Zircon U–Pb Geochronology, Whole-Rock Geochemistry and Petrogenesis of Biotite Granites in the Gaudeanmus Area, Namibia
Abstract
:1. Introduction
2. Regional Geology and Petrography
3. Analytical Methods
3.1. LA–Collector Inductively Plasma (ICP)–Mass Spectrometer (MS) Zircon U–Pb Age Determination
3.2. Geochemical Analysis
4. Analytical Results
4.1. Zircon U–Pb Geochronology
4.2. Geochemistry of Whole-Rock Samples
4.2.1. Major Element Compositions
4.2.2. Trace Element Compositions
4.2.3. Sr–Nd–Pb Isotopic Characteristics
5. Discussion
5.1. Potential Sources Components
5.2. Petrogenesis
5.3. Tectonic Environment and Petrogenetic Processes
6. Conclusions
- (1)
- LA–ICP–MS zircon U–Pb age of biotite granite in the Gaudeanmus area is 540.2 ± 4 Ma (MSWD = 0.97), which shows that intrusion was emplaced and crystallised in the earliest Cambrian (Terreneuvian epoch).
- (2)
- Whole rock geochemical analysis demonstrates that the study area biotite granite rocks were formed by hybrid process of mantle-drived magma and sialic magma, mainly derived from partial melting of ancient basement clay-poor source rocks. The biotite granite rocks in the Gaudeanmus area are formed in a post-Collision environment.
- (3)
- The geodynamic regime changed from compression to extension; lithospheric extension led to the partial melting of the mantle material. Underplating of mantle-derived magma induced massive anatexis of the Abbabis Complex to generate sialic magma. Hybridization between the minor mantle-derived magma and massive sialic magmas form the hybrid magmas that evolved, coupled with assimilation of country crustal rocks during magma ascent, led to formation of the biotite granite in Gaudeanmus area.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Miller, R.G. The Pan-African Damara Orogen of South West Africa/Namibia. In Evolution of the Damara Orogen of South West Africa/Namibia; Miller, R.G., Ed.; Special Publications; Geological Society of South Africa: Johannesburg, South Africa, 1983; Volume 11, pp. 431–515. [Google Scholar]
- Haack, U.; Hoefs, J.; Gohn, E. Constraints on the origin of Damara granites by Rb/Sr and delta 18O data. Contrib. Mineral. Petrol. 1982, 79, 279–289. [Google Scholar] [CrossRef]
- Marlow, A.G. Geology and Rb–Sr Geochronology of Mineralised and Radioactive Granites and Alaskites, Namibia. In Evolution of the Damara Orogen of South West Africa/Namibia; Miller, R.G., Ed.; Special Publications; Geological Society of South Africa: Johannesburg, South Africa, 1983; Volume 11, pp. 289–298. [Google Scholar]
- Nex, P.A.M.; Kinnaird, J.A. Granites and their mineralization in the Swakop River area around Goanikontes, Namibia. Commun. Geol. Surv. Namib. 1995, 10, 51–56. [Google Scholar]
- Tack, L.; Bowden, P. Post-collisional granite magmatism in the central Damaran (Pan-African). J. Afr. Earth Sci. 1999, 28, 653–674. [Google Scholar] [CrossRef]
- Smith, D.A.M. The geology of the area around the Khan and Swakop Rivers in South West Africa. Mem. Geol. Surv. S. Afr. 1965, 1, 113. [Google Scholar]
- Jacob, R.E. Granite Genesis and Associated Mineralisation in Part of the Central Damara Belt. In Mineralisation in Metamorphic Terranes; Verwoerd, W.J., Ed.; Special Publications; Geological Society of South Africa: Johannesburg, South Africa, 1978; Volume 4. [Google Scholar]
- Miller, R.G. The Geology of Namibia; Special Publications; Geological Survey of Namibia: Windhoek, Namibia, 2008; Volumes I–II. [Google Scholar]
- Brandt, R. Preliminary report on the Stratigraphy of the Damara sequence and the geology and gochemistry of Damaran granites in an area between Walvis Bay and Karibib. Commun. Geol. Surv. Namib. 1985, 1, 31–43. [Google Scholar]
- Coward, M.P. The Tectonic History of the Damara Belt. In Evolution of the Damara Orogen of South West Africa/Namibia; Miller, R.G., Ed.; Special Publications; Geological Society of South Africa: Johannesburg, South Africa, 1983; Volume 11, pp. 409–421. [Google Scholar]
- Oliver, G.J.H. Mid-crustal detachment and domes in the central zone of the Damaran Orogen, Namibia. J. Afr. Earth Sci. 1994, 19, 331–344. [Google Scholar] [CrossRef]
- Corner, B. An Interpretation of the Aeromagnetic Data Covering the Western Portion of the Damara Orogen in South West Africa/Namibia. In Evolution of the Damara Orogen of South West Africa/Namibia; Miller, R.G., Ed.; Special Publications; Geological Society of South Africa: Johannesburg, South Africa, 1983; Volume 11, pp. 339–354. [Google Scholar]
- Nex, P.A.M.; Kinnaird, J.A.; Oliver, G.J.H. Petrology, geochemistry and mineralisation of post-collisional magmatism around Goanikontes, southern Central Zone, Damara Orogen, Namibia. J. Afr. Earth Sci. 2001, 33, 481–502. [Google Scholar] [CrossRef]
- Nex, P.A.M.; Oliver, G.J.H.; Kinnaird, J.A. Spinel-bearing assemblages and P–T–t evolution of the Central Zone of the Damara Orogen, Namibia. J. Afr. Earth Sci. 2001, 32, 471–489. [Google Scholar] [CrossRef]
- Gao, Y.; Fan, H.H.; Chen, D.H.; Nie, J.T.; Wang, S.Y. The Alaskite-type Uranium Deposit: A Product of Coupling of Tectonism with Magmatism. Geol. Explor. 2012, 48, 1058–1066. [Google Scholar]
- Basson, I.J.; Greenway, G. The Rössing Uranium Deposit: A product of late-kinematic location of uraniferous granites in the Central Zone of the Damara Orogen, Namibia. J. Afr. Earth Sci. 2004, 38, 413–435. [Google Scholar] [CrossRef]
- Kinnaird, J.A.; Nex, P.A.M. A review of geological controls on uranium mineralization in sheeted leucogranites within the Damaran Orogen, Namibia. Appl. Earth Sci. 2007, 116, 68–85. [Google Scholar] [CrossRef]
- Jacob, R.E.; Kroner, A.; Burger, A.J. Areal extent and first U–Pb age of the Pre-Damara Abbabis complex in the central Damara belt of South West Africa (Namibia). Geol. Rund. 1978, 67, 706–718. [Google Scholar] [CrossRef]
- Robb, L.J. Uraniferous Leucogranites from the Namaqualand Metamorphic Complex: Part 1–Geology, Geochemistry and Petrogenesis. In Mineral Deposits of South Africa; Anhaeusser, C.R., Maske, S., Eds.; Mineral Deposits of South Africa: Johannesburg, South Africa, 1986; Volume 2, pp. 1609–1628. [Google Scholar]
- Kröner, A.; Retief, E.A.; Compston, W.; Jacob, R.E.; Burger, A.J. Single-age and conventional zircon dating of remobilised basement gneisses in the central Damara belt of Namibia. S. Afr. J. Geol. 1991, 94, 379–387. [Google Scholar]
- Foster, D.A.; Goscombe, B.D.; Newstead, B.; Mapani, B.; Mueller, P.A.; Gregory, L. Muvangua, E. U–Pb age and Lu-Hf isotopic data of detrital zircons from Neoproterozoic Damara sequence: Implications for pre-Gondwana proximity of Congo and Kalahari. Gondwana Res. 2015, 28, 179–190. [Google Scholar] [CrossRef] [Green Version]
- Kukla, P.A.; Stanistreet, I.G. Record of the Damaran Khomas Hochland accretionary prism in central Namibia: Refutation of an “ensialic” origin of a Late Proterozoic orogenic belt. Geology 1991, 19, 473–476. [Google Scholar] [CrossRef]
- Hoffman, P.F.; Hawkins, D.P.; Isachsen, C.E.; Bowring, S.A. Precise U–Pb zircon ages for early Damaran magmatism in the Summas Mountains and Weltwitschia Inlier, northern Damara belt, Namibia. Commun. Geol. Surv. Namib. 1996, 11, 47–52. [Google Scholar]
- Hoffman, P.F.; Kaufman, A.J.; Halverson, G.P.; Schrag, D.P. A Neoproterozoic snow-ball earth. Science 1998, 281, 1342–1346. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, K.H.; Condon, D.J.; Bowring, S.A.; Crowley, J.L. U–Pb zircon date from the Neoproterozoic Ghaub Formation, Namibia: Constraints on Marinoan glaciation. Geology 2004, 32, 817–820. [Google Scholar] [CrossRef]
- Henry, G. The Sedimentary Evolution of the Damara Sequence in the Lower Khan River Valley, Namibia. Ph.D. Thesis, University of the Witwatersrand, Johannesburg, South Africa, 1992. [Google Scholar]
- DeKock, G.S.; Eglington, B.; Armstrong, R.A.; Harmerand, R.E.; Walraven, F. U–Pb and Pb–Pb ages of the Naauwpoort rhyolite, Kawakeup leptite and Okongava Diorite: Implications for the onset of rifting and of orogenesis in the Damara belt, Namibia. Commun. Geol. Surv. Namib. 2000, 12, 81–88. [Google Scholar]
- Wang, S.Y.; Fan, H.H.; Chen, J.Y.; Gu, D.Z.; Chen, D.H.; Gao, Y.; Nie, J.T. Petrogenesis and tectonic setting of porphyritic granites in the Gaudeanmus Area, Namibia. Glob. Geol. 2013, 32, 773–782. [Google Scholar]
- Song, B.; Zhang, Y.H.; Wan, Y.S.; Jian, P. Mount making and procedure of the SHRIMP dating. Geol. Rev. 2002, 48, 26–30. [Google Scholar]
- Jackson, S.E.; Pearson, N.J.; Griffin, W.L.; Belousova, E.A. The application of laser ablation- inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronogy. Chem. Geol. 2004, 211, 47–69. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Gao, S.; Günther, D.; Xu, J.; Gao, C.G.; Chen, H.H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Anderson, T. Correction of common lead in U–Pb analyses that do not report 204Pb. Chem. Geol. 2002, 192, 59–79. [Google Scholar] [CrossRef]
- Ludwig, K.R. User’s Manual for Isoplot 3.0.: A Geochronological Tolkit for Microsoft Excel; Special Publication; Berkeley Geochronology Center: Berkeley, CA, USA, 2003; pp. 1–71. [Google Scholar]
- Norrish, K.; Hutton, J.T. An accurate X-ray spectrographic method for the analysis of a range of geological samples. Geochim. Cosmochim. Acta 1969, 33, 431–453. [Google Scholar] [CrossRef]
- Qu, X.M.; Hou, Z.Q.; Li, Y.G. Melt components derived from a subducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt, southern Tibetan Plateau. Lithos 2004, 74, 131–148. [Google Scholar] [CrossRef]
- Zhang, L.G.; Xing, F.M. Feldspar Pb isotopic compositions and geological significance of Mesozoic granites in Anhui province. Acta Petrol. Sin. 1993, 9, 254–257. [Google Scholar]
- Koschek, G. Origin and significance of the SEM cathodoluminescence from zircon. J. Microsc. 1993, 171, 223–232. [Google Scholar] [CrossRef]
- Wu, Y.B.; Zheng, Y.F. Zircon genetic mineralogy and its constraint on application of zircon U–Pb dating result. Chin. Sci. Bull. 2004, 49, 1589–1604. [Google Scholar]
- Belousova, E.; Griffin, W.; O’Reilly, S.Y.; Fisher, N. Igneous zircon: Trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol. 2002, 143, 602–622. [Google Scholar] [CrossRef]
- Peccerillo, A.; Taylor, S.R. Geochemistry of Eocene Calc-alkaline volcanic rocks from the Kastamonu Area, Northern Turkey. Contrib. Mineral. Petrol. 1976, 58, 63–81. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematic of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Li, X.H.; McCulloch, M.T. Secular variation in the Nd isotopic composition of Neoproterozoic sediments from the southern margin of Yangze Block: Evidence for a Proterozoic continental collision in southease China. Precambrian Res. 1996, 76, 67–76. [Google Scholar] [CrossRef]
- Shen, W.Z.; Ling, H.F.; Li, X.W.; Huang, X.L.; Wang, D.Z. Study on the Nd–Sr Isotopic Compositions of Granitoids in SE China. Geol. J. China Univ. 1999, 5, 22–32. [Google Scholar]
- Wei, J.Y.; Wang, Y.G. Isotope Geochemistry; Geological Publishing House: Beijing, China, 1988; pp. 19–36. [Google Scholar]
- Jahn, B.M.; Wu, F.Y.; Lo, C.H.; Tsai, C.H. Crust-mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr–Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chem. Geol. 1999, 157, 119–146. [Google Scholar] [CrossRef]
- Zartman, R.E.; Doe, B.R. Plumbotectonics: The model. Tectonophysics. 1981, 75, 135–162. [Google Scholar] [CrossRef]
- Taylor, S.R.; Mclenann, S.M. The Continetal Crust: Its Composition and Evolution; Blackwell Scientific Publication: Oxford, UK, 1985; pp. 1–32. [Google Scholar]
- Keay, S.; Steele, D.; Compostn, W. Identifying granite sources by SHRIMP U–Pb zircon geochronology: An application to the Lachlan foldbelt. Contrib. Mineral. Petrol. 1999, 137, 323–341. [Google Scholar] [CrossRef]
- Li, C.N. Trace Element Lithology of Magmatic Rock; China University of Geoscience Press: Wuhan, China, 1992; pp. 1–195. [Google Scholar]
- Sylvester, P.J. Post-collisional strongly peraluminous granites. Lithos 1998, 45, 29–44. [Google Scholar] [CrossRef]
- Gong, R.X.; Lu, C.Z. Petrogeochemistry of Late Mesozoic alkali-rich potassium-high granitoid in western Zhejiang and its significance. Acta Petrol. Sin. 2008, 24, 2343–2351. [Google Scholar]
- Goscombe, B.; Gray, D.; Armstrong, R.; Foster, D.A.; Vogl, J. Event geochronology of the pan-african kaoko belt, namibia. Precambrian Res. 2005, 140, 103–131. [Google Scholar] [CrossRef]
- Gray, D.R.; Foster, D.A.; Goscombe, B.; Passchier, C.W.; Trouw, R.A.J. 40Ar/39Ar thermochronology of the Pan-African Damara Orogen, Namibia, with implications for tectonothermal and geodynamic evolution. Precambrian Res. 2006, 150, 49–72. [Google Scholar] [CrossRef]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef] [Green Version]
- Harris, N.B.W.; Pearce, J.A.; Tindle, A.G. Geochemical characteristics of collision-zone magmatism. Geol. Soc. 1986, 19, 67–81. [Google Scholar] [CrossRef]
Sample No. | Location | Sample No. | Location | ||
---|---|---|---|---|---|
10H-9 | E 15°2′41.99′′ | S 22°22′59.52′′ | 10H-38 | E 15° 5′16.25′′ | S 22°24′08.96′′ |
10H-25 | E 15°4′45.70′′ | S 22°22′31.02′′ | 11H-33 | E 15° 2′46.72′′ | S 22°22′11.95′′ |
11H-30 | E 15°6′20.28′′ | S 22°22′32.96′′ |
Sample | Th | U | Th/U | Isotopic Ratios | Isotopic Ages (Ma) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Content (ppm) | 207Pb/206Pb | 1σ | 207Pb/235U | 1σ | 206Pb/238U | 1σ | rho | 207Pb/206Pb | 1σ | 207Pb/235U | 1σ | 206Pb/238U | 1σ | Concordance | |||
11H-30-1 | 218 | 749 | 0.29 | 0.06561 | 0.00149 | 0.69480 | 0.01148 | 0.07679 | 0.00062 | 0.48559 | 794.4 | 48 | 535.7 | 7 | 476.9 | 4 | 88% |
11H-30-2 | 70 | 186 | 0.38 | 0.06404 | 0.00096 | 0.69773 | 0.03678 | 0.07908 | 0.00440 | 1.05488 | 742.6 | 33 | 537.4 | 22 | 490.6 | 26 | 90% |
11H-30-3 | 92 | 311 | 0.29 | 0.06009 | 0.00047 | 0.69894 | 0.01163 | 0.08432 | 0.00122 | 0.86927 | 605.6 | 21 | 538.2 | 7 | 521.9 | 7 | 96% |
11H-30-4 | 54 | 146 | 0.37 | 0.12812 | 0.00058 | 3.54351 | 0.06404 | 0.20059 | 0.00360 | 0.99208 | 2072.5 | 8 | 1537.0 | 14 | 1178.5 | 19 | 73% |
11H-30-5 | 251 | 986 | 0.25 | 0.07715 | 0.00048 | 0.48448 | 0.01403 | 0.04554 | 0.00130 | 0.98675 | 1125.0 | 8 | 401.1 | 10 | 287.1 | 8 | 66% |
11H-30-6 | 128 | 380 | 0.34 | 0.06643 | 0.00106 | 0.66432 | 0.04021 | 0.07244 | 0.00408 | 0.93126 | 820.4 | 33 | 517.3 | 25 | 450.8 | 25 | 86% |
11H-30-7 | 212 | 390 | 0.54 | 0.07981 | 0.00078 | 0.87659 | 0.03152 | 0.07991 | 0.00320 | 1.11362 | 1192.3 | 20 | 639.1 | 17 | 495.6 | 19 | 74% |
11H-30-8 | 70 | 101 | 0.70 | 0.11676 | 0.00069 | 4.60243 | 0.08984 | 0.28573 | 0.00536 | 0.96126 | 1907.1 | 10 | 1749.7 | 16 | 1620.2 | 27 | 92% |
11H-30-9 | 137 | 348 | 0.39 | 0.06105 | 0.00030 | 0.73986 | 0.01103 | 0.08789 | 0.00124 | 0.94299 | 642.6 | 9 | 562.3 | 6 | 543.1 | 7 | 96% |
11H-30-10 | 128 | 350 | 0.37 | 0.06010 | 0.00028 | 0.72510 | 0.01081 | 0.08739 | 0.00121 | 0.92470 | 605.6 | 9 | 553.7 | 6 | 540.1 | 7 | 97% |
11H-30-11 | 47 | 227 | 0.21 | 0.05920 | 0.00098 | 0.62235 | 0.02786 | 0.07622 | 0.00318 | 0.93341 | 576.0 | 35 | 491.3 | 17 | 473.5 | 19 | 96% |
11H-30-12 | 57 | 66 | 0.86 | 0.07369 | 0.00044 | 1.67351 | 0.03205 | 0.16438 | 0.00289 | 0.91880 | 1033.0 | 18 | 998.5 | 12 | 981.1 | 16 | 98% |
11H-30-13 | 114 | 378 | 0.30 | 0.06101 | 0.00048 | 0.74168 | 0.01936 | 0.08802 | 0.00209 | 0.91059 | 638.9 | 12 | 563.4 | 11 | 543.8 | 12 | 96% |
11H-30-14 | 87 | 231 | 0.38 | 0.05987 | 0.00030 | 0.73262 | 0.00873 | 0.08880 | 0.00100 | 0.94037 | 598.2 | 11 | 558.1 | 5 | 548.5 | 6 | 98% |
11H-30-15 | 110 | 269 | 0.41 | 0.06147 | 0.00030 | 0.74676 | 0.00996 | 0.08808 | 0.00110 | 0.93704 | 657.4 | 5 | 566.3 | 6 | 544.2 | 7 | 96% |
11H-30-16 | 93 | 271 | 0.34 | 0.06189 | 0.00049 | 0.73421 | 0.01912 | 0.08599 | 0.00211 | 0.94255 | 670.1 | 17 | 559.0 | 11 | 531.8 | 13 | 95% |
11H-30-17 | 242 | 637 | 0.38 | 0.05975 | 0.00022 | 0.72433 | 0.00935 | 0.08796 | 0.00114 | 1.00085 | 594.5 | 12 | 553.2 | 6 | 543.5 | 7 | 98% |
11H-30-18 | 306 | 573 | 0.53 | 0.08231 | 0.00044 | 0.69552 | 0.00946 | 0.06136 | 0.00082 | 0.98183 | 1253.7 | 11 | 536.1 | 6 | 383.9 | 5 | 66% |
11H-30-19 | 106 | 88 | 1.21 | 0.05830 | 0.00056 | 0.70214 | 0.01236 | 0.08733 | 0.00128 | 0.83540 | 542.6 | 20 | 540.1 | 7 | 539.8 | 8 | 99% |
11H-30-20 | 200 | 505 | 0.40 | 0.05910 | 0.00030 | 0.72151 | 0.01153 | 0.08849 | 0.00131 | 0.92722 | 572.3 | 11 | 551.6 | 7 | 546.6 | 8 | 99% |
11H-30-21 | 108 | 226 | 0.48 | 0.05811 | 0.00032 | 0.70939 | 0.01114 | 0.08853 | 0.00133 | 0.95637 | 600.0 | 13 | 544.4 | 7 | 546.9 | 8 | 99% |
11H-30-22 | 264 | 754 | 0.35 | 0.07855 | 0.00064 | 0.53987 | 0.01137 | 0.05015 | 0.00120 | 1.14089 | 1161.1 | 15 | 438.3 | 7 | 315.5 | 7 | 67% |
11H-30-23 | 40 | 186 | 0.22 | 0.05795 | 0.00142 | 0.48466 | 0.03036 | 0.06060 | 0.00232 | 0.61040 | 527.8 | 58 | 401.3 | 21 | 379.3 | 14 | 94% |
11H-30-24 | 191 | 380 | 0.50 | 0.06022 | 0.00038 | 0.73764 | 0.02977 | 0.08885 | 0.00358 | 0.99902 | 613.0 | 18 | 561.0 | 17 | 548.7 | 21 | 97% |
11H-30-25 | 403 | 1240 | 0.33 | 0.06920 | 0.00063 | 0.56377 | 0.03515 | 0.05900 | 0.00346 | 0.93952 | 905.6 | 19 | 454.0 | 23 | 369.6 | 21 | 79% |
11H-30-26 | 132 | 264 | 0.50 | 0.06893 | 0.00080 | 0.65714 | 0.01973 | 0.06913 | 0.00186 | 0.89563 | 898.2 | 24 | 512.9 | 12 | 430.9 | 11 | 82% |
11H-30-27 | 59 | 42 | 1.42 | 0.05737 | 0.00093 | 0.68948 | 0.01881 | 0.08711 | 0.00194 | 0.81616 | 505.6 | 32 | 532.5 | 11 | 538.4 | 12 | 98% |
11H-30-28 | 212 | 154 | 1.38 | 0.06142 | 0.00030 | 0.95139 | 0.00881 | 0.11243 | 0.00097 | 0.92911 | 653.7 | 11 | 678.8 | 5 | 686.9 | 6 | 98% |
11H-30-29 | 115 | 247 | 0.46 | 0.07309 | 0.00086 | 0.74550 | 0.01350 | 0.07394 | 0.00080 | 0.59840 | 1016.7 | 24 | 565.6 | 8 | 459.8 | 5 | 79% |
11H-30-30 | 123 | 242 | 0.51 | 0.06097 | 0.00048 | 0.72817 | 0.00859 | 0.08659 | 0.00070 | 0.68248 | 638.9 | 17 | 555.5 | 5 | 535.4 | 4 | 96% |
Sample | 10H-9 | 10H-25 | 11H-30 | 10H-38 | 11H-33 | Sample | 10H-9 | 10H-25 | 11H-30 | 10H-38 | 11H-33 |
---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | 62.24 | 65.27 | 74.59 | 76.42 | 69.85 | Cs | 4.46 | 6.47 | 1.68 | 3.89 | 2.16 |
Al2O3 | 14.44 | 14.36 | 13.88 | 11.17 | 13.25 | Ba | 704.00 | 814.00 | 377.00 | 239.00 | 481.00 |
Fe2O3T | 8.38 | 6.44 | 0.96 | 1.34 | 5.85 | Ta | 1.49 | 1.42 | 1.46 | 0.61 | 2.33 |
MnO | 0.13 | 0.10 | 0.02 | 0.02 | 0.01 | Tl | 0.86 | 1.28 | 1.16 | 0.93 | 0.96 |
MgO | 2.47 | 2.27 | 0.28 | 0.59 | 0.07 | Pb | 13.50 | 24.10 | 51.50 | 39.20 | 35.00 |
CaO | 3.67 | 3.10 | 0.79 | 0.89 | 0.74 | Bi | 0.07 | 0.07 | 0.02 | 23.70 | 1.00 |
Na2O | 2.69 | 2.72 | 3.42 | 2.40 | 3.00 | Th | 18.50 | 32.00 | 14.20 | 26.20 | 22.10 |
K2O | 3.38 | 3.74 | 5.19 | 5.21 | 5.90 | U | 1.50 | 3.92 | 4.68 | 4.36 | 5.47 |
TiO2 | 1.37 | 1.04 | 0.12 | 0.20 | 0.23 | Zr | 211.00 | 188.00 | 140.00 | 189.00 | 334.00 |
P2O5 | 0.38 | 0.22 | 0.11 | 0.10 | 0.03 | Hf | 5.05 | 4.93 | 4.69 | 5.45 | 9.80 |
LOI | 0.70 | 0.60 | 0.50 | 1.35 | 0.92 | W | 4.69 | 0.28 | 0.07 | 0.52 | 0.41 |
TOTAL | 99.85 | 99.86 | 99.86 | 99.69 | 99.85 | Rb/Sr | 0.83 | 1.14 | 3.40 | 0.76 | 2.38 |
FeO | 5.35 | 4.00 | 0.40 | 0.85 | 0.10 | Sr/Ba | 0.27 | 0.22 | 0.19 | 0.70 | 0.20 |
Na2O + K2O | 6.07 | 6.46 | 8.61 | 7.61 | 8.90 | Nb/Ta | 18.05 | 14.86 | 7.67 | 10.67 | 13.43 |
K2O/Na2O | 1.26 | 1.38 | 1.52 | 2.17 | 1.97 | La | 62.30 | 83.80 | 19.60 | 38.90 | 32.50 |
A/NK | 1.79 | 1.68 | 1.23 | 1.16 | 1.17 | Ce | 125.00 | 155.00 | 38.20 | 75.20 | 53.20 |
A/CNK | 0.98 | 1.01 | 1.09 | 1.00 | 1.05 | Pr | 15.20 | 18.00 | 4.41 | 8.75 | 5.91 |
DI | 64.08 | 69.65 | 93.07 | 92.22 | 88.31 | Nd | 56.10 | 64.90 | 16.30 | 30.10 | 21.80 |
Li | 35.20 | 53.60 | 26.00 | 25.60 | 9.66 | Sm | 11.50 | 10.80 | 3.58 | 5.99 | 4.45 |
Be | 4.03 | 3.35 | 3.50 | 0.44 | 3.66 | Eu | 1.95 | 1.56 | 0.57 | 0.49 | 1.33 |
Sc | 16.20 | 12.70 | 3.93 | 3.85 | 5.59 | Gd | 10.00 | 8.18 | 2.93 | 4.81 | 3.57 |
V | 97.70 | 92.20 | 8.91 | 11.40 | 5.81 | Tb | 1.67 | 1.18 | 0.59 | 0.80 | 0.68 |
Cr | 41.60 | 48.10 | 1.76 | 15.30 | 0.89 | Dy | 9.09 | 5.98 | 3.43 | 3.89 | 4.05 |
Co | 16.40 | 15.40 | 1.37 | 1.05 | 0.15 | Ho | 1.70 | 0.99 | 0.68 | 0.58 | 0.74 |
Ni | 18.70 | 22.40 | 1.03 | 1.59 | 0.56 | Er | 4.70 | 2.49 | 2.03 | 1.40 | 2.37 |
Cu | 27.70 | 24.30 | 1.18 | 2.77 | 9.06 | Tm | 0.74 | 0.31 | 0.33 | 0.19 | 0.42 |
Zn | 107.00 | 97.50 | 21.00 | 40.40 | 7.87 | Yb | 4.24 | 1.70 | 2.01 | 1.11 | 3.11 |
Ga | 23.40 | 22.20 | 16.50 | 12.90 | 19.20 | Lu | 0.60 | 0.25 | 0.30 | 0.18 | 0.45 |
Rb | 156.00 | 209.00 | 247.00 | 128.00 | 234.00 | Y | 43.80 | 25.40 | 19.60 | 16.20 | 12.70 |
Sr | 189.00 | 183.00 | 72.60 | 168.00 | 98.40 | ΣREE | 304.79 | 355.14 | 94.95 | 172.38 | 134.58 |
Nb | 26.90 | 21.10 | 11.20 | 6.50 | 31.30 | LREE | 272.05 | 334.06 | 82.66 | 159.43 | 119.19 |
Mo | 0.33 | 0.70 | 0.42 | 0.07 | 1.64 | HREE | 32.74 | 21.08 | 12.29 | 12.96 | 15.39 |
Cd | 0.19 | 0.13 | 0.02 | 0.07 | 0.05 | LREE/HREE | 8.31 | 15.85 | 6.73 | 12.30 | 7.74 |
In | 0.10 | 0.09 | 0.03 | 0.06 | 0.02 | (La/Yb)N | 10.54 | 35.36 | 6.99 | 25.14 | 7.50 |
Sb | 0.03 | 0.02 | 0.80 | 0.04 | 0.44 | δEu | 0.54 | 0.49 | 0.52 | 0.27 | 0.99 |
Sample | 10H-9 | 10H-25 | 11H-30 | 10H-38 |
---|---|---|---|---|
Rb(×10−6) | 154 | 208 | 179 | 111 |
Sr(×10−6) | 206 | 163 | 178 | 184 |
(87Rb/86Sr)m | 2.1683 | 3.6844 | 2.9082 | 1.7482 |
(87Sr/86Sr)m | 0.730689 | 0.743687 | 0.737324 | 0.731132 |
±2σ | 0.000011 | 0.000013 | 0.000011 | 0.000011 |
(87Sr/86Sr)ⅰ | 0.71400 | 0.71533 | 0.71494 | 0.71768 |
εSr(t) | 144.0 | 162.9 | 157.3 | 196.2 |
Sm(×10−6) | 11.6 | 2.32 | 10.6 | 6.43 |
Nd(×10−6) | 60.8 | 8.3 | 66.5 | 32.3 |
(147Sm/144Nd)m | 0.115 | 0.1693 | 0.0965 | 0.1203 |
(143Nd/144Nd)m | 0.511882 | 0.511925 | 0.511833 | 0.512003 |
±2σ | 0.000008 | 0.000009 | 0.000007 | 0.000008 |
(143Nd/144Nd)ⅰ | 0.511475 | 0.511326 | 0.511492 | 0.511577 |
fSm/Nd | −0.42 | −0.14 | −0.51 | −0.39 |
εNd(0) | −14.7 | −13.9 | −15.7 | −12.4 |
εNd(t) | −9.1 | −12.0 | −8.8 | −7.1 |
TDM1 | 1955 | 4174 | 1711 | 1870 |
TDM2 | 2000 | 2235 | 1974 | 1838 |
Th/ppm | 18.5 | 32.0 | 14.2 | 26.2 |
U/ppm | 1.5 | 3.9 | 4.7 | 4.4 |
Pb/ppm | 13.5 | 24.1 | 51.5 | 39.2 |
206Pb/204Pb | 18.0851 | 18.1362 | 19.2757 | 19.0383 |
±2σ | 0.0007 | 0.0006 | 0.0007 | 0.0007 |
207Pb/204Pb | 15.6347 | 15.6258 | 15.7269 | 15.6930 |
±2σ | 0.0006 | 0.0005 | 0.0007 | 0.0006 |
208Pb/204Pb | 40.5607 | 38.8393 | 38.7437 | 39.1044 |
±2σ | 0.0017 | 0.0014 | 0.0019 | 0.0016 |
(206Pb/204Pb)t | 17.3596 | 17.0978 | 18.6865 | 18.3163 |
(207Pb/204Pb)t | 15.5924 | 15.5652 | 15.6926 | 15.6509 |
(208Pb/204Pb)t | 37.7674 | 36.1932 | 38.1856 | 37.7501 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Fan, H.; Chen, J.; Chen, D. Zircon U–Pb Geochronology, Whole-Rock Geochemistry and Petrogenesis of Biotite Granites in the Gaudeanmus Area, Namibia. Minerals 2020, 10, 76. https://doi.org/10.3390/min10010076
Wang S, Fan H, Chen J, Chen D. Zircon U–Pb Geochronology, Whole-Rock Geochemistry and Petrogenesis of Biotite Granites in the Gaudeanmus Area, Namibia. Minerals. 2020; 10(1):76. https://doi.org/10.3390/min10010076
Chicago/Turabian StyleWang, Shengyun, Honghai Fan, Jinyong Chen, and Donghuan Chen. 2020. "Zircon U–Pb Geochronology, Whole-Rock Geochemistry and Petrogenesis of Biotite Granites in the Gaudeanmus Area, Namibia" Minerals 10, no. 1: 76. https://doi.org/10.3390/min10010076
APA StyleWang, S., Fan, H., Chen, J., & Chen, D. (2020). Zircon U–Pb Geochronology, Whole-Rock Geochemistry and Petrogenesis of Biotite Granites in the Gaudeanmus Area, Namibia. Minerals, 10(1), 76. https://doi.org/10.3390/min10010076