Editorial for Minerals Special Issue “From Diagenesis to Low-Grade metamorphism”
- (1)
- Type of order (R parameter) and % illitic layers in the smectite-illite system ([28] and references therein) to define the advance of the reaction progress during the diagenetic stage.
- (2)
- Illite polytype, which basically differentiates the diagenetic (1Md polytype) from higher grades (2M1 polytype) [11].
- (3)
- The Kübler Index (KI) [29], which provides a scale for the diagenesis-anchizone-epizone grade definition [30]; to be valid, it must be correctly standardized according to the newest recommendations [31]. Originally, this parameter was broadly considered as a measure of the “illite crystallinity”, and lately, it was effectively correlated with the crystalline domain size of the illites, directly measured on transmission electron microscopy (TEM) images [32,33,34].
- (4)
- b parameter of white mica [35], which allows a qualitative characterization of the pressure gradient.
- (5)
- Vitrinite reflectance [36], which gives a scale for the maturation of organic matter of plant origin. It has been widely correlated with the KI, being this correlation dependent on, and hence, informative of, the type of thermal gradient in the basin [12,16]. It equilibrates quickly with the temperature and is not affected by retrogradation.
- (6)
- The geothermometer based on Raman spectra of carbonaceous material [7].
- (7)
- (8)
- (9)
- The color of conodonts [23,48,49], which gradually change from amber to brown to black, as their small amounts of organic matter pass through the temperature range 50 °C to 300 °C and to gray, white, and finally hyaline, at higher temperatures. This reaction of organic matter is not affected by retrogradation.
Funding
Acknowledgments
Conflicts of Interest
References
- Frey, M. Low Temperature Metamorphism; Blackie: Glasgow, UK, 1987; ISBN 0216920116. [Google Scholar]
- Nieto, F. Física mineral de los filosilicatos en el metamorfismo incipiente. In Nuevas Tendencias En El Estudio De Las Arcillas; Millán, J.J., Ed.; Sociedad Española de Arcillas: Jaén, Spain, 2001; pp. 3–13. ISBN 84-921625-3-8. [Google Scholar]
- Nieto, F.; Abad, I. Clay-slate evolution. Onset of metamorphism. In Proceedings of the EUROCLAY 2007, Invited Lectures, Aveiro, Portugal, 22–27 July 2007; pp. 34–42, ISBN 978-972-789-241-9. [Google Scholar]
- Essene, E.J.; Peacor, D.R. Clay mineral thermometry: A critical perspective. Clays Clay Miner. 1995, 43, 540–553. [Google Scholar] [CrossRef]
- Merriman, R.J.; Peacor, D.R. Very low-grade metapelites: Mineralogy, microfabrics and measuring reaction progress. In Low-Grade Metamorphism; Frey, M., Robinson, D., Eds.; Blackwell Science: Oxford, UK, 1999; pp. 10–60. ISBN 9781444313345. [Google Scholar]
- Nieto, F.; Abad, I. X-ray diffraction parameters in very low-grade metamorphism seen in the “light” of TEM. In Applied Study of Cultural Heritage and Clays; Pérez-Rodríguez, J.L., Ed.; Consejo Superior de Investigaciones Científicas: Madrid, Spain, 2003; pp. 363–376. ISBN 84-00-08197-8. [Google Scholar]
- Beyssac, O.; Goffé, B.; Chopin, C.; Rouzaud, J.N.; Goffe, B.; Chopin, C.; Rouzaud, J.N. Raman spectra of carbonaceous material in metasediments: A new geothermometer. J. Metamorph. Geol. 2002, 20, 858–871. [Google Scholar] [CrossRef]
- Ernst, W.G.; Ferreiro Mählmann, R. Vitrinite alteration rate as a function of temperature, time, starting material, aqueous fluid pressure and oxygen fugacity—Laboratory corroboration of prior work. In Geochemical Investigations in Earth and Space Science: A Tribute to Isaac R. Kaplan; Hill, R.J., Aizenshtat, Z., Baedecker, M.J., Claypool, G., Leventhal, J., Eganhouse, R., Goldhaber, M., Peters, K., Eds.; Publication No. 9; The Geochemical Society: Washington, DC, USA, 2004; Volume 9, pp. 341–357. [Google Scholar]
- Liou, J.G.; Maruyama, S.; Cho, M. Very low-grade metamorphism of volcanic and volcanoclastic rocks-mineral assemblages and mineral facies. In Low Temperature Metamorphism; Frey, M., Ed.; Blackie: Glasgow, UK, 1987; pp. 59–113. ISBN 0216920116. [Google Scholar]
- Bevins, R.; Robinson, D. Mineral parageneses in low-grade metabasites at low pressures and consideration of the sub-greenschist realm. In Diagenesis and Low-Temperature Metamorphism. Theory, Methods and Regional Aspects; Nieto, F., Jiménez-Millán, J., Eds.; Sociedad Española de Mineralogía: Jaén, Spain, 2007; Volume 3, pp. 9–20. ISBN 1698-5478. [Google Scholar]
- Frey, M. Very low-grade metamorphism of clastic sedimentary rocks. In Low Temperature Metamorphism; Frey, M., Ed.; Blackie: Glasgow, UK, 1987; pp. 9–58. ISBN 0216920116. [Google Scholar]
- Ferreiro-Mählmann, R.; Bozkaya, O.; Potel, S.; Le Bayon, R.; Segvic, B.; Nieto, F.; Maehlmann, R.F.; Bozkaya, O.; Potel, S.; Le Bayon, R.; et al. The pioneer work of Bernard Kübler and Martin Frey in very low-grade metamorphic terranes: Paleo-geothermal potential of variation in Kübler-Index/organic matter reflectance correlations. A review. Swiss J. Geosci. 2012, 105, 121–152. [Google Scholar] [CrossRef]
- Süssenberger, A.; Wemmer, K.; Schmidt, S.T. The zone of incipient 40Ar* loss-monitoring 40Ar* degassing behavior in a contact metamorphic setting. Appl. Clay Sci. 2018, 165, 52–63. [Google Scholar] [CrossRef]
- Nieto, F.; Jiménez-Millán, J. Diagenesis and Low-Temperature Metamorphism: Theory, Methods and Regional Aspects; Sociedad Española de Mineralogía: Jaén, Spain, 2007; Volume 3, ISBN 1698-5478. [Google Scholar]
- Ferreiro-Mählmann, R.; Nieto, F.; Bozkaya, O.; Potel, S.; Turkmenoglu, A.G. Preface: Clay mineral diagenesis and very low-grade metamorphic processes. Proceedings of the 2011 Frey-Kübler symposium. Swiss J. Geosci. 2012, 105, 117–120. [Google Scholar] [CrossRef] [Green Version]
- Merriman, R.J. Clay minerals and sedimentary basin history. Eur. J. Mineral. 2005, 17, 7–20. [Google Scholar] [CrossRef] [Green Version]
- Merriman, R.J.; Frey, M. Patterns of very low-grade metamorphism in metapelitic rocks. In Low-Grade Metamorphism; Frey, M., Robinson, D., Eds.; Blackwell Science: Oxford, UK, 1999; pp. 61–107. ISBN 9781444313345. [Google Scholar]
- Abad, I.; Nieto, F.; Velilla, N.; Suárez-Ruiz, I. Metamorphic evidences from the Monchique pluton (South Portugal): Contact metamorphism vs. regional metamorphism under very low-grade conditions. Rev. Soc. Geol. España 2014, 27, 337–350. [Google Scholar]
- Do Campo, M.; Nieto, F. Transmission electron microscopy study of very low-grade metamorphic evolution in Neoproterozoic pelites of the Puncoviscana formation (Cordillera Oriental, NW Argentina). Clay Miner. 2003, 38, 459–481. [Google Scholar] [CrossRef] [Green Version]
- Do Campo, M.; Collo, G.; Nieto, F. Geothermobarometry of very low-grade metamorphic pelites of the Vendian-Early Cambrian Puncoviscana Formation (NW Argentina). Eur. J. Mineral. 2013, 25, 429–451. [Google Scholar] [CrossRef]
- Abad, I.; Nieto, F.; Gutierrez-Alonso, G.; Murphy, J.B.; Braid, J.A.; Rodriguez-Navarro, A.B. Fluid-driven low-grade metamorphism in polydeformed rocks of Avalonia (Arisaig Group, Nova Scotia, Canada). Swiss J. Geosci. 2012, 105, 283–297. [Google Scholar] [CrossRef]
- Abad, I.; Murphy, J.B.; Nieto, F.; Gutierrez-Alonso, G. Diagenesis to metamorphism transition in an episutural basin: The late Paleozoic St. Mary’s Basin, Nova Scotia, Canada. Can. J. Earth Sci. 2010, 47, 121–135. [Google Scholar] [CrossRef] [Green Version]
- Do Campo, M.; Nieto, F.; Del Papa, C.; Hongn, F. Syn- and post-sedimentary controls on clay mineral assemblages in a tectonically active basin, Andean Argentinean foreland. J. South Am. Earth Sci. 2014, 52, 43–56. [Google Scholar] [CrossRef]
- Nieto, F.; Mata, M.P.; Bauluz, B.; Giorgetti, G.; Arkai, P.; Peacor, D.R. Retrograde diagenesis, a widespread process on a regional scale. Clay Miner. 2005, 40, 93–104. [Google Scholar] [CrossRef] [Green Version]
- Do Campo, M.; Nieto, F.; Albanesi, G.L.; Ortega, G.; Monaldi, C.R. Outlining the thermal posdepositional evolution of the Ordovician successions of northwestern Argentina by clay mineral analysis, chlorite geothermometry and Kübler index. Andean Geol. 2017, 44, 179–212. [Google Scholar] [CrossRef]
- Arkai, P.; Abad, I.; Nieto, F.; Nemeth, T.; Horvath, P.; Kis, V.K.; Judik, K.; Jimenez-Millan, J. Retrograde alterations of phyllosilicates in low-grade metapelite: A case study from the Szendro Paleozoic, NE-Hungary. Swiss J. Geosci. 2012, 105, 263–282. [Google Scholar] [CrossRef]
- Nieto, F.; Peacor, D.R. Regional retrograde alteration of prograde pelite sequences to lower grade hydrated assemblages. Terra Abstr. 1993, 5, 419. [Google Scholar]
- Arostegui, J.; Arroyo, X.; Nieto, F.; Bauluz, B. Evolution of Clays in Cretaceous Marly Series (Alava Block, Basque Cantabrian Basin, Spain): Diagenesis and Detrital Input Control. Minerals 2019, 9, 40. [Google Scholar] [CrossRef] [Green Version]
- Kübler, B. Evaluation quantitative du métamorphisme par la cristallinité de l’illite. Bull. Cent. Rech. Pau-SNPA 1968, 2, 385–397. [Google Scholar]
- Abad, I. Physical meaning and applications of the illite Kübler index: Measuring reaction progress in low-grade metamorphism. In Diagenesis and Low-Temperature Metamorphism: Theory, Methods and Regional Aspects; Nieto, F., Jiménez-Millán, J., Eds.; Seminarios SEM, 3: Jaén, Spain, 2007; pp. 53–64. ISBN 1698-5478. [Google Scholar]
- Warr, L.N.; Ferreiro-Mählmann, R. Recommendations for Kübler Index standardization. Clay Miner. 2015, 50, 283–286. [Google Scholar] [CrossRef]
- Merriman, R.J.; Roberts, B.; Peacor, D.R. A transmission electron microscope study of white mica crystallite size distribution in a mudstone to slate transitional sequence, North Wales, UK. Contrib. Mineral. Pet. 1990, 106, 27–40. [Google Scholar] [CrossRef] [Green Version]
- Nieto, F.; Sanchez-Navas, A. A comparative XRD and TEM study of the physical meaning of the white mica “crystallinity” index. Eur. J. Miner. 1994, 6, 611–622. [Google Scholar] [CrossRef] [Green Version]
- Warr, L.N.; Nieto, F. Crystallite thickness and defect density of phyllosilicates in low-temperature metamorphic pelites: A TEM and XRD study of clay-mineral crystallinity-index standards. Can. Mineral. 1998, 36, 1453–1474. [Google Scholar]
- Guidotti, C.V.; Sassi, F.P. Classification and correlation of metamorphic facies series by means of muscovite bo data from low-grade metapelites. Neues Jahrb. für Mineral. Abhanlungen 1986, 153, 363–380. [Google Scholar]
- Teichmüller, M. Organic material and very low-grade metamorphism. In Low Temperature Metamorphism; Frey, M., Ed.; Blacky: Glasgow, UK; London, UK, 1987; pp. 114–161. ISBN 0216920116. [Google Scholar]
- Hoinkes, G.; Hauzenberger, C.A.; Schmid, R. Metamorphic Rocks|Classification, Nomenclature and Formation. In Encyclopedia of Geology; Selley, R.C., Cocks, L.R.M., Plimer, I.R., Eds.; Elsevier: Oxford, UK, 2005; pp. 386–402. ISBN 978-0-12-369396-9. [Google Scholar]
- Giorgetti, G.; Memmi, I.; Nieto, F. Microstructures of intergrown phyllosilicate grains from Verrucano metasediments (northern Apennines, Italy). Contrib. Mineral. Pet. 1997, 128, 127–138. [Google Scholar] [CrossRef]
- Livi, K.J.T.; Christidis, G.E.; Árkai, P.; Veblen, D.R. White mica domain formation: A model for paragonite, margarite, and muscovite formation during prograde metamorphism. Am. Mineral. 2008, 93, 520–527. [Google Scholar] [CrossRef]
- Ruiz Cruz, M.D. Dickite, nacrite and possible dickite/nacrite mixed-layers from the Betic Cordilleras (Spain). Clays Clay Miner. 1996, 44, 357–369. [Google Scholar] [CrossRef]
- Ruiz Cruz, M.D.; Andreo, B. Genesis and transformation of dickite in permo-triassic sediments (Betic Cordilleras, Spain). Clay Miner. 1996, 31, 133–152. [Google Scholar] [CrossRef]
- Ruiz Cruz, M.D. Genesis and evolution of the kaolin-group minerals during the diagenesis and the beginning of metamorphism. In Diagenesis and Low-Temperature Metamorphism: Theory, Methods and Regional Aspects; Nieto, F., Millán, J.J., Eds.; Sociedad Española de Mineralogía: Jaén, Spain, 2007; Volume 3, pp. 41–52. ISBN 1698-5478. [Google Scholar]
- Fransolet, A.M.; Schereyer, W. Sudoite, di/trioctahedral chlorite: A stable low-temperature phase in the system MgO-Al2O3-SiO2-H2O. Contrib. Mineral. Pet. 1984, 86, 409–417. [Google Scholar] [CrossRef]
- Ruiz Cruz, M.D.; de Galdeano, C.S. Compositional and structural variation of sudoite from the Betic Cordillera (Spain): A TEM/AEM study. Clays Clay Miner. 2005, 53, 639–652. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, D.; Schmidt, S.T.; Mullis, J.; Ferreiro Mählmann, R.; Frey, M. Very low grade metamorphism of the Taveyanne formation of western Switzerland. Contrib. Mineral. Pet. 1997, 129, 385–403. [Google Scholar] [CrossRef]
- Liou, J.G.; Zhang, R.-Y. Ultrahigh-Pressure Metamorphic Rocks. In Encyclopedia of Physical Science and Technology, 3rd ed.; Meyers, R.A., Ed.; Academic Press: New York, NY, USA, 2003; pp. 227–244. ISBN 978-0-12-227410-7. [Google Scholar]
- Brusnitsyn, A.I.; Starikova, E.V.; Zhukov, I.G. Mineralogy of low grade metamorphosed manganese sediments of the Urals: Petrological and geological applications. Ore Geol. Rev. 2017, 85, 140–152. [Google Scholar] [CrossRef]
- Epstein, A.G.; Epstein, J.B.; Harris, L.D. Conodont color alteration—An index to organic metamorphism. USGS Prof. Pap. 1987, 99, 471–479. [Google Scholar] [CrossRef]
- Rejebian, V.A.; Harris, A.G.; Huebner, J.S. Conodont color and textural alteration: An index to regional metamorphism, contact metamorphism, and hydrothermal alteration. Geol. Soc. Am. Bull. 1987, 99, 471. [Google Scholar] [CrossRef]
- Vidal, O.; Parra, T.; Vieillard, P. Thermodynamic properties of the Tschermak solid solution in Fe-chlorite: Application to natural examples and possible role of oxidation. Am. Mineral. 2005, 90, 347–358. [Google Scholar] [CrossRef]
- Vidal, O.; de Andrade, V.; Lewin, E.; Muñoz, M.; Parra, T.; Pascarelli, S. P-T-deformation-Fe3+/Fe2+ mapping at the thin section scale and comparison with XANES mapping: Application to a garnet-bearing metapelite from the Sambagawa metamorphic belt (Japan). J. Metamorph. Geol. 2006, 24, 669–683. [Google Scholar] [CrossRef]
- Inoue, A.; Meunier, A.; Patrier-Mas, P.; Rigault, C.; Beaufort, D.; Vieillard, P. Application of chemical geothermometry to low-temperature trioctahedral chlorites. Clays Clay Miner. 2009, 57, 371–382. [Google Scholar] [CrossRef]
- Bourdelle, F.; Parra, T.; Chopin, C.; Beyssac, O. A new chlorite geothermometer for diagenetic to low-grade metamorphic conditions. Contrib. Mineral. Pet. 2013, 165, 723–735. [Google Scholar] [CrossRef]
- Lanari, P.; Wagner, T.; Vidal, O. A thermodynamic model for di-trioctahedral chlorite from experimental and natural data in the system MgO-FeO-Al2O3- SiO2-H2O: Applications to P-T sections and geothermometry. Contrib. Mineral. Pet. 2014, 167. [Google Scholar] [CrossRef] [Green Version]
- Bourdelle, F.; Cathelineau, M. Low-temperature chlorite geothermometry: A graphical representation based on a T-R2+-Si diagram. Eur. J. Mineral. 2015, 27, 617–626. [Google Scholar] [CrossRef]
- Inoue, A.; Inoué, S.; Utada, M. Application of chlorite thermometry to estimation of formation temperature and redox conditions. Clay Miner. 2018, 53, 143–158. [Google Scholar] [CrossRef]
- Verdecchia, S.O.; Collo, G.; Zandomeni, P.S.; Wunderlin, C.; Fehrmann, M. Crystallochemical indexes and geothermobarometric calculations as a multiproxy approach to P-T condition of the low-grade metamorphism: The case of the San Luis Formation, Eastern Sierras Pampeanas of Argentina. Lithos 2019, 324–325, 385–401. [Google Scholar] [CrossRef]
- Vidal, O.; Lanari, P.; Muñoz, M.; Bourdelle, F.; de Andrade, V. Deciphering temperature, pressure and oxygen-activity conditions of chlorite formation. Clay Miner. 2016, 51, 615–633. [Google Scholar] [CrossRef] [Green Version]
- Kamzolkin, V.A.; Konilov, A.N.; Kulakova, E.P.; Latyshev, A.V.; Smulskaya, A.I.; Ivanov, S.D. Sulfides in metamorphic rocks of the fore range zone (Greater Caucasus). A new type of mineral container for peak metamorphism mineral assemblages. Minerals 2019, 9, 701. [Google Scholar] [CrossRef] [Green Version]
- Inui, M.; Wakai, Y.; Sakuragi, H. Nucleation and initial growth of garnet in low-grade metamorphic rocks of the Sanbagawa metamorphic belt, Kanto Mountains, Japan. Minerals 2020, 10, 292. [Google Scholar] [CrossRef] [Green Version]
- Dias, I.; Cury, L.; Titon, B.G.; Athayde, G.; Fedalto, G.; Santos, L.D.R.; Soares, A.; Athayde, C.D.V.M.; Rumbeslperger, A.M.B. The Occurrence of Authigenic Clay Minerals in Alkaline-Saline Lakes, Pantanal Wetland (Nhecolândia Region, Brazil). Minerals 2020, 10, 718. [Google Scholar] [CrossRef]
- Martos-Villa, R.; Mata, M.P.; Williams, L.B.; Nieto, F.; Rey, X.A.; Sainz-Díaz, C.I. Evidence of Hydrocarbon-Rich Fluid Interaction with Clays: Clay Mineralogy and Boron Isotope Data from Gulf of Cádiz Mud Volcano Sediments. Minerals 2020, 10, 651. [Google Scholar] [CrossRef]
- Rodríguez-Ruiz, M.D.; Abad, I.; Bentabol, M.J. Permo-triassic clastic rocks from the Ghomaride complex and Federico units (Rif Cordillera, N Morocco): An example of diagenetic-metamorphic transition. Minerals 2019, 9, 738. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nieto, F.; Do Campo, M. Editorial for Minerals Special Issue “From Diagenesis to Low-Grade metamorphism”. Minerals 2020, 10, 879. https://doi.org/10.3390/min10100879
Nieto F, Do Campo M. Editorial for Minerals Special Issue “From Diagenesis to Low-Grade metamorphism”. Minerals. 2020; 10(10):879. https://doi.org/10.3390/min10100879
Chicago/Turabian StyleNieto, Fernando, and Margarita Do Campo. 2020. "Editorial for Minerals Special Issue “From Diagenesis to Low-Grade metamorphism”" Minerals 10, no. 10: 879. https://doi.org/10.3390/min10100879
APA StyleNieto, F., & Do Campo, M. (2020). Editorial for Minerals Special Issue “From Diagenesis to Low-Grade metamorphism”. Minerals, 10(10), 879. https://doi.org/10.3390/min10100879