Sandor Type Fuzzy Inequality Based on the (s,m)-Convex Function in the Second Sense
Abstract
:1. Introduction
2. Preliminaries
- (1)
- .
- (2)
- and imply .
- (3)
- For any , and , imply .
- (4)
- For any , , and , imply .
- (1)
- ;
- (2)
- For any constant , then ;
- (3)
- If on the set , then ;
- (4)
- If and , then ;
- (5)
- If , then ;
- (6)
- If , then ;
- (7)
- There exists ;
- (8)
- There exists ;
- (9)
- , then .
3. Sandor Type Inequalities for the Sugeno Integral Based on the(s,m)-Convex in the Second Sense
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sugeno, M. Theory of Fuzzy Integrals and Its Applications. Ph.D. Thesis, Tokyo Institute of Technology, Tokyo, Japan, 1975. [Google Scholar]
- Rodger, J.A.; George, J.A. Triple bottom line accounting for optimizing natural gas sustainability: A statistical linear programming fuzzy ILOWA optimized sustainment model approach to reducing supply chain global cybersecurity vulnerability through information and communications technology. J. Clean. Prod. 2017, 142, 1931–1949. [Google Scholar]
- Song, J.; Tsang, E.C.C.; Chen, D.; Yang, X. Minimal decision cost reduct in fuzzy decision-theoretic rough set model. Knowl. -Based Syst. 2017, 126, 104–112. [Google Scholar] [CrossRef]
- Ezghari, S.; Zahi, A.; Zenkouar, K. A new nearest neighbor classification method based on fuzzy set theory and aggregation operators. Expert Syst. Appl. 2017, 80, 58–74. [Google Scholar] [CrossRef]
- Chadli, M. An LMI approach to design observer for unknown inputs Takagi-Sugeno fuzzy models. Asian J. Control 2010, 12, 524–530. [Google Scholar] [CrossRef]
- Grabisch, M.; Labreuche, C. A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid. Ann. Oper. Res. 2010, 175, 247–286. [Google Scholar] [CrossRef] [Green Version]
- Yager, R.R.; Alajlan, N. Sugenointegral with possibilisticinputs with application to multi-criteria decision making. Int. J. Intell. Syst. 2016, 31, 813–826. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, Y. Linguistic quantifiers modeled by interval-valued intuitionistic Sugeno integrals. J. Intell. Fuzzy Syst. 2015, 29, 583–592. [Google Scholar] [CrossRef]
- Li, W.; Feng, Z.; Sun, W.; Zhang, J. Admissibility analysis for Takagi–Sugeno fuzzy singular systems with time delay. Neurocomputing 2016, 205, 336–340. [Google Scholar] [CrossRef]
- Shilkret, N. Maxitive measure and integration. Indag. Math. 1971, 33, 109–116. [Google Scholar] [CrossRef]
- Greco, S.; Matarazzo, B.; Giove, S. The Choquet integral with respect to a level dependent capacity. Fuzzy Sets Syst. 2011, 175, 1–35. [Google Scholar] [CrossRef]
- Mesiar, R.; Mesiarová-Zemánková, A.; Ahmad, K. Level-dependent Sugenointegral. IEEE Trans. Fuzzy Syst. 2009, 17, 167–172. [Google Scholar] [CrossRef]
- Ouyang, Y.; Mesiar, R. On the Chebyshev type inequality for seminormed fuzzy integral. Appl. Math. Lett. 2009, 22, 1810–1815. [Google Scholar] [CrossRef]
- Hu, Y. Chebyshev type inequalities for general fuzzy integrals. Inf. Sci. 2014, 278, 822–825. [Google Scholar] [CrossRef]
- Abbaszadeh, S.; Eshaghi, M. A Hadamard-type inequality for fuzzy integrals based on r-convex functions. Soft Comput. 2016, 20, 3117–3124. [Google Scholar] [CrossRef]
- Agahi, H.; Mesiar, R.; Ouyang, Y. On Stolarsky inequality for Sugeno and Choquet integrals. Inf. Sci. 2014, 266, 134–139. [Google Scholar] [CrossRef]
- Román-Flores, H.; Flores-Franulic, A.; Chalco-Cano, Y. The fuzzy integral for monotone functions. Appl. Math. Comput. 2007, 185, 492–498. [Google Scholar] [CrossRef]
- Chu, Y.; Wang, G.; Zhang, X.; Qiu, S. Generalized convexity and inequalities involving special functions. J. Math. Anal. Appl. 2007, 336, 768–776. [Google Scholar] [CrossRef]
- Gill, P.M.; Pearce, C.E.M.; Pečarić, J. Hadamard’sinequality for r-convex functions. J. Math. Anal. Appl. 1997, 215, 461–470. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Kiris, M.E. Some new inequalities of Hermite-Hadamard type for s-convex functions. Miskolc Math. Notes 2015, 16, 491–501. [Google Scholar]
- Muddassar, M.; Bhatti, M.I. Some Generalization of Hadamard’s type Inequalities through Differentiability for s-Convex Function and their Applications. Indian J. Pure Appl. Math. 2013, 44, 131–151. [Google Scholar] [CrossRef]
- Micherda, B.; Rajba, T. On some Hermite-Hadamard-Fejér inequalities for (k,h)-convex functions. Math. Inequal. Appl. 2012, 15, 931–940. [Google Scholar] [CrossRef]
- Sándor, J. On the identric and logarithmic means. Aequ. Math. 1990, 40, 261–270. [Google Scholar] [CrossRef]
- Li, D.Q.; Cheng, Y.H.; Wang, X.S. Sandortype inequalities for Sugenointegral with respect to general (α,m,r)-convex functions. J. Funct. Spaces 2015, 2015, 1–13. [Google Scholar]
- Caballero, J.; Sadarangani, K. Sandor’s inequality for Sugeno integrals. Appl. Math. Comput. 2011, 218, 1617–1622. [Google Scholar] [CrossRef]
- Yang, X.L.; Song, X.Q.; Lu, W. Sandor’s type inequality for fuzzy integrals. J. Nanjing Univ. 2015, 32, 144–156. [Google Scholar]
- Lu, W.; Song, X.Q.; Huang, L.L. Inequalities of Hermite-Hadamard and Sandor for fuzzy integral. J. Shandong Univ. (Nat. Sci.) 2016, 51, 22–28. [Google Scholar]
- Park, J. Some Hadamard’s type inequalities for co-ordinated (s,m)-convex mappings in the second sense. Far East J. Math. Sci. 2011, 51, 205–216. [Google Scholar]
- Eftekhari, N. Some remarks on (s,m)-convexity in the second sense. J. Math. Inequal. 2014, 8, 489–495. [Google Scholar] [CrossRef]
- Vivas, M. Féjertype inequalities for (s,m)-convex functions in Second Sense. Appl. Math. Inf. Sci. 2016, 10, 1689–1696. [Google Scholar]
- Du, T.; Li, Y.; Yang, Z. A generalization of Simpson’s inequality via differentiable mapping using extended (s,m)-convex functions. Appl. Math. Comput. 2017, 293, 358–369. [Google Scholar] [CrossRef]
- Yang, Z.; Li, Y.; Du, T. A generalization of simpson type inequality via differentiable functions using (s,m)-convex functions. Ital. J. Pure Appl. Math. 2015, 35, 327–338. [Google Scholar]
- Wang, Z.; Klir, G. Fuzzy Measure Theory; Plenum: New York, NY, USA, 1992. [Google Scholar]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, H.; Wang, G.; Luo, L. Sandor Type Fuzzy Inequality Based on the (s,m)-Convex Function in the Second Sense. Symmetry 2017, 9, 181. https://doi.org/10.3390/sym9090181
Ren H, Wang G, Luo L. Sandor Type Fuzzy Inequality Based on the (s,m)-Convex Function in the Second Sense. Symmetry. 2017; 9(9):181. https://doi.org/10.3390/sym9090181
Chicago/Turabian StyleRen, Haiping, Guofu Wang, and Laijun Luo. 2017. "Sandor Type Fuzzy Inequality Based on the (s,m)-Convex Function in the Second Sense" Symmetry 9, no. 9: 181. https://doi.org/10.3390/sym9090181