# Quantum Correlations under Time Reversal and Incomplete Parity Transformations in the Presence of a Constant Magnetic Field

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. From the Classical Result to a Quantum System

## 3. Invariance of the Quantum Hamiltonian

## 4. Correlation Functions

## 5. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Casimir, H.B.G. On Onsager’s Principle of Microscopic Reversibility. Rev. Mod. Phys.
**1945**, 17, 343, See also p. 344 and p. 349. [Google Scholar] [CrossRef] - Landau, L.D.; Lifshitz, E.M. Course of Theoretical Physics. Statistical Physics, 3rd ed.; Butterworth-Heinemann: Oxford, UK, 1980; Volume 5, p. 367. [Google Scholar]
- Gaspard, P. Multivariate fluctuation relations for currents. New J. Phys.
**2013**, 15, 115014. [Google Scholar] [CrossRef] - Bonella, S.; Ciccotti, G.; Rondoni, L. Time reversal symmetry in time-dependent correlation functions for systems in a constant magnetic field. EPL
**2014**, 108, 60004. [Google Scholar] [CrossRef] - Kubo, R. Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems. J. Phys. Soc. Jpn.
**1957**, 12, 570. [Google Scholar] [CrossRef] - Kubo, R. The fluctuation-dissipation theorem. Rep. Prog. Phys.
**1966**, 29, 255. [Google Scholar] [CrossRef] - Kubo, R. Some aspects of the statistical-mechanical theory of irreversible processes. In Lectures in Theoretical Physics; Brittin, W., Ed.; Interscience: New York, NY, USA, 1959; Volume 1. [Google Scholar]
- Colangeli, M.; Klages, R.; De Gregorio, P.; Rondoni, L. Steady state fluctuation relations and time reversibility for non-smooth chaotic maps. J. Stat. Mech. Theory Exp.
**2011**, 2011, P04021. [Google Scholar] [CrossRef] - Dal Cengio, S.; Rondoni, L. Broken versus Non-Broken Time Reversal Symmetry: Irreversibility and Response. Symmetry
**2016**, 8, 73. [Google Scholar] [CrossRef] - Bonella, S.; Coretti, A.; Rondoni, L.; Ciccotti, G. Time-reversal symmetry for systems in a constant external magnetic field. Phys. Rev. E
**2017**, in press. [Google Scholar] - Wigner, E.P. The operation of time reversal in quantum mechanics. Nachr. Ges. Wiss. Göttingen Math-Physik K1
**1932**, 32, 546. [Google Scholar] - Sachs, R.J. The Physics of Time Reversal; The University of Chicago Press: Chicago, IL, USA, 1987. [Google Scholar]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Gregorio, P.D.; Bonella, S.; Rondoni, L.
Quantum Correlations under Time Reversal and Incomplete Parity Transformations in the Presence of a Constant Magnetic Field. *Symmetry* **2017**, *9*, 120.
https://doi.org/10.3390/sym9070120

**AMA Style**

Gregorio PD, Bonella S, Rondoni L.
Quantum Correlations under Time Reversal and Incomplete Parity Transformations in the Presence of a Constant Magnetic Field. *Symmetry*. 2017; 9(7):120.
https://doi.org/10.3390/sym9070120

**Chicago/Turabian Style**

Gregorio, Paolo De, Sara Bonella, and Lamberto Rondoni.
2017. "Quantum Correlations under Time Reversal and Incomplete Parity Transformations in the Presence of a Constant Magnetic Field" *Symmetry* 9, no. 7: 120.
https://doi.org/10.3390/sym9070120