Experimental Investigation of the Macroscopic Behavior and Microstructure Property Evolution of Hardened Cement Consolidated Tailings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Tailings
2.1.2. Cement
2.1.3. Mixing Water
2.2. Sample Preparation and Mix Design
2.3. Experimental Methods
2.3.1. Unconfined Compressive Strength Tests
2.3.2. Permeability Measurements
2.3.3. Scanning Electronic Microscopy
2.3.4. Mercury Intrusion Porosimetry
2.3.5. Sample Drying Pretreatment
3. Results and Discussion
3.1. Compressive Strength Evolution of CCT Samples with Curing Age
3.2. Permeability Evolution with Curing Age
3.3. Micromorphology Evolution with Curing Age
3.4. Microscopic Pore Structure Evolution of the CCT with Curing Age
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- InBrief. Mining’s Contribution to Sustainable Development, Trends in the mining and metals industry. In Proceedings of the International Council on Mining and Metals, London, UK, 26 October 2012. [Google Scholar]
- Lottermoser, B.G. Mine Wastes: Characterization, Treatment and Environmental Impacts, 3th ed.; Springer: New York, NY, USA, 2010. [Google Scholar]
- Xue, Y.Z.; Wang, H.J. National Mineral Resources Saving and Comprehensive Utilization Report; Geological Publishing House: Beijing, China, 2014. [Google Scholar]
- Hudson-Edwards, K.A.; Jamieson, H.E.; Lottermoser, B.G. Mine wastes: Past, present, future. Elements 2011, 7, 375–380. [Google Scholar] [CrossRef]
- Zou, D.H.; Sahito, W. Suitability of mine tailings for shotcrete as a ground support. Can. J. Civ. Eng. 2011, 31, 632–636. [Google Scholar] [CrossRef]
- Kitula, A.G.N. The environmental and socio-economic impacts of mining on local livelihoods in Tanzania: A case study of Geita District. J. Clean. Prod. 2006, 14, 405–414. [Google Scholar] [CrossRef]
- Bruno, B. Colloquium 2004: Hydrogeotechnical properties of hard rock tailings from metal mines and emerging geoenvironmental disposal approaches. Can. Geotech. J. 2007, 44, 1019–1052. [Google Scholar] [CrossRef]
- Zhang, J.; Li, M.; Taheri, A.; Zhang, W.; Wu, Z.; Song, W. Properties and application of backfill materials in coal mines in china. Minerals 2019, 9, 53. [Google Scholar] [CrossRef] [Green Version]
- Belem, T.; Benzaazoua, M. Design and application of underground mine paste backfill technology. Geotech. Geol. Eng. 2008, 26, 147–174. [Google Scholar] [CrossRef]
- Benzaazoua, M.; Ouellet, J.; Servant, S.; Newman, P.; Verburg, R. Cementitious backfill with high sulfur content: Physical, chemical and mineralogical characterization. Cem. Concr. Res. 1999, 29, 719–725. [Google Scholar] [CrossRef]
- Jantzer, I.; Knutsson, S. Critical Gradients for Tailings Dam Design; Australian Centre for Geomechanics: Crawley, Australia, 2010. [Google Scholar]
- Aubertin, M.; Bussière, B.; Bernier, L. Environnement et Gestion des Rejets Miniers—Manual on CD-ROM; Presses internationales Polytechnique: Montreal, QC, Canada, 2002. [Google Scholar]
- Macklin, M.G.; Brewer, P.A.; Balteanu, D.; Coulthard, T.J.; Driga, B.; Howard, A.J. The long term fate and environmental significance of contaminant metals released by the january and march 2000 mining tailings dam failures in maramureş county, upper tisa basin, romania. Appl. Geochem. 2003, 18, 241–257. [Google Scholar] [CrossRef]
- Berghe, J.F.V.; Ballard, J.; Wintgens, J.; List, B. Geotechnical risks related to tailings dam operations. In Proceedings of the Tailings and Mine Waste 2011, Vancouver, BC, Canada, 6–9 November 2011. [Google Scholar]
- Carmo, F.F.D.; Kamino, L.H.Y.; Junior, R.T.; Campos, I.C.D.; Carmo, F.F.D.; Silvino, G. Fundão tailings dam failures: The environment tragedy of the largest technological disaster of brazilian mining in global context. Perspect. Ecol. Conser. 2017, 15, 145–151. [Google Scholar] [CrossRef]
- Ke, X.; Zhou, X.; Wang, X.; Wang, T.; Hou, H.; Zhou, M. Effect of tailings fineness on the pore structure development of cemented paste backfill. Constr. Build. Mater. 2016, 126, 345–350. [Google Scholar] [CrossRef]
- Fernandes, G.W.; Goulart, F.F.; Ranieri, B.D.; Coelho, M.S.; Dales, K.; Boesche, N. Deep into the mud: Ecological and socio-economic impacts of the dam breach in mariana, brazil. Nat. Conserv. 2016, 14, 35–45. [Google Scholar] [CrossRef]
- Zhang, L.; He, G.Z.; Mol, A.P.J. China’s new environmental protection law: A game changer? Environ. Dev. 2015, 13, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Alakangas, L.; Dagli, D.; Knutsson, S. Literature Review on Potential Geochemical and Geotechnical Effects of Adopting Paste Technology Under Cold Climate Conditions; Division of Mining and Geotechnical Engineering-Luleå University of Technology: Luleå, Sweden, 2013. [Google Scholar]
- Fall, M.; Adrien, D.; Célestin, J.C.; Pokharel, M.; Touré, M. Saturated hydraulic conductivity of cemented paste backfill. Miner. Eng. 2009, 22, 1307–1317. [Google Scholar] [CrossRef]
- Hou, Y.B.; Tang, J.; Wei, S.X. Research on tailings’ cementation and discharging technology. Metal Mine 2011, 40, 59–62. [Google Scholar]
- Zhao, Y.; Soltani, A.; Taheri, A.; Karakus, M.; Deng, A. Application of slag–cement and fly ash for strength development in cemented paste backfills. Minerals 2018, 9, 22. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Deng, H.; Taheri, A.; Deng, J.; Ke, B. Effects of superplasticizer on the hydration, consistency, and strength development of cemented paste backfill. Minerals 2018, 8, 381. [Google Scholar] [CrossRef] [Green Version]
- Das, R.; Choudhury, I. Waste management in mining industry. Indian J. Sci. Res. 2013, 4, 139–142. [Google Scholar]
- Benzaazoua, M.; Bussiere, B.; Kongolo, M.; McLaughlin, J.; Marion, P. Environmental desul-phurization of four Canadian mine tailings using froth flotation. Int. J. Miner. Process. 2000, 60, 57–74. [Google Scholar] [CrossRef]
- Dagenais, A.; Aubertin, M.; Bussière, B.; Martin, V. Large scale applications of covers with capillary barrier effects to control the production of acid mine drainage. In Proceedings of the Post-Mining, Nancy, France, 16–17 November 2005. [Google Scholar]
- Federico, A.; Vitone, C.; Murianni, A. On the mechanical behaviour of dredged submarine clayey sediments stabilized with lime or cement. Can. Geotech. J. 2015, 52, 2030–2040. [Google Scholar] [CrossRef]
- Kumar, R.; Bhattacharjee, B. Porosity, pore size distribution and in situ strength of concrete. Cem. Concr. Res. 2003, 33, 155–164. [Google Scholar] [CrossRef]
- Cao, S.; Yilmaz, E.; Song, W. Evaluation of viscosity, strength and microstructural properties of cemented tailings backfill. Minerals 2018, 8, 352. [Google Scholar] [CrossRef] [Green Version]
- Matusinovic, T.; Sipusic, J.; Vrbos, N. Porosity-strength relation in calcium aluminate cement pastes. Cem. Concr. Res. 2003, 33, 1801–1806. [Google Scholar] [CrossRef]
- Ozturk, A.U.; Baradan, B. A comparison study of porosity and compressive strength mathematical models with image analysis. Comp. Mater. Sci. 2008, 43, 974–979. [Google Scholar] [CrossRef]
- Zhou, N.; Ma, H.; Ouyang, S.; Germain, D.; Hou, T. Influential factors in transportation and mechanical properties of aeolian sand-based cemented filling material. Minerals 2019, 9, 116. [Google Scholar] [CrossRef] [Green Version]
- Rong, H.; Zhou, M.; Hou, H. Pore Structure Evolution and Its Effect on Strength Development of Sulfate-Containing Cemented Paste Backfill. Minerals 2017, 7, 8. [Google Scholar] [CrossRef] [Green Version]
- Cui, L.; Cahyadi, J.H. Permeability and pore structure of opc paste. Cem. Concr. Res. 2001, 31, 277–282. [Google Scholar] [CrossRef]
- Atzeni, C.; Pia, G.; Sanna, U. A geometrical fractal model for the porosity and permeability of hydraulic cement pastes. Constr. Build. Mater. 2010, 24, 1843–1847. [Google Scholar] [CrossRef]
- Yang, Z.Q.; Li, A.X.; Zhang, R.S. The effect of w/c ratio and curing temperature on the permeability of hardened cement paste. J. Shandong Inst. of Min. Technol. 2002, 11, 575–579. [Google Scholar]
- Common Portland Cement; Chinese Standard: GB 175-2007; China Building Material Federation: Beijing, China, 2007.
- Béket Dalcé, J.; Li, L.; Yang, P. Experimental Study of Uniaxial Compressive Strength (UCS) Distribution of Hydraulic Backfill Associated with Segregation. Minerals 2019, 9, 147. [Google Scholar] [CrossRef] [Green Version]
- Al-Rawas, A.A.; Mcgown, A. Microstructure of Omani expansive soils. Can. Geotech. J. 1999, 36, 272–290. [Google Scholar] [CrossRef]
- Zhang, T.W.; Yue, X.B.; Deng, Y.F.; Zhang, D.W.; Liu, S.Y. Mechanical behaviour and micro-structure of cement-stabilised marine clay with a metakaolin agent. Constr. Build. Mater. 2014, 73, 51–57. [Google Scholar] [CrossRef]
- Belem, T.; Bussière, B.; Benzaazoua, M. The effect of microstructural evolution on the physical properties of paste backfill. In Proceedings of the Tailings and Mine Waste, Fort Collins, CO, USA, 1 January 2001. [Google Scholar]
- Deschamps, T.; Benzaazoua, M.; Bussière, B.; Aubertin, M.; Belem, T. Microstructural and geochemical evolution of paste tailings in surface disposal conditions. Miner. Eng. 2008, 21, 341–353. [Google Scholar] [CrossRef]
- Koohestani, B.; Koubaa, A.; Belem, T.; Bruno, B.; Bouzahzah, H. Experimental investigation of mechanical and microstructural properties of cemented paste backfill containing maple-wood filler. Constr. Build. Mater. 2016, 121, 222–228. [Google Scholar] [CrossRef]
- Feldman, R.F. Significance of porosity measurements on blended cement performance. In Proceedings of the First International Conference on the Use of Fly Ash, Silica Fume, Slag and Other Mineral Byproducts in Concrete, Montebello, Quebec, QC, Canada, 31 July–5 August 1983. [Google Scholar]
- Ouellet, S.; Bussière, B.; Benzaazoua, M.; Aubertin, M.; Belem, T. Effect of binder type and mixing water chemistry on microstructural evolution of cemented paste backfill. In Proceedings of the 57th Canadian Geotechnical Conference and 5th Joint CGS-LAH Conference, Quebec, QC, Canada, 24–27 October 2004. [Google Scholar]
- Chen, X.D.; Wu, S.X. Influence of water-to-cement ratio and curing period on pore structure of cement mortar. Constr. Build. Mater. 2013, 38, 804–812. [Google Scholar] [CrossRef]
- Washburn, E.W. Note on a Method of Determining the Distribution of Pore Sizes in a Porous Material. Phys. E. W. Washburn 1921, 7, 115–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Ye, G.; Breugel, K.V. Characterization of pore structure in cementbased materials using pressurization–depressurization cycling mercury intrusion porosimetry (PDC-MIP). Cem. Concr. Res. 2010, 40, 1120–1128. [Google Scholar] [CrossRef]
- Dhandapani, Y.; Santhanam, M. Assessment of pore structure evolution in the limestone calcined clay cementitious system and its implications for performance. Cem. Concr. Comp. 2017, 84, 36–47. [Google Scholar] [CrossRef]
- Pore Size Distribution and Porosity of Solid Materials by Mercury Porosimetry and Gas Adsorption–Part1: Mercury Porosimetry; Chinese Standard: GB/T 21650.1-2008.; National Technical Committee for Standardization of Sieve Screening and Particle Sorting Methods: Beijing, China, 2008.
- Chindaprasirt, P.; Jaturapitakkul, C.; Sinsiri, T. Effect of fly ash fineness on compressive strength and pore size of blended cement paste. Cem. Concr. Comp. 2005, 27, 425–428. [Google Scholar] [CrossRef]
- Yu, Z.; Ye, G. The pore structure of cement paste blended with fly ash. Constr. Build. Mater. 2013, 45, 30–35. [Google Scholar] [CrossRef]
- Ye, G. Experimental study and numerical simulation of the development of the microstructure and permeability of cementitious materials. J. Colloid Interface Sci. 2003, 262, 149–161. [Google Scholar] [CrossRef] [Green Version]
- Horpibulsuk, S.; Nagaraj, T.S.; Miura, N. Assessment of strength development in cement-admixed high water content clays with abrams’ law as a basis. Géotechnique 2003, 53, 439–444. [Google Scholar] [CrossRef]
- Fridjonsson, E.O.; Hasan, A.; Fourie, A.B.; Johns, M.L. Pore structure in a gold mine cemented paste backfill. Miner. Eng. 2013, 53, 144–151. [Google Scholar] [CrossRef]
- Fall, M.; Samb, S.S. Effect of high temperature on strength and microstructural properties of cemented paste backfill. Fire. Saf. J. 2009, 44, 642–651. [Google Scholar] [CrossRef]
- Kong, X.M.; Lu, Z.C.; Zhang, C.Y. Development on understanding cement hydration mechanism and effects of chemical admixtures on cement hydration. J. Chin. Ceram. Soc. 2017, 45, 274–281. [Google Scholar] [CrossRef]
- Aligizaki, K.K. Pore Structure of Cement-Based Materials: Testing, Interpretation and Requirement; Modern Concrete Technology Series: New York, NY, USA, 2006; Volume 12. [Google Scholar]
- Cook, R.A.; Hover, K.C. Mercury porosimetry of hardened cement pastes. Cem. Concr. Res. 1999, 29, 933–943. [Google Scholar] [CrossRef]
- Yilmaz, E.; Belem, T.; Bussière, B.; Benzaazoua, M. Relationships between microstructural properties and compressive strength of consolidated and unconsolidated cemented paste backfills. Cem. Concr. Comp. 2011, 33, 702–715. [Google Scholar] [CrossRef]
- Ma, H.Y.; Xu, B.W.; Liu, J.; Pei, H.P.; Li, Z.J. Effects of water content, magnesia-tophosphate molar ratio and age on pore structure, strength and permeability of magnesium potassium phosphate cement paste. Mater. Des. 2014, 64, 497–502. [Google Scholar] [CrossRef]
- Halamickova, P.; Detwiler, R.J.; Bentz, D.P.; Garboczi, E.J. Water permeability and chloride ion diffusion in Portland cement mortars: Relationship to sand content and critical pore diameter. Cem. Concr. Res. 1995, 25, 790–802. [Google Scholar] [CrossRef]
- Katz, A.J.; Thompson, A.H. Quantitative prediction of permeability in porous rock. Phys. Rev. B 1986, 34, 8179–8181. [Google Scholar] [CrossRef]
- Hu, J.; Stroeven, P. Proper characterisation of pore size distribution in cementitious materials. In Proceedings of the International Symposium on Environmental Ecology and Technology of Concrete (EETC 2005), Urumqi, China, 6–8 June 2005; pp. 479–485. [Google Scholar]
- Yang, C.C. On the relationship between pore structure and chloride diffusivity from accelerated chloride migration test in cement-based materials. Cem. Concr. Res. 2006, 36, 1304–1311. [Google Scholar] [CrossRef]
- Ghirian, A.; Fall, M. Coupled thermo-hydro-mechanical–chemical behaviour of cemented paste backfill in column experiments: Part I: Physical, hydraulic and thermal processes and characteristics. Eng. Geol. 2013, 164, 195–207. [Google Scholar] [CrossRef]
- Ghirian, A.; Fall, M. Coupled thermo-hydro-mechanical–chemical behaviour of cemented paste backfill in column experiments: Part II: Mechanical, chemical and microstructural processes and characteristics. Eng. Geol. 2014, 170, 11–23. [Google Scholar] [CrossRef]
- Liu, L.; Fang, Z.Y.; Qi, C.C.; Zhang, B.; Guo, L.J.; Song, K.-I. Experimental investigation on the relationship between pore characteristics and unconfined compressive strength of cemented paste backfill. Constr. Build. Mater. 2018, 179, 254–264. [Google Scholar] [CrossRef]
- Mehta, P.K.; Monteiro, P.J.M. Education, Concrete: Microstructure, Properties, and Materials; McGraw-Hill: New York, NY, USA, 2006. [Google Scholar]
- IUPAC. Manual of symbols and terminology. Appendix 2, part 1: Colloid and surface chemistry. Pure Appl. Chem. 1972, 31, 578. [Google Scholar]
- Shen, A.Q. Cement and Cement Concrete; China Communications Press: Beijing, China, 2004. [Google Scholar]
Natural Moisture Content (%) | Density (g/cm3) | Specific Gravity, Gs | Porosity (vol.%) | Porosity Ratio | Natural Repose Angle (°) | Liquid Limited (%) | Plastic Limited (%) |
---|---|---|---|---|---|---|---|
61.5 | 1.741 | 2.94 | 34.66 | 1.68 | 39 | 21 | 7 |
SiO2 | Fe2O3 | Al2O3 | CaO | MgO | K2O | Na2O | TiO2 | P2O5 | SO3 | MnO |
---|---|---|---|---|---|---|---|---|---|---|
82.052 | 8.003 | 3.849 | 2.461 | 2.143 | 0.700 | 0.179 | 0.106 | 0.076 | 0.076 | 0.021 |
Density (g/cm3) | Specific Surface Area (m2/kg) | Consistency (%) | Fineness (%) | Setting Time (min) | Flexural Strength (MPa) | Compressive Strength (MPa) | ||||
---|---|---|---|---|---|---|---|---|---|---|
Initial Setting | Final Setting | 3d | 28d | 3d | 28d | |||||
3.16 | 352.95 | 26.7 | 2.35 | 159 | 235 | 5.9 | 8.3 | 26.2 | 50.2 |
SiO2 | CaO | Al2O3 | Fe2O3 | MgO | SO3 | Na2O | K2O | f-CaO | TiO2 | Loss |
---|---|---|---|---|---|---|---|---|---|---|
22.31 | 60.98 | 5.87 | 3.38 | 2.32 | 2.49 | 0.39 | 0.75 | 0.2 | 0.58 | 2.51 |
Mix Label | Cement Content (wt.%) | Solid Mass Concentration (wt.%) |
---|---|---|
CCT-0 | 0 | 78 |
CCT-4 | 4 | 78 |
CCT-6 | 6 | 78 |
CCT-8 | 8 | 78 |
CCT-10 | 10 | 78 |
Samples | Equation | R-Squared Value |
---|---|---|
CST-4 | ||
CST-6 | ||
CST-8 | ||
CST-10 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Hou, Y. Experimental Investigation of the Macroscopic Behavior and Microstructure Property Evolution of Hardened Cement Consolidated Tailings. Minerals 2020, 10, 6. https://doi.org/10.3390/min10010006
Sun X, Hou Y. Experimental Investigation of the Macroscopic Behavior and Microstructure Property Evolution of Hardened Cement Consolidated Tailings. Minerals. 2020; 10(1):6. https://doi.org/10.3390/min10010006
Chicago/Turabian StyleSun, Xiang, and Yunbing Hou. 2020. "Experimental Investigation of the Macroscopic Behavior and Microstructure Property Evolution of Hardened Cement Consolidated Tailings" Minerals 10, no. 1: 6. https://doi.org/10.3390/min10010006
APA StyleSun, X., & Hou, Y. (2020). Experimental Investigation of the Macroscopic Behavior and Microstructure Property Evolution of Hardened Cement Consolidated Tailings. Minerals, 10(1), 6. https://doi.org/10.3390/min10010006