Discrete Sine Transform-Based Interpolation Filter for Video Compression
Abstract
:1. Introduction
2. Interpolation Filters for Generating Fractional Pixels
2.1. The Sinc-Based Interpolation Filter
2.2. The DCT-II Interpolation Filter (DCT-IF) in HEVC
2.3. The Proposed DST-VII Interpolation Filter (DST-IF)
2.4. Analysis of the Interpolation Filters
3. Experimental Results
3.1. Experimental Conditions
3.2. Experimental Results
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bros, B.; Han, W.-J.; Ohm, J.-R.; Sulivan, G.J.; Wang, Y.-K.; Wiegand, T. High Efficiency Video Coding (HEVC) text specification draft 10 (for FDIS & Consent). J. Inst. Telev. Eng. Jpn. 2013, 67, 244–247. [Google Scholar]
- Sullivan, G.J.; Ohm, J.-R.; Han, W.-J.; Wiegand, T. Overview of the High Efficiency Video Coding (HEVC) Standard. IEEE Trans. Circuits Syst. 2012, 22, 1649–1668. [Google Scholar] [CrossRef]
- Jain, J.R.; Jain, A.K. Displacement measurement and its application in interframe image coding. IEEE Trans. Commun. 1981, 29, 1799–1804. [Google Scholar] [CrossRef]
- Girod, B. Motion-compensating prediction with fractional-pel accuracy. IEEE Trans. Commun. 1993, 41, 604–612. [Google Scholar] [CrossRef]
- Wiegand, T.; Zhang, X.; Girod, B. Long-term memory motion-compensated prediction. IEEE. Trans. Circuits Syst. Video Technol. 1999, 9, 70–84. [Google Scholar] [CrossRef]
- Flierl, M.; Wiegand, T.; Girod, B. Rate-constrained multihypothesis prediction for motion-compensated video compression. IEEE Trans. Circuits Syst. Video Technol. 2002, 12, 957–969. [Google Scholar] [CrossRef]
- Rosewarne, C.; Bross, B.; Naccari, M.; Sharman, K.; Sullivan, G.J. High Efficiency Video Coding (HEVC) Test Model 16 (HM 16) Improved Encoder Description Update 2; JCTVC-T1002; ITU-T/ISO/IEC Jt. Collab. Team Video Coding (JCT-VC): New York, NY, USA, February 2015. [Google Scholar]
- Wedi, T. Motion compensation in H.264/AVC. IEEE Trans. Circuits Syst. Video Technol. 2003, 13, 577–586. [Google Scholar] [CrossRef]
- McClellan, J.H.; Schafer, R.W.; Yoder, M.A. Signal Processing First; Pearson/Prentice Hall: Upper Saddle River, NJ, USA, 2003. [Google Scholar]
- Haykin, S.; Van Veen, B. Signals and Systems, 2nd ed.; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar]
- Karczewicz, M.; Chen, P.; Joshi, R.L.; Wang, X.; Chien, W.J.; Panchal, R.; Reznik, Y.; Coban, M.; Chong, I.S. A hybrid video coder based on extended macroblock sizes, improved interpolation, and flexible motion representation. IEEE Trans. Circuits Syst. Video Technol. 2010, 20, 1698–1708. [Google Scholar] [CrossRef]
- Marpe, D.; Schwarz, H.; Bosse, S.; Bross, B.; Helle, P.; Hinz, T.; Kirchhoffer, H.; Lakshman, H.; Nguyen, T.; Oudin, S.; et al. Video compression using nested quadtree structures, leaf merging, and improved techniques for motion representation and entropy coding. IEEE Trans. Circuits Syst. Video Technol. 2010, 20, 1698–1708. [Google Scholar] [CrossRef]
- Ugur, K.; Andersson, K.; Fuldseth, A.; Bjøntegaard, G.; Endresen, L.P.; Lainema, J.; Hallapuro, A.; Ridge, J.; Rusanovskyy, D.; Zhang, C.; et al. High performance, low complexity video coding and the emerging HEVC standard. IEEE Trans. Circuits Syst. Video Technol. 2010, 20, 1698–1708. [Google Scholar] [CrossRef]
- Han, W.J.; Min, J.; Kim, I.K.; Alshina, E.; Alshin, A.; Lee, T.; Chen, J.; Seregin, V.; Lee, S.; Hong, Y.M.; et al. Improved video compression efficiency through flexible unit representation and corresponding extension of coding tools. IEEE Trans. Circuits Syst. Video Technol. 2010, 20, 1698–1708. [Google Scholar] [CrossRef]
- Ugur, K.; Alshin, A.; Alshina, E.; Bossen, F.; Han, W.J.; Park, J.H.; Lainema, J. Motion Compensated Prediction and Interpolation Filter Design in H.265/HEVC. IEEE J. Sel. Top. Signal Process. 2013, 7, 946–956. [Google Scholar] [CrossRef]
- Wien, M. High Efficiency Video Coding—Coding Tools and Specification; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Sze, V.; Budagavi, M.; Sullivan, G.J. High Efficiency Video Coding (HEVC)—Algorithms and Architectures; Springer: Heidelberg, Germany, 2014. [Google Scholar]
- Wiegand, T.; Sullivan, G.J.; Bjøntegaard, G.; Luthra, A. Overview of the H.264/AVC video coding standard. IEEE Trans. Circuits Syst. 2003, 13, 560–576. [Google Scholar] [CrossRef]
- Stitch Dicrete Sine Transform. 2013. Available online: http://planetmath.org/sites/default/files/texpdf/39764.pdf (accessed on 1 September 2016).
- Kim, M.J.; Kim, N.; Lee, Y. Investigation on interpolation filters in HEVC. In Proceedings of the International Workshop on Advanced Image Technology, Penang, Malaysia, 8–10 January 2017. [Google Scholar]
- Bossen, F. Common HM Test Conditions and Software Reference Configurations; JCTVC-H1100; ITU-T/ISO/IEC Jt. Collab. Team Video Coding (JCT-VC): New York, NY, USA, 2012. [Google Scholar]
- Bjøntegaard, G. Calculation of Average PSNR Differences between RD-curves. In Proceedings of the ITU-T VCEG Meeting, Austin, TX, USA, 2–4 April 2001. [Google Scholar]
- Sullivan, G.J.; Wiegand, T. Rate-Distortion Optimization for Video Compression. IEEE Signal Process. Mag. 1998, 15, 74–90. [Google Scholar] [CrossRef]
Index i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|---|
1/2-pixel filter[i] | −1 | 4 | −11 | 40 | 40 | −11 | 4 | −1 |
1/4-pixel filter[i] | −1 | 4 | −10 | 58 | 17 | −5 | 1 |
Index i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|---|
1/2-pixel filter[i] | −2 | 6 | −13 | 41 | 41 | −13 | 6 | −2 |
1/4-pixel filter[i] | −2 | 5 | −11 | 58 | 18 | −6 | 2 |
Index i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1/2-pixel filter[i] | −1 | 2 | −4 | 7 | −13 | 41 | 41 | −13 | 7 | −4 | 2 | −1 |
1/4-pixel filter[i] | −1 | 2 | −3 | 6 | −11 | 58 | 19 | −8 | 4 | −3 | 1 |
Index i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1/2-pixel filter[i] | −1 | 2 | −4 | 7 | −12 | 40 | 40 | −12 | 7 | −4 | 2 | −1 |
1/4-pixel filter[i] | −1 | 2 | −3 | 5 | −11 | 58 | 18 | −7 | 4 | −2 | 1 |
Class | Sequence Name | Frame Count | Frame Rate | Bit Depth |
---|---|---|---|---|
B | Kimono | 240 | 24 fps | 8 |
B | ParkScene | 240 | 24 fps | 8 |
B | Cactus | 500 | 50 fps | 8 |
B | BQTerrace | 600 | 60 fps | 8 |
B | BasketballDrive | 500 | 50 fps | 8 |
C | RaceHorses | 300 | 30 fps | 8 |
C | BQMall | 600 | 60 fps | 8 |
C | PartyScene | 500 | 50 fps | 8 |
C | BasketballDrill | 500 | 50 fps | 8 |
D | RaceHorses | 300 | 30 fps | 8 |
D | BQSquare | 600 | 60 fps | 8 |
D | BlowingBubbles | 500 | 50 fps | 8 |
D | BasketballPass | 500 | 50 fps | 8 |
E | FourPeople | 600 | 60 fps | 8 |
E | Johnny | 600 | 60 fps | 8 |
E | KristenAndSara | 600 | 60 fps | 8 |
Class | Sequence Name | Saving Bits (%) | |||||
---|---|---|---|---|---|---|---|
8-Point and 7-Point DST-IF | 12-Point and 11-Point DST-IF/12-Point and 11-Point DCT-IF | ||||||
LDB | LDP | RA | LDB | LDP | RA | ||
B | Kimono | 0.3 | 1.2 | 0.2 | 0.6/0.5 | 2.5/0.5 | 0.2/0.3 |
B | ParkScene | 0.8 | 2.1 | 0.3 | 1.7/1.3 | 3.9/1.6 | 0.5/0.9 |
B | Cactus | 0.8 | 2.3 | 0.2 | 1.1/1.2 | 3.6/1.6 | 0.0/0.8 |
B | BasketballDrive | 0.1 | 1.2 | 0.1 | 0.3/0.4 | 2.3/0.6 | 0.3/0.3 |
B | BQTerrace | 1.5 | 5.3 | 1.0 | 2.7/3.4 | 8.6/4.4 | 1.5/2.3 |
C | RaceHorses | −0.9 | 0.3 | −0.2 | −1.2/−0.7 | 0.6/−0.1 | −0.5/−0.2 |
C | BQMall | −0.2 | 1.3 | −0.5 | −0.5/−0.6 | 1.8/−0.2 | −1.0/−0.5 |
C | PartyScene | −1.7 | −0.2 | −2.5 | −3.5/−4.4 | −1.7/−3.6 | −4.5/−3.8 |
C | BasketballDrill | 0.6 | 1.7 | 0.4 | 1.2/0.9 | 2.9/1.1 | 0.8/0.6 |
D | RaceHorses | 0.1 | 0.8 | −0.1 | 0.0/−0.2 | 1.2/0.0 | −0.3/−0.2 |
D | BQSquare | −4.1 | −0.4 | −5.2 | −7.5/−7.2 | −2.9/−4.9 | −9.0/−7.4 |
D | BlowingBubbles | −1.5 | 0.0 | −1.8 | −2.8/−3.1 | −0.9/−2.2 | −3.1/−2.4 |
D | BasketballPass | 0.5 | 1.2 | 0.2 | 0.9/0.9 | 2.0/1.1 | 0.4/0.4 |
E | FourPeople | 0.6 | 2.4 | x | 1.2/1.2 | 4.7/1.6 | x |
E | Johnny | 0.5 | 4.4 | x | 1.0/1.9 | 9.0/2.3 | x |
E | KristenAndSara | 0.6 | 2.4 | x | 1.2/1.5 | 5.5/1.4 | x |
Overall | −0.1 | 1.6 | −0.6 | −0.2/−0.2 | 2.7/0.3 | −1.1/−0.7 |
Class | Sequence Name | Saving Bits (%) | |||
---|---|---|---|---|---|
8-Point and 7-Point DST-IF | 12-Point and 11-Point DST-IF/12-Point and 11-Point DCT-IF | ||||
LDB | RA | LDB | RA | ||
B | Kimono | 0.1 | 0.1 | 0.1/0.1 | 0.0/0.2 |
B | ParkScene | 0.2 | 0.1 | 0.0/0.3 | 0.0/0.6 |
B | Cactus | 0.2 | 0.0 | −0.4/0.2 | −0.3/0.6 |
B | BasketballDrive | 0.0 | 0.0 | −0.1/0.1 | −0.1/0.2 |
B | BQTerrace | 1.1 | 0.8 | 0.4/2.3 | 0.8/2.0 |
C | RaceHorses | −0.7 | −0.2 | −1.3/−0.5 | −0.6/−0.2 |
C | BQMall | −0.3 | −0.6 | −1.2/−0.9 | −1.3/−0.5 |
C | PartyScene | −1.5 | −2.4 | −3.8/−3.7 | −4.4−3.5 |
C | BasketballDrill | 0.2 | 0.2 | 0.3/0.2 | 0.2/0.3 |
D | RaceHorses | −0.1 | −0.2 | −0.3/−0.2 | −0.5/−0.2 |
D | BQSquare | −3.7 | −5.0 | −8.3/−6.3 | −9.1/−6.9 |
D | BlowingBubbles | −1.2 | −1.7 | −2.9/−2.4 | −3.0/−2.1 |
D | BasketballPass | 0.0 | −0.1 | −0.1/0.1 | −0.1/0.2 |
E | FourPeople | 0.4 | x | −0.1/0.6 | x |
E | Johnny | −0.4 | x | −1.5/0.2 | x |
E | KristenAndSara | 0.2 | x | −0.2/0.5 | x |
Overall | −0.3 | −0.7 | −1.2/−0.6 | −1.4/−0.7 |
Computational Complexity | ||
---|---|---|
Proposed Methods | Encoding Time (%) | Decoding Time (%) |
HM-16.6 vs. 8- and 7-point DST-IFs (uni- and bi-directional predictions) | 101 | 101 |
HM-16.6 vs. 8- and 7-point DST-IFs (bi-directional prediction only) | 97 | 99 |
HM-16.6 vs. 12- and 11-point DST-IFs (uni- and bi-directional predictions) | 118 | 113 |
HM-16.6 vs. 12- and 11-point DST-IFs (bi-directional prediction only) | 104 | 107 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Lee, Y.-L. Discrete Sine Transform-Based Interpolation Filter for Video Compression. Symmetry 2017, 9, 257. https://doi.org/10.3390/sym9110257
Kim M, Lee Y-L. Discrete Sine Transform-Based Interpolation Filter for Video Compression. Symmetry. 2017; 9(11):257. https://doi.org/10.3390/sym9110257
Chicago/Turabian StyleKim, MyungJun, and Yung-Lyul Lee. 2017. "Discrete Sine Transform-Based Interpolation Filter for Video Compression" Symmetry 9, no. 11: 257. https://doi.org/10.3390/sym9110257
APA StyleKim, M., & Lee, Y.-L. (2017). Discrete Sine Transform-Based Interpolation Filter for Video Compression. Symmetry, 9(11), 257. https://doi.org/10.3390/sym9110257