] [CrossRef]
- Sahling, H.; Rickert, D.; Lee, R.; Linke, P.; Suess, E. Macrofaunal community structure and sulfide flux at gas hydrate deposits from the Cascadia convergent margin, NE Pacific. Mar. Ecol. Prog. Ser. 2002, 231, 121–138. [Google Scholar] [CrossRef]
- Mazzini, A.; Jonk, R.; Duranti, D.; Parnell, J.; Cronin, B.; Hurst, A. Fluid escape from reservoirs: Implications from cold seeps, fractures and injected sands Part I. The fluid flow system. J. Geochem. Explor. 2003, 78, 293–296. [Google Scholar] [CrossRef]
- Hu, Y.; Feng, D.; Peckmann, J.; Roberts, H.H.; Chen, D. New insights into cerium anomalies and mechanisms of trace metal enrichment in authigenic carbonate from hydrocarbon seeps. Chem. Geol. 2014, 381, 55–66. [Google Scholar] [CrossRef]
- Aminzadeh, F.; Berge, T.B.; Connolly, D.L. 3. Carbonate Precipitation at Gulf of Mexico hydrocarbon Seeps: An Overview. In Hydrocarbon Seepage from Source to Surface; Society of Exploration Geophysicists and the American Association of Petroleum Geologists: Tulsa, OK, USA, 2013; pp. 43–61. [Google Scholar]
- Crémière, A.; Lepland, A.; Chand, S.; Sahy, D.; Kirsimäe, K.; Bau, M.; Whitehouse, M.J.; Noble, S.R.; Martma, T.; Thorsnes, T.; et al. Fluid source and methane-related diagenetic processes recorded in cold seep carbonates from the Alvheim channel, central North Sea. Chem. Geol. 2016, 432, 16–33. [Google Scholar] [CrossRef]
- Crémière, A.; Chand, S.; Sahy, D.; Thorsnes, T.; Martma, T.; Noble, S.; Pedersen, J.H.; Brunstad, H.; Lepland, A. Structural controls on seepage of thermogenic and microbial methane since the last glacial maximum in the Harstad Basin, southwest Barents Sea. Mar. Pet. Geol. 2018, 98, 569–581. [Google Scholar] [CrossRef]
- Cao, H.; Sun, Z.; Wu, N.; Liu, W.; Liu, C.; Jiang, Z.; Geng, W.; Zhang, X.; Wang, L.; Zhai, B.; et al. Mineralogical and geochemical records of seafloor cold seepage history in the northern Okinawa Trough, East China Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 2020, 155, 103165. [Google Scholar] [CrossRef]
- Chen, D.F.; Huang, Y.Y.; Yuan, X.L.; Cathles, L.M. Seep carbonates and preserved methane oxidizing archaea and sulfate reducing bacteria fossils suggest recent gas venting on the seafloor in the Northeastern South China Sea. Mar. Pet. Geol. 2005, 22, 613–621. [Google Scholar] [CrossRef]
- Xie, R.; Wu, D.; Liu, J.; Sun, T.; Liu, L.; Wu, N. Evolution of gas hydrates inventory and anaerobic oxidation of methane (AOM) after 40ka in the Taixinan Basin, South China Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 2019, 152, 103084. [Google Scholar] [CrossRef]
- Wu, T.; Wei, J.; Liu, S.; Guan, Y.; Zhang, R.; Su, M.; Wang, H.; Meng, D.; Liu, B.; Zhang, W. Characteristics and formation mechanism of seafloor domes on the north-eastern continental slope of the South China Sea. Geol. J. 2020, 55, 1–10. [Google Scholar] [CrossRef]
- Greinert, J.; Bohrmann, G.; Suess, E. Gas hydrate-associated carbonates and methane-venting at hydrate ridge: Classification, distribution, and origin of authigenic lithologies. Nat. Gas Hydrates Occur. Distrib. Detect. 2001, 124, 99–113. [Google Scholar]
- Haley, B.A.; Klinkhammer, G.P.; McManus, J. Rare earth elements in pore waters of marine sediments. Geochim. Cosmochim. Acta 2004, 68, 1265–1279. [Google Scholar] [CrossRef]
- Ge, L.; Jiang, S.-Y.; Swennen, R.; Yang, T.; Yang, J.-H.; Wu, N.-Y.; Liu, J.; Chen, D.-H. Chemical environment of cold seep carbonate formation on the northern continental slope of South China Sea: Evidence from trace and rare earth element geochemistry. Mar. Geol. 2010, 277, 21–30. [Google Scholar] [CrossRef]
- Li, J.; Peng, X.; Bai, S.; Chen, Z.; Van Nostrand, J.D. Biogeochemical processes controlling authigenic carbonate formation within the sediment column from the Okinawa Trough. Geochim. Cosmochim. Acta 2018, 222, 363–382. [Google Scholar] [CrossRef]
- Lin, Z.; Sun, X.; Lu, Y.; Xu, L.; Gong, J.; Lu, H.; Teichert, B.M.; Peckmann, J. Stable isotope patterns of coexisting pyrite and gypsum indicating variable methane flow at a seep site of the Shenhu area, South China Sea. J. Asian Earth Sci. 2016, 123, 213–223. [Google Scholar] [CrossRef]
- Wei, J.; Wu, T.; Deng, X.; Yu, Z.; Wang, L. Acoustic characteristics of cold-seep methane bubble behavior in the water column and its potential environmental impact. Acta Oceanol. Sin. 2020, 39, 133–144. [Google Scholar] [CrossRef]
- Argentino, C.; Lugli, F.; Cipriani, A.; Conti, S.; Fontana, D. A deep fluid source of radiogenic Sr and highly dynamic seepage conditions recorded in Miocene seep carbonates of the northern Apennines (Italy). Chem. Geol. 2019, 522, 135–147. [Google Scholar] [CrossRef]
- Xi, S.; Zhang, X.; Luan, Z.; Du, Z.; Li, L.; Wang, B.; Lian, C.; Yan, J. Biogeochemical implications of chemosynthetic communities on the evolution of authigenic carbonates. Deep Sea Res. Part I Oceanogr. Res. Pap. 2020, 162, 103305. [Google Scholar] [CrossRef]
- Luff, R.; Greinert, J.; Wallmann, K.; Klaucke, I.; Suess, E. Simulation of long-term feedbacks from authigenic carbonate crust formation at cold vent sites. Chem. Geol. 2005, 216, 157–174. [Google Scholar] [CrossRef]
- Luff, R.; Wallmann, K. Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin: Numerical modeling and mass balances. Geochim. Cosmochim. Acta 2003, 67, 3403–3421. [Google Scholar] [CrossRef]
- Greinert, J.; Veloso, M.; De Batist, M.A.; Mienert, J. Hydroacoustic quantification of free-gas venting offshore Svalbard, Arctic: Changes in space and time. AGUFM 2013, 2013, B31l-07. [Google Scholar]
- Whiticar, M.J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol. 1999, 161, 291–314. [Google Scholar] [CrossRef]
Sample No. | Approximate Relative Percentages (%) | ||||||
---|---|---|---|---|---|---|---|
Aragonite | Calcite | High-Mg Calcite | Quartz | Illite | Gypsum | Albite | |
3–1 | 65.3 | 18.3 | 5.4 | 11.0 | - | - | - |
3–3 | 83.5 | 13.0 | - | 5.2 | - | - | - |
3–2 | 61.1 | 12.5 | 7.6 | 14.0 | 2.7 | 0.4 | 2.4 |
52–1 | 98.0 | 0.5 | - | - | - | - | - |
52–2 | 80.5 | 4.2 | - | 11.2 | 2.5 | - | 0.6 |
53–1 | 84.0 | 3.9 | - | 8.9 | - | - | 1.2 |
53–2 | 83.8 | 2.4 | 2.2 | 9.6 | - | - | 1.2 |
53–3 | 83.1 | 3.3 | 1.9 | 8.7 | - | - | 0.6 |
53–4 | 83.1 | 8.7 | 1.9 | 3.3 | - | - | 0.6 |
53–5 | 88.0 | 3.8 | 2.0 | 5.1 | - | - | - |
53–6 | 94.8 | 1.9 | - | 3.2 | - | - | - |
53–7 | 40.5 | 5.8 | 35.9 | 9.8 | 3.5 | - | 1.4 |
Element | Approximate Content (ppm) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
3–1 | 3–2 | 3–3 | 52–1 | 52–2 | 53–1 | 53–2 | 53–3 | 53–4 | 53–5 | 53–6 | 53–7 | |
La | 11.4 | 13.6 | 5.6 | 0.6 | 9.0 | 4.9 | 9.2 | 10.1 | 9.1 | 2.8 | 6.1 | 9.2 |
Ce | 23.4 | 28.3 | 10.9 | 0.9 | 17.1 | 9.3 | 17.7 | 18.7 | 17.5 | 5.1 | 9.4 | 17.6 |
Pr | 2.4 | 2.9 | 1.1 | 0.1 | 1.9 | 1.0 | 1.9 | 2.1 | 1.9 | 0.6 | 1.2 | 1.9 |
Nd | 9.5 | 11.9 | 4.9 | 0.4 | 7.3 | 4.0 | 7.4 | 8.2 | 7.3 | 2.2 | 5.0 | 7.3 |
Sm | 1.9 | 2.1 | 0.9 | 0.1 | 1.3 | 0.8 | 1.4 | 1.6 | 1.4 | 0.4 | 0.8 | 1.5 |
Eu | 0.4 | 0.4 | 0.2 | 0.1 | 0.3 | 0.2 | 0.3 | 0.3 | 0.3 | 0.1 | 0.2 | 0.3 |
Gd | 1.7 | 1.9 | 0.8 | 0.1 | 1.2 | 0.7 | 1.2 | 1.4 | 1.2 | 0.4 | 0.7 | 1.2 |
Tb | 0.2 | 0.3 | 0.1 | 0.0 | 0.2 | 0.1 | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 0.2 |
Dy | 1.1 | 1.4 | 0.7 | 0.1 | 0.9 | 0.5 | 0.9 | 0.9 | 0.9 | 0.3 | 0.5 | 0.8 |
Ho | 0.2 | 0.2 | 0.1 | 0.0 | 0.2 | 0.1 | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 0.2 |
Er | 0.6 | 0.7 | 0.4 | 0.1 | 0.5 | 0.3 | 0.5 | 0.5 | 0.5 | 0.2 | 0.3 | 0.5 |
Tm | 0.1 | 0.1 | 0.0 | 0.0 | 0.1 | 0.0 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.1 |
Yb | 0.5 | 0.6 | 0.3 | 0.1 | 0.4 | 0.3 | 0.5 | 0.5 | 0.4 | 0.1 | 0.2 | 0.4 |
Lu | 0.1 | 0.1 | 0.0 | 0.0 | 0.1 | 0.0 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.1 |
∑.EE | 53.36 | 64.50 | 26.17 | 2.64 | 40.37 | 22.21 | 41.54 | 44.75 | 40.92 | 12.27 | 24.70 | 41.07 |
Ce/Ce * | 1.03 | 1.04 | 0.99 | 0.82 | 0.96 | 0.97 | 0.98 | 0.94 | 0.98 | 0.93 | 0.79 | 0.97 |
Eu/Eu * | 0.95 | 1.04 | 0.99 | 3.64 | 1.06 | 1.03 | 1.08 | 0.94 | 1.05 | 1.48 | 1.50 | 1.07 |
Pr/Pr * | 0.96 | 0.94 | 0.92 | 1.02 | 0.99 | 0.94 | 0.97 | 0.99 | 0.98 | 0.98 | 1.05 | 0.98 |
Sample No. | 230Th/232Th | 234U | 230Th/238U | 230Th age (yr) | 230Th age (yr) | |||||
---|---|---|---|---|---|---|---|---|---|---|
(AT × 10−6) | (not calibrated) | (calibrated) | ||||||||
3 | 20.0 | ±0.4 | 144.0 | ±3.7 | 0.1512 | ±0.0013 | 15,408 | ±155 | 12,210 | ±2269 |
52 | 92.9 | ±2.0 | 112.9 | ±3.9 | 0.8190 | ±0.0069 | 139,969 | ±2585 | 136,281 | ±3605 |
53 | 113.9 | ±2.3 | 101.1 | ±2.4 | 0.7913 | ±0.0037 | 134,088 | ±1351 | 131,143 | ±2461 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, J.; Wu, T.; Zhang, W.; Deng, Y.; Xie, R.; Feng, J.; Liang, J.; Lai, P.; Zhou, J.; Cao, J. Deeply Buried Authigenic Carbonates in the Qiongdongnan Basin, South China Sea: Implications for Ancient Cold Seep Activities. Minerals 2020, 10, 1135. https://doi.org/10.3390/min10121135
Wei J, Wu T, Zhang W, Deng Y, Xie R, Feng J, Liang J, Lai P, Zhou J, Cao J. Deeply Buried Authigenic Carbonates in the Qiongdongnan Basin, South China Sea: Implications for Ancient Cold Seep Activities. Minerals. 2020; 10(12):1135. https://doi.org/10.3390/min10121135
Chicago/Turabian StyleWei, Jiangong, Tingting Wu, Wei Zhang, Yinan Deng, Rui Xie, Junxi Feng, Jinqiang Liang, Peixin Lai, Jianhou Zhou, and Jun Cao. 2020. "Deeply Buried Authigenic Carbonates in the Qiongdongnan Basin, South China Sea: Implications for Ancient Cold Seep Activities" Minerals 10, no. 12: 1135. https://doi.org/10.3390/min10121135
APA StyleWei, J., Wu, T., Zhang, W., Deng, Y., Xie, R., Feng, J., Liang, J., Lai, P., Zhou, J., & Cao, J. (2020). Deeply Buried Authigenic Carbonates in the Qiongdongnan Basin, South China Sea: Implications for Ancient Cold Seep Activities. Minerals, 10(12), 1135. https://doi.org/10.3390/min10121135