Mineralogical Study and Genetic Model of Efflorescent Salts and Crusts from Two Abandoned Tailings in the Taxco Mining District, Guerrero (Mexico)
Abstract
:1. Introduction
Historical Background and Description of the Study Area
2. Materials and Methods
2.1. Sampling
2.2. Short-Wave Infrared Spectroscopy
2.3. X-ray Diffraction Analysis
2.4. Scanning Electron Microscopy
2.5. Chemistry of Whole Rock and Trace Elements by Inductively Coupled Plasma
3. Results
3.1. Short-Wave Infrared Spectroscopy
3.2. X-ray Diffraction
3.2.1. Xochula Tailings
3.2.2. Remedios Tailings
3.2.3. X-ray Diffraction General Grouping
3.3. Scanning Electron Microscopy
3.4. Geochemistry
4. Discussion
4.1. Mineral Zoning of the Mining Waste
4.2. Comparison of the Xochula Tailings with the Remedios Tailings
4.3. Genetic Model
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Agricola, G. De Re-Metallica; On Metallic Substances; Hoover, H.C.; Hoover, L.H., Translators; Dover Publications: Mineola, NY, USA, 1556; p. 638. [Google Scholar]
- Karpenko, V.; Norris, J.A. Vitriol in the history of chemistry. Chem. Listy 2002, 96, 997–1005. [Google Scholar]
- Nordstrom, D.K.; Alpers, C.N. Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountain Superfund site. California. Proc. Natl. Acad. Sci. USA 1999, 96, 3455–3462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chicoș, M.M.; Damian, G.; Stumbea, D.; Buzgar, N.; Ungureanu, T.; Nica, V.; Iepure, G. Mineralogy and geochemistry of the tailings pond from Straja Valley (Suceava County, Romania). Factors affecting the mobility of the elements on the surface of the waste deposit. Carpathian J. Earth Environ. Sci. 2016, 11, 265–280. [Google Scholar]
- Grover, B.P.C.; Johnson, R.H.; Billing, D.G.; Weiersbye, I.M.G.; Tutu, H. Mineralogy and geochemistry of efflorescent minerals on mine tailings and their potential impact on water chemistry. Environ. Sci. Pollut. Res. 2016, 23, 7338–7348. [Google Scholar] [CrossRef] [PubMed]
- Hudson-Edwards, K.A.; Jamieson, H.E.; Lottermoser, B.G. Mine wastes: Past, present, future. Elements 2011, 7, 375–380. [Google Scholar] [CrossRef]
- Hayes, S.M.; Root, R.A.; Perdrial, N.; Maier, R.M.; Chorover, J. Surficial weathering of iron sulfide mine tailings under semi-arid climate. Geochim. Cosmochim. Acta 2014, 141, 240–257. [Google Scholar] [CrossRef] [Green Version]
- Dold, B. Evolution of Acid Mine Drainage Formation in Sulphidic Mine Tailings. Minerals 2014, 4, 621–641. [Google Scholar] [CrossRef] [Green Version]
- Alpers, C.N.; Blowes, D.W.; Nordstrom, D.K.; Jambor, J.L. Secondary minerals and acid mine-water chemistry. In Environmental Geochemistry of Sulfide Mine-Wastes (Mineralogical Association of Canada Short Course Volumes); Jambor, J.L., Blowes, D.W., Eds.; Mineralogical Association of Canada: Quebec, QC, Canada, 1994; Volume 22, pp. 247–270. [Google Scholar] [CrossRef]
- Dold, B.; Fontboté, L. Element cycling and secondary mineralogy in porphyry copper tailings as a function of climate, primary mineralogy, and mineral processing. J. Geochem. Explor. 2001, 74, 3–55. [Google Scholar] [CrossRef]
- Dold, B.; Fontboté, L. A mineralogical and geochemical study of element mobility in sulfide mine tailings of Fe oxide Cu-Au deposits from the Punta del Cobre belt, northern Chile. Chem. Geol. 2002, 189, 135–163. [Google Scholar] [CrossRef]
- Buckby, T.; Black, S.; Coleman, M.L.; Hodson, M.E. Fe sulphate-rich evaporative mineral precipitates from Río Tinto, southwest Spain. Mineral. Mag. 2003, 67, 263–278. [Google Scholar] [CrossRef]
- Hammarstrom, J.M.; Seal Ii, R.R.; Meier, A.L.; Kornfeld, J.M. Secondary sulfate minerals associated with acid drainage in the eastern US: Recycling of metals and acidity in surficial environments. Chem. Geol. 2005, 215, 407–431. [Google Scholar] [CrossRef] [Green Version]
- Romero, A.; González, I.; Galán, E. The role of efflorescent sulfates in the storage of trace elements in stream waters polluted by acid mine-drainage: The case of Peña Del Hierro, southwestern Spain. Can. Mineral. 2006, 44, 1431–1446. [Google Scholar] [CrossRef]
- Arranz-González, J.C.; Cala-Rivero, V.; Iribarren Campaña, I. Geochemistry and mineralogy of surface pyritic tailings impoundments at two mining sites of the Iberian Pyrite Belt (SW Spain). Environ. Earth Sci. 2011, 1–13. [Google Scholar] [CrossRef]
- Jambor, J.L.; Nordstrom, D.K.; Alpers, C.N. Metal-sulfate salts from sulfide mineral oxidation. In Sulfate Minerals: Crystallography, Geochemistry, and Environmental Significance (Reviews in Mineralogy and Geochemistry); Alpers, C.N., Jambor, J.L., Nordstrom, D.K., Eds.; Mineralogical Society of America: Chantilly, VA, USA, 2000; Volume 40, pp. 303–350. [Google Scholar]
- Nordstrom, D.K. Acid rock drainage and climate change. J. Geochem. Explor. 2009, 100, 97–104. [Google Scholar] [CrossRef]
- Hyde, B.C.; King, P.I.; Dyar, M.D.; Spilde, M.N.; Ali, A.M.S. Methods to analyze metastable and microparticulate hydrated and hydrous iron sulfate minerals. Am. Mineral. 2011, 96, 1856–1869. [Google Scholar] [CrossRef]
- Salas, G.P. Economic Geology, Mexico; Geological Society of America: Boulder, CO, USA, 1991; p. 453. ISBN 0-8137-5213-2. [Google Scholar]
- Cambrubí, A.; Albinson, T. Epithermal deposits in México—Update of current knowledge, and an empirical reclassification. Geol. Soc. Am. Spec. Pap. 2007, 422, 1–40. [Google Scholar] [CrossRef]
- Farfán-Panamá, J.L.; González-Partida, E.; Camprubí, A. Geología y mineralización del depósito epitermal polimetálico del distrito minero de Taxco, Guerrero, México, extended abstract. In Proceedings of the AIMMGM, XXX Convención Internacional de Minería, Acapulco, México, 16–19 October 2013. [Google Scholar]
- IMSA. Geology and Ore Deposits of the Taxco Mining District; Inter. Report; IMSA: Guerrero, México, 1978; 40p. [Google Scholar]
- Talavera-Mendoza, O.; Yta, M.; Moreno-Tovar, R.; Dótor-Almazán, A.; Flores-Mundo, N.; Duarte-Gutiérrez, C. Mineralogy and geochemistry of sulfide–bearing tailings from silver mines in the Taxco, Mexico area to evaluate their potential environmental impact. Geofis. Int. 2005, 44, 46–64. [Google Scholar]
- López-Jiménez, R. Geological and Metallogenetic Features of the Manto Esperanza Vieja: Ag-Base-metal Epithermal Deposit of Taxco, Mexico. Master’s Thesis, Universidad Complutense de Madrid, Madrid, España & Universidad Nacional Autónoma de México, Querétaro, México, 2008; 98p. [Google Scholar]
- Barrera, M. Geoquímica de metales pesados en los jales del Fraile municipio de Taxco, Guerrero, México. Master’s Thesis, Instituto de Geofísica, UNAM, Querétaro, México, February 2001; 59p. [Google Scholar]
- Armienta, M.A.; Talavera, O.; Morton, O.; Barrera, M. Geochemistry of Metals from Mine Tailings in Taxco, Mexico. Bull. Environ. Contam. Toxicol. 2003, 71, 387–393. [Google Scholar] [CrossRef]
- Romero, F.M. Procesos Geoquímicos Que Controlan la Movilidad de Metales y Metaloides en Jales de Sulfuros Metálicos “El Fraile”, Taxco Guerrero. Ph.D. Thesis, Instituto de Geofísica, UNAM, Querétaro, México, March 2004; 155p. [Google Scholar]
- Talavera-Mendoza, O.; Armienta-Hernández, M.A.; García-Abundis, J.; Flores-Mundo, N. Geochemistry of leachates from the El Fraile sulfide tailings piles in Taxco, Guerrero, southern Mexico. Environ. Geochem. Health 2006, 28, 243–255. [Google Scholar] [CrossRef]
- Romero, F.M.; Armienta, M.A.; González-Hernández, G. The solid-phase control on the mobility of potentially toxic elements in an abandoned lead/zinc mine tailings impoundment, Taxco, Mexico. Appl. Geochem. 2007, 22, 109–127. [Google Scholar] [CrossRef]
- Liewig, N.; Clauer, N.; Sommer, F. Rb-Sr and K-Ar dating of clay diagenesis in Jurassic sandstone oil reservoirs, North Sea. Am. Assoc. Pet. Geol. Bull. 1987, 71, 1467–1474. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall: Englewood Cliffs, NJ, USA, 1958; p. 498. [Google Scholar]
- Moore, D.M.; Reynolds, R.C., Jr. X-ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed.; Oxford University Press: Oxford, UK, 1997; p. 378. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Chervonnyi, A.D. Infrared Spectroscopy of Minerals and Related Compounds; Springer: Berlin, Germany, 2016; p. 1116. ISBN 978-3-319-25347-3. [Google Scholar] [CrossRef]
- Velasco, F.; Alvaro, A.; Suarez, S.; Herrero, J.M.; Yusta, I. Mapping Fe-bearing hydrated sulphate minerals with short wave infrared (SWIR) spectral analysis at San Miguel mine environment, Iberian Pyrite Belt (SW Spain). J. Geochem. Explor. 2005, 87, 45–72. [Google Scholar] [CrossRef]
- Cloutis, E.A.; Hawthorne, F.C.; Mertzman, S.A.; Krenn, K.; Craig, M.A.; Marcino, D.; Methot, M.; Strong, J.; Mustard, J.F.; Blaney, D.L.; et al. Detection and discrimination of sulfate minerals using reflectance spectroscopy. Icarus 2006, 184, 121–157. [Google Scholar] [CrossRef]
- Nordstrom, D.K. Aqueous pyrite oxidation and the consequent formation of secondary iron minerals. In Acid Sulfate Weathering; Kittrick, J.A., Fanning, D.S., Hossner, L.R., Eds.; Soil Science Society of America: Madison, WI, USA, 1982; Volume 10, pp. 37–56. [Google Scholar]
- Rietveld, H. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Hawthorne, F.C.; Krivovichev, S.V.; Burns, P.C. The crystal chemistry of sulfate minerals. In Reviews in Mineralogy and Geochemistry; Sulfate Minerals: Crystallography, Geochemistry, and Environmental Significance; Alpers, C.N., Jambor, J.L., Nordstrom, D.K., Eds.; Mineralogical Society of America: Chantilly, VA, USA, 2000; Volume 40, pp. 1–101. [Google Scholar] [CrossRef]
- Del Rio-Salas, R.; Ayala-Ramírez, Y.; Loredo-Portales, R.; Romero, F.; Molina-Freaner, F.; Minjarez-Osorio, C.; Pi-Puig, T.; Ochoa–Landín, L.; Moreno-Rodríguez, V. Mineralogy and Geochemistry of Rural Road Dust and Nearby Mine Tailings: A Case of Ignored Pollution Hazard from an Abandoned Mining Site in Semi-arid Zone. Nat. Resour. Res. 2019. [Google Scholar] [CrossRef]
- Meza-Figueroa, D.; Maier, R.M.; de la O-Villanueva, M.; Gómez-Alvarez, A.; Moreno-Zazueta, A.; Rivera, J.; Campillo, A.; Grandlic, C.H.J.; Anaya, R.; Palafox-Reyes, J. The impact of unconfined mine tailings in residential areas from a mining town in a semi-arid environment: Nacozari, Sonora, Mexico. Chemosphere 2009, 77, 140–147. [Google Scholar] [CrossRef] [Green Version]
- WHO (World Health Organization). Global Health Observatory Data Repository: International Health Regulations (2005) Monitoring Framework. Available online: https://apps.who.int/gho/data/node.main-eu.IHR?lang=en (accessed on 17 June 2020).
- NORMA Oficial Mexicana, NOM. 141-SEMARNAT-2003. In Que Establece El Procedimiento Para Caracterizar Los Jales, así Como Las Especificaciones Y Criterios Para La Caracterización Y Preparación Del Sitio, Proyecto, Construcción, Operación Y Postoperación de Presas de Jales, Diario Oficial de La Federación; Estados Unidos Mexicanos-Secretaria de Medio Ambiente y Recursos Naturales: Mexico City, Mexico, 2004. [Google Scholar]
- Jamieson, H.E.; Robinson, C.; Alpers, C.N.; McCleskey, R.B.; Nordstrom, D.K.; Peterson, R.C. Major and trace element composition of copiapite-group minerals and coexisting water from the Richmond mine, Iron Mountain, California. Chem. Geol. 2005, 215, 387–405. [Google Scholar] [CrossRef] [Green Version]
- Escobar-Quiroz, I.N.; Villalobos-Peñalosa, M.; Pi-Puig, T.; Martín Romero, F.; Aguilar-Carrillo de Albornoz, J. Identification of jarosite and other major mineral Fe phases in acidic environments affected by mining-metallurgy using X-ray Absorption Spectroscopy: With special emphasis on the August 2014 Cananea acid spill. Rev. Mex. Cienc. Geol. 2019, 36, 229–241. [Google Scholar] [CrossRef] [Green Version]
- Jamieson, H.E.; Walker, S.R.; Parsons, M.B. Mineralogical characterization of mine waste. Appl. Geochem. 2015, 57, 85–105. [Google Scholar] [CrossRef]
- Shahroz Khan, S.; Haq, F.; Hasan, F.; Saeed, K.; Ullah, R. Growth and Biochemical Activities of Acidithiobacillus thiooxidans Collected from Black Shale. J. Microbiol. Res. 2012, 2, 78–83. [Google Scholar] [CrossRef] [Green Version]
- Pozo-Antonio, S. Techniques to correct and prevent acid mining drainage. DYNA (Medellín, Colombia) 2014, 81, 73–80. [Google Scholar] [CrossRef]
Sample | Origin | Coloration | Description |
---|---|---|---|
JH-01 | Tailings | Yellowish orange | Very fine grain efflorescent salts |
JH-02 | Tailings | Pale yellow | Soft crust without vegetation |
JH-03 | Tailings | Yellowish orange | Material with fibrous texture |
JH-04 | Soil | Yellowish brown and bluish | Fine grain with vegetation |
JH-05 | Tailings | Brownish-yellowish orange | Very fine grain without efflorescence |
JH-5-1 | Tailings and crust | Intense orange and violet red | Consolidated crust |
JH-06 | Soil | Orange brown | Fine grain with vegetation |
JH-07 | Soil | Yellowish brown | Fine grain with vegetation |
JH-08 | Soil | Brown | Consolidated material without vegetation |
JH-09 | Soil | Yellowish brown | Fine grain with vegetation |
JH-10 | Soil | Yellowish brown | Fine grain with vegetation |
JH-11 | Soil | Brown | Fine grain with vegetation |
JH-12 | Soil | Yellowish brown | Fine grain with vegetation |
JH-13 | Soil | Yellowish reddish brown | Fine grain with vegetation |
JH-14 | Soil | Orange brown | Fine grain with vegetation |
JH-15 | Soil | Yellowish brown | Fine grain with vegetation |
JH-16 | Soil | Dark yellowish brown | Fine grain with vegetation |
JH-17 | Tailings | Intense orange | Crust without vegetation |
JH-18 | Soil | Yellowish brown | Fine grain with vegetation |
JH-19 | Soil | Yellowish brown | Fine grain with vegetation |
JH-20 | Tailings | Yellowish white | Very fine grain efflorescent salts |
JH-21 | Tailings | Bright yellow orange | Loose material without vegetation |
JH-22 | Tailings | Dark Yellowish brown | Consolidated without vegetation |
JH-23 | Soil | Light yellowish brown | Fine grain with vegetation |
JH-24 | Soil | Yellowish brown | Fine grain with vegetation |
JH-25 | Soil | Orange-reddish brown | Fine grain with vegetation |
JH-26 | Soil | Yellowish brown | Fine grain with vegetation |
JH-27 | Soil | Yellowish brown | Fine grain with vegetation |
JH-28 | Soil | Yellowish-orange brown | Fine grain with vegetation |
JH-29 | Soil | Yellowish brown | Fine grain with vegetation |
JH-30 | Tailings | Intense orange | Fine grain without vegetation |
JH-31 | Tailings | Yellowish white | Very fine grain efflorescent salts |
JH-32 | Tailings | Yellowish white | Very fine grain efflorescent salts |
JH-33 | Tailings | Intense orange | Loose sandy material |
JH-34 | Tailings | Intense orange and yellow | Loose sandy material |
JH-35 | Tailings | Intense orange | Loose sandy material |
JH-36 | Tailings | Reddish violet and orange | Slightly hardened scab |
JH-37 | Tailings | Yellowish white | Very fine grain efflorescent salts |
JH-38 | Tailings | Whitish | Very fine grain efflorescent salts |
JH-39 | Tailings | White orange | Massive, fine-grained efflorescent salts |
JH-40 | Tailings | Pink white | Very fine grain efflorescent salts |
JH-41 | Tailings | Gray bluish lead | Consolidated material with fibrous texture |
Sample | Origin | Coloration | Description |
---|---|---|---|
JT-01 | Tailings | Loose sandy material | Loose sandy material |
JT-02 | Tailings | Yellowish brown | Material with fibrous texture |
JT-07 | Tailings | Violet gray | Loose sandy material |
JT-08 | Tailings | Orange brown | Very fine grain efflorescent salts |
JT-09 | Tailings | Greenish yellow | Very fine grain efflorescent salts |
JT-10 | Tailings | Orange brown | Loose sandy material |
JT-11 | Tailings | Orange red | Loose sandy material |
JT-12 | Tailings | Intense orange and yellow | Loose sandy material |
JT-13 | Tailings | Yellowish orange | Weakly consolidated |
JT-14 | Tailings | Pink violet | Slightly hardened crust |
JT-15 | Tailings | Yellowish brown | Loose sandy material |
JT-17 | Tailings | Red brown | Slightly hardened scab |
JT-18 | Tailings | Red brown | Slightly hardened scab |
JT-19 | Tailings | Pink violet | Slightly hardened scab |
JT-20 | Tailings | Dark brown violet | Slightly hardened scab |
JT-21 | Tailings | Yellowish brown | Crust with disease cracks |
JT-22 | Tailings | Yellowish orange | Very fine grain efflorescent salts |
JT-23 | Tailings | Orange-red brown | Crust with disease cracks |
JT-24 | Tailings | Intense orange brown | Soft crust with efflorescence of fine particle size |
JT-25 | Tailings | Yellowish brown | Loose sandy material |
JT-26 | Tailings | Orange and greenish yellow | Loose sandy material |
JT-27 | Tailings | Amarillo greenish | Very fine grain efflorescent salts |
JT-28 | Tailings | Intense violet | Loose sandy material |
JT-29 | Tailings | Yellowish orange | Slightly hardened crust |
JT-30 | Tailings | Intense orange brown | Loose sandy material |
JT-31 | Tailings | Intense orange | Crust lightly hardened |
JT-32 | Tailings | Bright yellow | Loose sandy material |
JT-33 | Tailings | Bright orange | Very fine grain efflorescent salts |
JT-34 | Soil | Black | Crust lightly hardened |
JT-35 | Tailings | White orange | Very fine grain efflorescent salts |
JT-36 | Tailings | Bright violet | Very fine grain efflorescent salts |
JT-37 | Tailings | Reddish brown pink | Crust lightly hardened |
JT-38 | Tailings | Yellowish orange | Loose sandy material |
JT-39 | Tailings | Bright yellow | Stratified layers and crusts |
JT-40 | Tailings | Reddish brown | Loose sandy material |
JT-41 | Tailings | Yellowish orange | Stratified layers and crusts |
JT-42 | Tailings | Bright brown | Crust lightly hardened |
JT-43 | Tailings | Yellowish orange | Crust lightly hardened |
JT-47 | Tailings | Orange white | Very fine grain and massive efflorescent salts |
JT-03 | Tailings | Bright orange and blue | Very fine grain and massive efflorescent salts |
JT-04 | Tailings | Whitish | Very fine grain and massive efflorescent salts |
JT-05 | Tailings | Bright greenish yellow | Very fine grain and massive efflorescent salts |
JT-06 | Tailings | Bright orange | Very fine grain and massive efflorescent salts |
JT-16 | Tailings | Yellowish white | Stratified layers and crusts |
JT-44 | Tailings | Yellowish white | Very fine grain and massive efflorescent salts |
JT-45 | Tailings | White | Very fine grain and massive efflorescent salts |
JT-46 | Tailings | Bright orange | Very fine grain and massive efflorescent salts |
JT-48 | Tailings | Bright brown | Weakly hardened scab |
JT-49 | Tailings | Bright white brown | Very fine grain and massive efflorescent salts |
Parameter | Value | Parameter | Value |
---|---|---|---|
Geometry | Bragg-Brentano | Divergence slit | ½° |
Goniometer radius | 240 mm | Incident antiscatter slit | 1° |
Radiation source | CuKα and CoKα | Reflected antiscatter slit | 7.5° |
Generator | 45 kV, 40 mA | Soller slits | 0.04 rad |
Tube | Long Fine Focus | Detector | Solid state (PIXcel3D) |
Monochromator | None | Step size | 0.003° (2θ) |
Filter | Nickel (Cu) and Iron (Co) | Integration time | 30 s |
Incident beam optics | Parallel mirror (Göbel) | Spinning | 15 rpm |
Mineral Name | Abbr. | Chemical Formula | Group | XRD Pattern Ref. | Characteristic XRD Peaks (Å) | ||
---|---|---|---|---|---|---|---|
Botryogen | Bot | MgFe3+(SO4)2(OH)·7(H2O) | Iron and Mg hydroxysulfate | ICSD 980034682 | 6.36 | 8.96 | 5.52 |
Epsomite | Ep | MgSO4·7(H2O) | Hydrous Mg sulfate | ICSD 980029384 | 4.22 | 4.21 | 5.36 |
Halotrichite | Hal | Fe2+Al2(SO4)4·22(H2O) | Hydrous Fe and Al sulfate | ICSD 980096598 | 4.80 | 15.84 | 4.95 |
Hexahydrite | Hex | MgSO4·6(H2O) | Hydrous Mg sulfate | ICSD 980016546 | 4.36 | 5.45 | 4.03 |
Hohmannite | Hoh | Fe3+2(SO4)2(OH)2·7(H2O) | Iron hydroxysulfate | ICSD 980037328 | 7.96 | 8.73 | 10.42 |
Fibroferrite | Fi | Fe3+(SO4)(OH)·5(H2O) | Iron hydroxysulfate | ICSD 980100721 | 12.08 | 4.07 | 3.45 |
Gunningite | Gun | (Zn, Mn2+)SO4·H2O | Hydrous Zn and Mn sulfate | ICSD 980071348 | 4.40 | 4.76 | 3.05 |
Kieserite | Kie | MgSO4·H2O | Hydrous Mg sulfate | ICSD 980015924 | 4.79 | 3.40 | 3.36 |
Melanterite | Me | FeSO4·7H2O | Hydrous Fe sulfate | ICSD 980016589 | 4.90 | 3.77 | 4.87 |
Rostite | Ros | Al(SO4)(OH)·5H2O | Hydroxysulfate | ICDD 000421427 | 4.25 | 4.18 | 3.90 |
Rozenite | Roz | FeSO4·4H2O | Hydrous Fe sulfate | ICSD 980023914 | 5.47 | 4.50 | 3.98 |
Starkeyite | Stk | MgSO4·4(H2O) | Hydrous Mg sulfate | ICDD 010721096 | 4.47 | 5.43 | 3.95 |
Szomolnokite | Szo | Fe2+SO4·(H2O) | Hydrous Fe sulfate | ICSD 980027098 | 3.44 | 3.11 | 4.86 |
Copiapite | Cop | Fe2+Fe3+4(SO4)6(OH)2 20(H2O) | Hydroxysulfate | ICDD 000110395 | 10.5 | 6.87 | 3.43 |
Coquimbite | Coq | Fe3+2(SO4)3·9(H2O) | Hydrous Fe sulfate | ICDD 010802836 | 8.27 | 9.45 | 3.36 |
Alunite | Al | KAl3(SO4)2(OH)6 | Hydrous sulfate of K and Al | ICSD 980012106 | 5.40 | 7.37 | 10.81 |
Jarosite | Jar | KFe3+3(SO4)2(OH)6 | Hydrous sulfate of K and Fe | ICSD 980157717 | 3.08 | 5.10 | 3.11 |
Beudantite | Beu | PbFe3(AsO4)(SO4)(OH)6 | Hydrous arsenate of Pb and Fe | ICSD 980067455 | 3.07 | 5.94 | 3.66 |
Pb-Jarosite | PbJar | Pb0.5Fe3+3(SO4)2(OH)6 | Hydrous sulfate of Pb and Fe | ICSD 980169961 | 3.07 | 5.93 | 2.25 |
Gypsum | Gy | CaSO4·2H2O | Calcium sulfate dihydrate | ICSD 980161622 | 7.59 | 4.28 | 2.87 |
Ferrihydrite | Ferri | Fe3+2O3·0.5(H2O) | Hydrous ferric oxyhydroxide | ICSD 980056287 | 1.15 | 1.02 | 0.90 |
Goethite | Goe | Fe+3O(OH) | Iron oxyhydroxide | ICDD 010755065 | 4.18 | 2.45 | 3.88 |
Hematite | Hem | Fe2O3 | Iron oxide | ICDD 010715088 | 2.70 | 2.52 | 3.68 |
Schwertmann. | Schw | Fe3+16O16(OH)12(SO4)2 | Iron oxyhydroxysulfate | ICSD 980169971 | 2.55 | 3.39 | 4.86 |
Sample | SiO2 | Al2O3 | Fe2O3(T) | MnO | MgO | CaO | Na2O | K2O | TiO2 | P2O5 | LOI | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|
JT-05 | 20.47 | 1.92 | 26.23 | 0.222 | 0.24 | 3.46 | 0.02 | 0.34 | 0.071 | 0.03 | 43.25 | 96.25 |
JT-03 | 20.80 | 1.33 | 25.69 | 0.585 | 0.26 | 4.70 | 0.01 | 0.24 | 0.040 | 0.02 | 38.11 | 91.78 |
JT-48 | 27.51 | 1.43 | 25.89 | 0.486 | 0.23 | 6.47 | 0.02 | 0.38 | 0.103 | 0.03 | 29.38 | 91.92 |
Sample | Cu | Zn | As | Sn | Sb | W | Pb |
---|---|---|---|---|---|---|---|
JT-05 | 850 | 2980 | 569 | 815 | 37.6 | 45.8 | 1260 |
JT-03 | 880 | 9000 | 453 | 573 | 48.6 | 33.6 | 4730 |
JT-48 | 980 | 6920 | 519 | >1000 | 59.5 | 58.8 | 2830 |
RBV | 25 | 64 | 30 | - | 9.0 | - | 26 |
NOM-141 | 100 | 100 | 20 | - | - | - | 100 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pi-Puig, T.; Solé, J.; Gómez Cruz, A. Mineralogical Study and Genetic Model of Efflorescent Salts and Crusts from Two Abandoned Tailings in the Taxco Mining District, Guerrero (Mexico). Minerals 2020, 10, 871. https://doi.org/10.3390/min10100871
Pi-Puig T, Solé J, Gómez Cruz A. Mineralogical Study and Genetic Model of Efflorescent Salts and Crusts from Two Abandoned Tailings in the Taxco Mining District, Guerrero (Mexico). Minerals. 2020; 10(10):871. https://doi.org/10.3390/min10100871
Chicago/Turabian StylePi-Puig, Teresa, Jesús Solé, and Adriana Gómez Cruz. 2020. "Mineralogical Study and Genetic Model of Efflorescent Salts and Crusts from Two Abandoned Tailings in the Taxco Mining District, Guerrero (Mexico)" Minerals 10, no. 10: 871. https://doi.org/10.3390/min10100871
APA StylePi-Puig, T., Solé, J., & Gómez Cruz, A. (2020). Mineralogical Study and Genetic Model of Efflorescent Salts and Crusts from Two Abandoned Tailings in the Taxco Mining District, Guerrero (Mexico). Minerals, 10(10), 871. https://doi.org/10.3390/min10100871