# Sandor Type Fuzzy Inequality Based on the (s,m)-Convex Function in the Second Sense

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Preliminaries

**Definition**

**1.**

- (1)
- $\mu (\mathrm{\Phi})=0$.
- (2)
- $A,B\in \Sigma $ and $A\subset B$ imply $\mu (A)\le \mu (B)$.
- (3)
- For any $n\ge 1$, ${A}_{n}\in \Sigma $ and ${A}_{1}\subset {A}_{2}\subset \cdots $, imply $\mu ({\displaystyle \underset{n=1}{\overset{\infty}{\cup}}{A}_{n}})=\underset{n\to \infty}{\mathrm{lim}}\mu ({A}_{n})$.
- (4)
- For any $n\ge 1$, ${A}_{n}\in \Sigma $, ${A}_{1}\supset {A}_{2}\supset \cdots $ and $\mu ({A}_{1})<+\infty $, imply $\mu ({\displaystyle \underset{n=1}{\overset{\infty}{\cap}}{A}_{n}})=\underset{n\to \infty}{\mathrm{lim}}\mu ({A}_{n})$.

**Remark**

**1.**

**Definition**

**2.**

**Proposition**

**1.**

- (1)
- $(S){\displaystyle {\int}_{A}fd\mu}\le \mu (A)$;
- (2)
- For any constant $k\in {R}_{+}$, then $(S){\displaystyle {\int}_{A}kd\mu}\le k\wedge \mu (A)$;
- (3)
- If $f\le g$ on the set $A$, then $(S){\displaystyle {\int}_{A}fd\mu}\le (S){\displaystyle {\int}_{A}gd\mu}$;
- (4)
- If $A,B\in \Sigma $ and $A\subset B$, then $(S){\displaystyle {\int}_{A}fd\mu}\le (S){\displaystyle {\int}_{B}fd\mu}$;
- (5)
- If $\mu (A\cap \{f\ge \alpha \})\ge \alpha $, then $(S){\displaystyle {\int}_{A}fd\mu}\ge \alpha $;
- (6)
- If $\mu (A\cap \{f\ge \alpha \})\le \alpha $, then $(S){\displaystyle {\int}_{A}fd\mu}\le \alpha $;
- (7)
- $(S){\displaystyle {\int}_{A}fd\mu}<\alpha $ $\iff $ There exists $\gamma <\alpha ,s.t.\mu (A\cap \{f\ge \gamma \})<\alpha $;
- (8)
- $(S){\displaystyle {\int}_{A}fd\mu}>\alpha $ $\iff $ There exists $\gamma >\alpha ,s.t.\mu (A\cap \{f\ge \gamma \})>\alpha $;
- (9)
- $\mu (A)<+\infty $, then $(S){\displaystyle {\int}_{A}fd\mu}\ge \alpha $ $\iff $ $\mu (A\cap \{f\ge \alpha \})\ge \alpha $.

**Remark**

**2.**

**Definition**

**3.**

**Remark**

**3.**

**Lemma**

**1.**

**Proof.**

**Remark**

**4.**

**Lemma**

**2.**

**Proof.**

## 3. Sandor Type Inequalities for the Sugeno Integral Based on the(s,m)-Convex in the Second Sense

**Example**

**1.**

**Theorem**

**1.**

**Proof.**

**Remark**

**5.**

**Theorem**

**2.**

**Proof.**

**Remark**

**6.**

**Remark**

**7.**

**Example**

**2.**

**Example**

**3.**

**Example**

**4.**

**Example**

**5.**

## 4. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Sugeno, M. Theory of Fuzzy Integrals and Its Applications. Ph.D. Thesis, Tokyo Institute of Technology, Tokyo, Japan, 1975. [Google Scholar]
- Rodger, J.A.; George, J.A. Triple bottom line accounting for optimizing natural gas sustainability: A statistical linear programming fuzzy ILOWA optimized sustainment model approach to reducing supply chain global cybersecurity vulnerability through information and communications technology. J. Clean. Prod.
**2017**, 142, 1931–1949. [Google Scholar] - Song, J.; Tsang, E.C.C.; Chen, D.; Yang, X. Minimal decision cost reduct in fuzzy decision-theoretic rough set model. Knowl. -Based Syst.
**2017**, 126, 104–112. [Google Scholar] [CrossRef] - Ezghari, S.; Zahi, A.; Zenkouar, K. A new nearest neighbor classification method based on fuzzy set theory and aggregation operators. Expert Syst. Appl.
**2017**, 80, 58–74. [Google Scholar] [CrossRef] - Chadli, M. An LMI approach to design observer for unknown inputs Takagi-Sugeno fuzzy models. Asian J. Control
**2010**, 12, 524–530. [Google Scholar] [CrossRef] - Grabisch, M.; Labreuche, C. A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid. Ann. Oper. Res.
**2010**, 175, 247–286. [Google Scholar] [CrossRef] [Green Version] - Yager, R.R.; Alajlan, N. Sugenointegral with possibilisticinputs with application to multi-criteria decision making. Int. J. Intell. Syst.
**2016**, 31, 813–826. [Google Scholar] [CrossRef] - Zhang, X.; Zheng, Y. Linguistic quantifiers modeled by interval-valued intuitionistic Sugeno integrals. J. Intell. Fuzzy Syst.
**2015**, 29, 583–592. [Google Scholar] [CrossRef] - Li, W.; Feng, Z.; Sun, W.; Zhang, J. Admissibility analysis for Takagi–Sugeno fuzzy singular systems with time delay. Neurocomputing
**2016**, 205, 336–340. [Google Scholar] [CrossRef] - Shilkret, N. Maxitive measure and integration. Indag. Math.
**1971**, 33, 109–116. [Google Scholar] [CrossRef] - Greco, S.; Matarazzo, B.; Giove, S. The Choquet integral with respect to a level dependent capacity. Fuzzy Sets Syst.
**2011**, 175, 1–35. [Google Scholar] [CrossRef] - Mesiar, R.; Mesiarová-Zemánková, A.; Ahmad, K. Level-dependent Sugenointegral. IEEE Trans. Fuzzy Syst.
**2009**, 17, 167–172. [Google Scholar] [CrossRef] - Ouyang, Y.; Mesiar, R. On the Chebyshev type inequality for seminormed fuzzy integral. Appl. Math. Lett.
**2009**, 22, 1810–1815. [Google Scholar] [CrossRef] - Hu, Y. Chebyshev type inequalities for general fuzzy integrals. Inf. Sci.
**2014**, 278, 822–825. [Google Scholar] [CrossRef] - Abbaszadeh, S.; Eshaghi, M. A Hadamard-type inequality for fuzzy integrals based on r-convex functions. Soft Comput.
**2016**, 20, 3117–3124. [Google Scholar] [CrossRef] - Agahi, H.; Mesiar, R.; Ouyang, Y. On Stolarsky inequality for Sugeno and Choquet integrals. Inf. Sci.
**2014**, 266, 134–139. [Google Scholar] [CrossRef] - Román-Flores, H.; Flores-Franulic, A.; Chalco-Cano, Y. The fuzzy integral for monotone functions. Appl. Math. Comput.
**2007**, 185, 492–498. [Google Scholar] [CrossRef] - Chu, Y.; Wang, G.; Zhang, X.; Qiu, S. Generalized convexity and inequalities involving special functions. J. Math. Anal. Appl.
**2007**, 336, 768–776. [Google Scholar] [CrossRef] - Gill, P.M.; Pearce, C.E.M.; Pečarić, J. Hadamard’sinequality for r-convex functions. J. Math. Anal. Appl.
**1997**, 215, 461–470. [Google Scholar] [CrossRef] - Sarikaya, M.Z.; Kiris, M.E. Some new inequalities of Hermite-Hadamard type for s-convex functions. Miskolc Math. Notes
**2015**, 16, 491–501. [Google Scholar] - Muddassar, M.; Bhatti, M.I. Some Generalization of Hadamard’s type Inequalities through Differentiability for s-Convex Function and their Applications. Indian J. Pure Appl. Math.
**2013**, 44, 131–151. [Google Scholar] [CrossRef] - Micherda, B.; Rajba, T. On some Hermite-Hadamard-Fejér inequalities for (k,h)-convex functions. Math. Inequal. Appl.
**2012**, 15, 931–940. [Google Scholar] [CrossRef] - Sándor, J. On the identric and logarithmic means. Aequ. Math.
**1990**, 40, 261–270. [Google Scholar] [CrossRef] - Li, D.Q.; Cheng, Y.H.; Wang, X.S. Sandortype inequalities for Sugenointegral with respect to general (α,m,r)-convex functions. J. Funct. Spaces
**2015**, 2015, 1–13. [Google Scholar] - Caballero, J.; Sadarangani, K. Sandor’s inequality for Sugeno integrals. Appl. Math. Comput.
**2011**, 218, 1617–1622. [Google Scholar] [CrossRef] - Yang, X.L.; Song, X.Q.; Lu, W. Sandor’s type inequality for fuzzy integrals. J. Nanjing Univ.
**2015**, 32, 144–156. [Google Scholar] - Lu, W.; Song, X.Q.; Huang, L.L. Inequalities of Hermite-Hadamard and Sandor for fuzzy integral. J. Shandong Univ. (Nat. Sci.)
**2016**, 51, 22–28. [Google Scholar] - Park, J. Some Hadamard’s type inequalities for co-ordinated (s,m)-convex mappings in the second sense. Far East J. Math. Sci.
**2011**, 51, 205–216. [Google Scholar] - Eftekhari, N. Some remarks on (s,m)-convexity in the second sense. J. Math. Inequal.
**2014**, 8, 489–495. [Google Scholar] [CrossRef] - Vivas, M. Féjertype inequalities for (s,m)-convex functions in Second Sense. Appl. Math. Inf. Sci.
**2016**, 10, 1689–1696. [Google Scholar] - Du, T.; Li, Y.; Yang, Z. A generalization of Simpson’s inequality via differentiable mapping using extended (s,m)-convex functions. Appl. Math. Comput.
**2017**, 293, 358–369. [Google Scholar] [CrossRef] - Yang, Z.; Li, Y.; Du, T. A generalization of simpson type inequality via differentiable functions using (s,m)-convex functions. Ital. J. Pure Appl. Math.
**2015**, 35, 327–338. [Google Scholar] - Wang, Z.; Klir, G. Fuzzy Measure Theory; Plenum: New York, NY, USA, 1992. [Google Scholar]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ren, H.; Wang, G.; Luo, L.
Sandor Type Fuzzy Inequality Based on the (s,m)-Convex Function in the Second Sense. *Symmetry* **2017**, *9*, 181.
https://doi.org/10.3390/sym9090181

**AMA Style**

Ren H, Wang G, Luo L.
Sandor Type Fuzzy Inequality Based on the (s,m)-Convex Function in the Second Sense. *Symmetry*. 2017; 9(9):181.
https://doi.org/10.3390/sym9090181

**Chicago/Turabian Style**

Ren, Haiping, Guofu Wang, and Laijun Luo.
2017. "Sandor Type Fuzzy Inequality Based on the (s,m)-Convex Function in the Second Sense" *Symmetry* 9, no. 9: 181.
https://doi.org/10.3390/sym9090181